
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2007; 18: 107–119
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/cav.166...
The corridor map method: a general
framework for real-time high-quality
path planning

By Roland Geraerts* and Mark H. Overmars
..

In many virtual environment applications, paths have to be planned for characters to
traverse from a start to a goal position in the virtual world while avoiding obstacles.
Contemporary applications require a path planner that is fast (to ensure real-time
interaction with the environment) and flexible (to avoid local hazards such as small and
dynamic obstacles). In addition, paths need to be smooth and short to ensure natural
looking motions.

Current path planning techniques do not obey these criteria simultaneously. For example,
A* approaches generate unnatural looking paths, potential field-based methods are too
slow, and sampling-based path planning techniques are inflexible. We propose a new
technique, the Corridor Map Method (CMM), which satisfies all the criteria. In an off-line
construction phase, the CMM creates a system of collision-free corridors for the static
obstacles in an environment. In the query phase, paths can be planned inside the corridors
for different types of characters while avoiding dynamic obstacles. Experiments show that
high-quality paths for single characters or groups of characters can be obtained in real-time.
Copyright © 2007 John Wiley & Sons, Ltd.

Received: 10 January 2007; Revised: 31 January 2007; Accepted: 1 February 2007

KEY WORDS: path planning; corridor map method; high-quality paths

Introduction

Path planning is one of the fundamental problems in
interactive virtual worlds, such as games. The path
planning problem can be defined as finding a path
between a start and goal position of a character in
an environment with obstacles. In the past 15 years,
efficient algorithms have been devised to tackle this
problem. They are successfully applied in fields, such
as mobile robots, manipulation planning, CAD systems,
virtual environments, protein folding, and human robot
planning. See the books of Choset et al.,1 Latombe2, and
LaValle3 for an extensive overview.

Many algorithms require that the complete environ-
ment is known beforehand. However, the environment
frequently contains dynamic obstacles or other moving

*Correspondence to: R. Geraerts, Center for Advanced Gaming
and Simulation (AGS), Institute of Information and Computing
Sciences, Utrecht University, 3508 TA Utrecht, The Netherlands.
Email: roland@cs.uu.nl

characters which can block a computed path. As a result,
adaptations of the algorithms are required to avoid the
new obstacles in real-time. Even if all the information
is available, for example in static virtual environments,
methods can have difficulties dealing with the growing
sizes of contemporary virtual environments. Often, only
the large obstacles are taken into account to save memory
and to lower the CPU load. However, also the small
obstacles have to be avoided in real-time.

An important question is how long the computation of
a path may take to ensure real-time behavior. In a virtual
environment, such as a game, very little processor time
is scheduled for the path planner. Especially when many
paths have to be planned simultaneously, only one (of
a few) millisecond per second CPU time per character
is allowed. Larger running times will lead to stalls
in interactive environments. In conclusion, interactive
environments require a path planner that is very fast and
flexible.

In the game development community, a common
way to plan a path is to use an A* algorithm on a

..
Copyright © 2007 John Wiley & Sons, Ltd.

R. GERAERTS AND M. H. OVERMARS
...

Figure 1. Three methods for path finding. The A* algorithm finds the shortest path in the displayed grid, consisting of 1792 nodes
and 3321 edges. The PRM-graph is almost six times as small. The CMM-graph is the smallest one containing 44 nodes and

50 edges. (a) A*, (b) PRM, (c) CMM.

low-resolution grid (see Figure 1a). This search algorithm
is popular because it always finds the shortest path in
a grid, if one exists. However, as virtual worlds are
becoming very large, storing the grid and running the
algorithm may consume a huge amount of memory
which is not always available, in particular on systems
with constrained memory such as mobile systems.
In addition, the algorithm may consume too much
processor time when many paths have to be planned
simultaneously. Paths resulting from A* algorithms
tend to have little clearance to obstacles and can
be aesthetically unpleasant, so care must be taken
to smooth them. In conclusion, A* algorithms have

serious drawbacks when dealing with large interactive
environments.

In the robotics community, much research has been
conducted on the path planning problem. About 20 years
ago, flexible planners, such as Potential Field methods,
were introduced.4–6 A Potential Field method directs
the motion of the character (robot) through an artificial
potential field which is defined by a function over the free
configuration space Cfree (that is, the space of all the pos-
sible placements for the character in the environment).
The character is pulled toward the goal position as it
generates a strong attractive force. In contrast, the obsta-
cles generate a repulsive force to keep the character from

..
Copyright © 2007 John Wiley & Sons, Ltd. 108 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

CORRIDOR MAP METHOD
...

colliding with them. The path from the start to the goal
can be found by following the direction of the steepest de-
scent of the potential toward the goal. While this method
has some flexibility to avoid local hazards (such as small
obstacles and other moving objects), it is not useful for
path planning in interactive virtual environments as it
takes too much time to create the path. In addition, the
path will not always be found because the character often
ends up in a local minimum of the potential.

The Probabilistic Roadmap Method (PRM), developed
in the 1990s,7–9 does not suffer from the local minima
problem. This method consists of two phases. In the
construction phase, a roadmap is created that captures
the connectivity ofCfree with a set of one-dimensional (1D)
curves. In the query phase, the start and goal positions
are connected to the graph, and the path is obtained by
running Dijkstra’s shortest path algorithm.

While the PRM has been successfully applied to a
broad range of problems, the method generates ugly
paths. That is, the paths are only piecewise linear, they
have many redundant motions, and they have little
clearance to the obstacles, resulting in unnatural looking
motions (see Figure 1b). While techniques exist for
optimizing the paths,10–12 they are too slow to be applied
in the query phase in real-time applications.

By shifting the optimization process to the off-line
construction phase, high-quality paths can be computed
in a small amount of time. In Reference [13], we proposed
a method that creates high-quality graphs from which
relatively short paths and paths with a large amount of
clearance can be extracted. While the method may be
fast enough for an environment with one character, the
method will be still too slow for environments with many
characters in the query phase.

A disadvantage of these roadmap-based methods is
that they output a fixed path in response to a query. This
leads to predictable motions and lacks flexibility when
the environment or character changes.

Recently, the concept of path planning inside corridors
has been introduced.14,15 By using corridors, the
advantages of the techniques described above are
combined. That is, global motions are directed by a
high-quality roadmap, and local motions are controlled
by potential fields inside corridors, providing local
flexibility of the path (see Figure 1c). In Reference [4],
corridors have been exploited to find paths for coherent
groups of characters. Also quantitative measures for the
quality of corridors have been devised.15

In this paper, we extend and generalize their results
by proposing a general framework, called the Corridor
Map Method (CMM). We show how to avoid dynamic

obstacles and how to create short paths. Then we conduct
experiments with two-dimensional (2D) problems and
conclude that the framework is capable of creating
smooth, short paths for characters avoiding dynamic
obstacles in real-time, that is in less than 1 millisecond
CPU time per second traversed time of the character.

Corridor Map Method

The CMM creates a system of collision-free corridors
for the static obstacles in an environment. Paths can
be planned inside the corridors for different types of
characters while satisfying additional constraints such
as avoiding dynamic obstacles. We assume that the
character can be modeled by a ball with radius r.

The CMM consists of an off-line construction phase
and a one-line query phase. In the construction phase,
a roadmap graph G = (V, E) is built which serves
as a skeleton for the corridors (see Figure 2a). Each
vertex ν ∈ V corresponds to a collision-free point in a
d-dimensional environment (d is typically 2 or 3) and
each edge ε ∈ E corresponds to a local path �ε. The path
� is defined as follows:

Definition 1 (Path). A path � for a point in a d-dimensional
environment is a continuous map � ∈ [0, 1] → R

d such that
∀t ∈ [0, 1] : �[t] ∈ Cfree.

With each point �ε[t] on local path �ε, we associate the
radius R[t] of the largest empty ball (in the environment)
centered at �ε[t]. This clearance information and the
graph are now used to define the corridor map (see
Figure 2b):

Definition 2 (Corridor map). The corridor map is a graph
G = (V, E) with clearance information. That is, each edge ε ∈
E encodes a local path �ε together with the radii R of the
corresponding largest empty balls in the environment.

In the query phase, we have to find a path for a
character which connects the start position to the goal
position. For now, we assume that these positions are
vertices ν′, ν′′ ∈ V . By running Dijkstra’s shortest path
algorithm (while discarding edges for which ∃t : R[t] <

r), we extract the backbone path (if one exists) from G.

Definition 3 (Backbone path). Let ε1 . . . εn be the sequence
of edges extracted from G that connects ν′ with ν′′. The
backbone path B[t] is then defined as �ε1 ⊕ . . . ⊕ �εn

where
the operator ⊕ concatenates the local paths �εi

.

The backbone path, together with the clearance
information defines a corridor (see Figure 2c):

..
Copyright © 2007 John Wiley & Sons, Ltd. 109 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

R. GERAERTS AND M. H. OVERMARS
...

Figure 2. The construction phase (top) and the query phase (bottom) of the Corridor Map Method. (a) Graph, (b) Corridor map,
(c) Corridor and backbone path, (d) Final path.

Definition 4 (Corridor). A corridor C = (B[t], R[t])
is defined as the union of the set of balls with
radii R[t] whose center points lie along its backbone
path B[t].

If the start position s or goal position g is not equal
to one of the vertices, we have to extend the corridor
such that they are included (see Figure 3). Let s′ and g′ be
their closest points on local paths �εs

and �εg
whose balls

Figure 3. Extending the corridor to include the start and goal positions.

..
Copyright © 2007 John Wiley & Sons, Ltd. 110 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

CORRIDOR MAP METHOD
...

include s and g, respectively. Edges εs and εg are split such
that they include vertices s′ and g′, respectively. Finally,
let �s be the straight-line local path between s and s′ and
�g be the straight-line local path between g′ to g. Then,
the backbone path is defined as path �s, concatenated
with the shortest path between s′ and g′, and path �g.
The radii corresponding to the positions p on �s (�g)
are equal to the clearance corresponding to vertex s′ (g′)
minus the Euclidean distance between s′ (g′) and p.

Now that we have defined the corridor, which guides
the global motions of the character, its local motions are
led by an attraction point, α(x), moving on the backbone
path of the corridor from the start to the goal. The attrac-
tion point is defined such that making a step toward this
point leads the character toward the goal. In addition, the
ball (with radius R[t]) corresponding to α(x) encloses the
character, ensuring a collision-free motion. If R[t] ≤ r,
then there exists no attraction point, and, hence, no path.

Definition 5 (Attraction point). Let x be the current
position of the character with radius r. The attraction point
α(x) for the character at position x is the point B[t] on the
backbone path B having the largest time index t : t ∈ [0 : 1]
such that Euclidean distance (x, B[t]) < R[t] − r.

The attraction point attracts the character with forceF0.
Let d be the Euclidean distance between the character’s
position x and the attraction pointα(x). ThenF0 is defined
as

F0 = f
α(x) − x

||α(x) − x|| , wheref = 1
R[t] − r − d

− 1
R[t] − r

The scalar f is chosen such that the force will be 0 when
the character is positioned on the attraction point. In
addition, f will be ∞ when the character touches the
boundary of the ball. (However, f will never reach ∞
since we require that the radii of the balls are strictly
larger than r).

Local hazards (such as small obstacles or other
characters) can be avoided by adding repulsive forces
to F0 toward the hazards. Hence, the final force F is
dependent on the problem to be solved. We will show
some choices in the following section.

The final path � is obtained by integration over time
while updating the velocity, position, and attraction
point of the character. In each iteration, we update the
attraction point on the backbone path based on position x
of the character. Now we have all the information needed
to compute the force F. By integrating F, we compute
the new velocity vector for x. In addition, by integrating
the velocity vector, we compute the new position for the

character. We continue moving the character until the
character has reached the goal.

By using this time integration scheme, a smooth path is
obtained.

Theorem 1 (C1 continuity of the path). The CMM gene-
rates a path � that is smooth, that is C1 continuous.

Proof. The path � is obtained by integrating the
forceF two times, which adds two degrees of continuity
to the path followed by the attraction point. Even
though this path can be discontinuous, it can be easily
shown that double integration leads to C1 continuity. To
prove that F can indeed be integrated, we have to show
that the denominators in F are larger than 0: Since the
attraction point α(x) is defined as the furthest point on
the backbone path, the point lies always ‘in front of’ the
character’s position x (except for the goal position), and,
hence, the term ||α(x) − x|| > 0. In addition, the term
R[t] − r − d > 0 because R[t] > r. Since these two terms
stay positive, F can be integrated (two times), resulting
in a path � being C1 continuous. �

As an example, consider Figure 2 which shows
the stages of the CMM applied to a simple planar
environment. For this environment, an input graph was
created. Its nodes were sampled on the medial axis to
ensure a locally maximum clearance of the nodes. Its
edges (black lines) were retracted to the medial axis
to provide high-clearance local paths (small discs). The
graph, together with the clearance information, forms the
corridor map which is displayed in the second picture.
The covered area of the map is visualized in a light color.
The next picture shows the corridor and its backbone
path corresponding to a start and goal position of the
query. The final path, displayed in the fourth picture,
was obtained by applying the procedure described
above.

Specific Choices

An important influence on the quality of the corridor
map, and, hence, the quality of the resulting paths, is the
quality of the input graph. In Reference [13], we proposed
the enhanced Reachability Roadmap Method, which is a
technique that creates high-quality graphs satisfying the
following four properties:

1. The graph is resolution complete. This mean that a valid
query (which consists of a start and a goal position)
can always be connected to the graph. If there exists a

..
Copyright © 2007 John Wiley & Sons, Ltd. 111 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

R. GERAERTS AND M. H. OVERMARS
...

path between the start and goal, then it can always be
found (at a given resolution).

2. The graph is small. A small graph ensures low query
times and low memory consumption. In addition,
when a graph must obey other criteria, a small graph
eases manual tuning.

3. The graph contains useful cycles. These cycles provide
short paths and alternative routes which allow for
variation in the (global) routes that characters take.

4. The graph provides high-clearance local paths. As the
local paths lie on the medial axis, each point on the
corridor will have a locally maximum clearance. This
will provide the most freedom for the character to
move.

In the remainder of this paper, we will use this
technique for creating the input graphs.

We have seen that moving inside a corridor (instead of
moving along a path) provides enough freedom to obtain
a smooth path. Now we will describe how a corridor can
be used to avoid dynamic obstacles and to create shorter
paths.

Avoiding Dynamic Obstacles

Dynamic obstacles are the obstacles in the environment
that are not present (or suppressed) when the corridor
map is created. There are two ways to deal with avoiding
these obstacles. We can update the force F (by adding a
repulsive force toward the obstacles) or we can change
the corridor itself. We assume that the radii of the
obstacles are known.

Adding Forces. Our goal is to guide the character
around all the dynamic obstacles inside the corridor. To
ensure that the character does not collide with the ob-
stacles, repulsive forces are applied. Such a force is only
applied if both the character and the obstacle are located
in the ball corresponding to the attraction point α(x). For
each obstacleOi : i ∈ [1 : n], we compute a repulsive force
Fi. Let di be the Euclidean distance between the center of
the character at position x and the center of obstacle i with
radius ri, r be the radius of the character, and k : k > 0 be
a constant. Then Fi is defined as

Fi = f
x − Oi

||x − Oi|| , where f = k

di − ri − r

The scalar f is chosen such that the force will be ∞ when
the character and obstacle touch. The larger the distance
between them, the lower the force will be. The constant
k is used to increase or decrease the influence of the
repulsive forces on the character.

The final force F can now be calculated by adding the
attractive force F0 and repulsive forces Fi, that is,

F = F0 + . . . +Fn

As an example, consider Figure 4(a). It shows our
running example, but now five small dynamic obstacles
have been added. The final path is obtained after the
force function has been extended. The figure shows that
the path has only changed locally. While this method is
flexible, it is hard to control the ‘shape’ of the path. In
addition, future changes of the path (i.e., shortening the
path) are hard since such change has to operate on a path

Figure 4. Two techniques for obstacle avoidance. The left picture shows an unchanged corridor that includes five small obstacles.
The right picture shows the updated corridor, swaying around the five obstacles. (a) Extending the force function, (b) Updating

the corridor.

..
Copyright © 2007 John Wiley & Sons, Ltd. 112 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

CORRIDOR MAP METHOD
...

Figure 5. Using the corridor to create shorter paths. Shorter paths are obtained by moving the attraction point α(x) along the
backbone path toward the goal. (a) α(x, 0.00), (b) α(x, 0.05), (c) α(x, 0.10), (d) α(x, 0.25).

instead of a corridor. By creating a sub-corridor inside
the corridor which excludes the dynamic obstacles, we
obtain more freedom.

Creating a Sub-Corridor. Our goal is to create a sub-
corridor C′ = (B′[t], R′[t]) which lies inside the original
corridor and is absent from the dynamic obstacles
Oi : i ∈ [1 : n]. In the following procedure, we initially
set B′[t] and R′[t] to B[t] and R[t], respectively, where t :
t ∈ [0 : 1] is the time index. Then we move the backbone
path and update the corresponding radii of the balls, as
follows. Let di[t] be the Euclidean distance between the
center of the ball positioned at B[t] and center of obstacle
i, that is, di[t] = ||B[t] − Oi||. Only if an obstacle Oi is in
this ball, that is, di[t] < R[t], the sub-corridor is modified.
The point B[t] will be moved away in a straight line

from obstacle Oi. The distance traveled by this point, dist,
equals to

dist = R[t] − di[t]
2

Hence, the position of ball B′[t] equals to

B′[t] = B[t] + dist ∗ B[t] − Oi

di[t]

and the radius R′[t] of the ball equals to

R′[t] = R[t] − dist

We refer the reader to Figure 4(b) for an example of the
method. The resulting smooth path lies in the updated

..
Copyright © 2007 John Wiley & Sons, Ltd. 113 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

R. GERAERTS AND M. H. OVERMARS
...

corridor, being absent of the five dynamic obstacles. As a
new corridor has been computed, the dynamic obstacles
can be discarded when the path is processed even further,
for example, when the path is shortened.

Creating Shorter Paths

In this section, our goal is to use the corridor to create
shorter paths. In our standard framework, the character
at position x is attracted toward the attraction point α(x),
corresponding to point B[t] on the backbone path. Short-
cuts in the path can be made by creating a second valid
attraction point α(x, �t), corresponding to point B[t +
�t] : �t ≥ 0 ∧ t + �t ≤ 1, to which the character is
attracted. We say that an attraction point α(x, �t) is valid
if the character, moved in a straight-line from its current
position x to the attraction point α(x, �t), stays inside the
corridor.

Suppose now that we want to create a path using a
certain value of �t. If the attraction point α(x, �t) is not
valid, we have to lower �t. We determine the highest �t

by decreasing �t with small steps until α(x, �t) is valid.
Given �t, the resulting forceFs, which has to be added

to force F, equals to

Fs = α(x, �t) − x

||α(x, �t) − x||

The influence of using different values for �t on the
path can be examined in Figure 5. The first picture shows
the path obtained by only attracting the character to
its attraction point α(x). The other pictures show the
resulting paths for different values of �t. Indeed, shorter
paths are obtained for larger values of �t at the cost of
increased computation time.

Experiments

In this section, we test the CMM on two different
environments. We will experimentally check whether the
CMM can produce high-quality paths in real-time, that is,
in less than 1 millisecond CPU time per second traversed
time.

Experimental Setup

We integrated the techniques in a single motion planning
system called System for Advanced Motion PLanning
Experiments (SAMPLE), which we implemented in
Visual C++ under Windows XP. All the experiments

Figure 6. The two-test environments. (a) Game, (b) Field.

were run on a 2.66 GHZ Pentium 4 processor with 1 GB
memory. We used Solid for collision checking.16

We conducted experiments with the environments
depicted in Figure 6. The graphs, together with their
corridor maps are displayed in Figure 7. Since we focused
on obtaining low query times and high-quality paths,
much time for creating these graphs could be spent off-
line by the enhanced Reachability Roadmap Method from
[13]. This method discretized the environments with
100 × 100 cells. The character is modeled as a small disc.
The environments have the following properties:

..
Copyright © 2007 John Wiley & Sons, Ltd. 114 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

CORRIDOR MAP METHOD
...

Figure 7. The input graphs and corresponding corridor maps
for two-test environments. (a) Game, (b) Field.

Game. This 2D maze-like environment features a level
taken from the game ZeldaTM created by Nintendo. The
obstacles are composed of 306 (dark-colored) triangles.
The input graph was created in 150 seconds. The graph
contains many useful cycles, providing short paths
and alternative routes. Since its local paths lie on the
medial axis, the corridor map covers a large portion of
the free space, providing the character much freedom
to move.

Field. This three-dimensional (3D) environment con-
tains 10 cones, 2 fences, and 4 trees. Together, they are
composed of 16 000 triangles. Since this environment
is much smaller than the Game environment, much
less time was needed to create the input graph (i.e.,
20 seconds). There are many alternative routes. Again,
the corridor map covers a large portion of the free space.

We performed three batches of experiments. In the
first batch, we found paths for 100 random queries to
get an idea of how long a query takes to compute. In
the second batch, we defined one query. We added up
to 10 dynamic obstacles close to the backbone path and
observed the changes in running times. In the third batch,
we studied the effect of choosing different values of �t

on the running time versus path length.
For each experiment, we provide the integral running

times (in ms) of the query phase. That is, connecting
the query/queries to the roadmap, computing the
corridor(s), and extracting the path(s). Often, only the
computation for a part of the path is required/desired.
Hence, we also provide the CPU time (in millisecond)
required for 1 second traversed time of the path.
However, statements based on this statistic are rather
subjective, that is, increasing the character’s speed
implies a lower CPU load while decreasing its speed
implies a higher CPU load.

Experimental Results

Measuring the Performance of Creating Smooth
Paths. For the Game environment, 100 queries were
computed in 274 milliseconds. The total traversed time
for all the resulting paths was 1051 seconds. Hence,
on average, 0.26 millisecond per second traversed time
was required which implies a CPU load of 0.026% per
character. The average traversed speed for the character
was 6.3 cells per second. For the Field environment,
the queries were computed in 74 millisecond. The total
traversed time was 285 seconds. Hence, on average,
0.26 millisecond per second traversed time was required.
Again, this implies a CPU load of 0.026% per character.
The average traversed speed for the character was 29 cells
per second. These results make clear that the method is
very efficient in producing smooth paths.

Dynamic Obstacles. We considered two methods
for obstacle avoidance. The first method extended the
force function while the second method updated the
corridor. Figures 8 and 9 display the corridors and
paths obtained while avoiding 10 obstacles. The query
times for the Game environment ranged between 11 and

..
Copyright © 2007 John Wiley & Sons, Ltd. 115 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

R. GERAERTS AND M. H. OVERMARS
...

Figure 8. Obstacle avoidance in the Game environment.
Ten obstacles are avoided. (a) Extending the force function,

(b) Updating the corridor.

Figure 9. Obstacle avoidance in the Field environment.
Ten obstacles are avoided. (a) Extending the force function,

(b) Updating the corridor.

Figure 10. The performance of the two techniques for avoiding obstacles.

..
Copyright © 2007 John Wiley & Sons, Ltd. 116 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

CORRIDOR MAP METHOD
...

Figure 11. Using the corridor to create shorter paths in the
Game environment. Shorter paths are obtained by moving the
attraction point α(x) along the backbone path toward the goal.

(a) α(x, 0.0), (b) α(x, 0.1).

12 milliseconds for the first method, and between 5 and
8 milliseconds for the second method. The query times
for the Field environment ranged between 25 and 32 mil-
liseconds, and between 10 and 66 milliseconds for the two
methods, respectively. Figure 10 shows the results. The
figure makes clear that both techniques are efficient.

Figure 12. Using the corridor to create shorter paths in the
Field environment. Shorter paths are obtained by moving the
attraction point α(x) along the backbone path toward the goal.

(a) α(x, 0.0), (b) α(x, 0.1).

Short Paths. Shorter paths were created by adding
a force toward a new attraction point α(x, �t) placed
between α(x) and the goal. Figures 11(a) and 12(a) show
the paths which have not been shortened, that is no
additional attraction point was used. Figures 11(b) and
12(b) show the paths obtained by using an additional
force attracting the character toward α(x, 0.1). We
performed preliminary experiments to study the relation
between �t and the path length. The results are shown

..
Copyright © 2007 John Wiley & Sons, Ltd. 117 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

R. GERAERTS AND M. H. OVERMARS
...

Figure 13. The relation between the value of �t and the path length.

in Figure 13. We can conclude from these curved paths,
that short paths can be obtained even for small values
of �t, that is, �t = 0.1. However, the running times
were reasonably large due to the relatively expensive
computation of the second attraction point. For �t = 0.1
the running times were about two times as large as the
running times corresponding to not using the new attrac-
tion point. For �t = 1.0 they were about 12 times as large.
In conclusion, the technique is fast enough for a real-time
performance for small values of �t. For larger values,
however, the method might not be fast enough. We are
currently investigating how to enhance the technique.

Conclusions and Future
Work

We presented a new framework, called the CMM, which
can be used for path planning in real-time interactive
virtual worlds. The CMM directs the global motions by
a high-quality roadmap. Local motions are controlled by
potential fields inside a corridor, leading to smooth and
short paths. In addition, the corridor provides enough
flexibility when dynamic obstacles (or other moving
characters) have to be avoided. Experiments showed that
such motions can be computed in real-time.

The input graphs for the CMM were created by our
Reachability Roadmap Method. Also other methods such
as 15,17 could be used to create these graphs. To ensure a
high quality of the graphs, reasonably high computation
times were required in the construction phase. We
think that these can be improved dramatically by
incorporating learning techniques. Nevertheless, these
graphs ensured fast running times in the query phase.

The CMM can also be used for guiding the motions
of a group of characters. In addition, tactical information

could be incorporated in the corridor map to provide
clever routes for the characters. While we focused on 2D
problems, the framework is also applicable to higher-
dimensional problems. In future work, we will extend
the experiments with 3D problems. In addition, we will
study how to create alternative paths.

ACKNOWLEDGEMENTS

Part of this research has been funded by the Dutch
BSIK/BRICKS Project.

References

1. Choset H, Lynch K, Hutchinson S, et al. Principles of Robot
Motion: Theory, Algorithms, and Implementations (1st edn).
MIT Press: Cambridge, MA, 2005.

2. Latombe JC. Robot Motion Planning. Kluwer: Norwell, Mass,
1991.

3. LaValle S. Planning Algorithms. http://planning.cs.uiuc.
edu, 2006.

4. Khatib O. Real-time obstacle avoidance for manipulators
and mobile robots. International Journal of Robotics Research
1986; 5: 90–98.

5. Khosla P, Volpe R. Superquadratic artificial potentials for
obstacle avoidance and approach. In IEEE International
Conference on Robotics and Automation, 1988; pp. 1778–1784.

6. Rimon E, Koditschek D. Exact robot navigation using
artificial potential fields. IEEE Transactions on Robotics and
Automation 1992; 8: 501–518.

7. Amato N, Wu Y. A randomized roadmap method for path
and manipulation planning. In IEEE International Conference
on Robotics and Automation, 1996; pp. 113–120.

8. Barraquand J, Kavraki L, Latombe JC, Li TY, Motwani R,
Raghavan P. A random sampling scheme for path planning.
International Journal of Robotics Research 1997; 16: 759–744.

9. Overmars M. A random approach to motion planning.
Utrecht University, Technical Report RUU-CS-92-32, 1992.

10. Geraerts R, Overmars M. Clearance based path optimization
for motion planning. In IEEE International Conference on
Robotics and Automation, 2004; pp. 2386–2392.

..
Copyright © 2007 John Wiley & Sons, Ltd. 118 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

CORRIDOR MAP METHOD
...

11. Geraerts R, Overmars M. On improving the clearance
for robots in high-dimensional configuration spaces. In
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2005; pp. 4074–4079.

12. Nieuwenhuisen D, Kamphuis A, Mooijekind M, Overmars
M. Automatic construction of roadmaps for path planning
in games. In International Conference on Computer Games:
Artificial Intelligence, Design and Education, 2004; pp. 285–292.

13. Geraerts R, Overmars M. Creating high-quality roadmaps
for motion planning in virtual environments. In IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2006; pp. 4355–4361.

14. Kamphuis A, Overmars M. Finding paths for co-
herent groups using clearance. In Eurographics/ ACM
SIGGRAPH Symposium on Computer Animation, 2004;
pp. 19–28.

15. Wein R, Berg J, Halperin D. Planning near-optimal corridors
amidst obstacles. In International Workshop on the Algorithmic
Foundations of Robotics, 2006.

16. Bergen G. Collision Detection in Interactive 3D Environments.
Morgan Kaufmann: San Francisco, CA, 2003.

17. Bouix S, Siddiqi K, Tannenbaum A. Flux driven fly
throughs. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003; pp. 449–454.

Authors’ biographies:

Roland Geraerts received his Ph.D. in computer
science in 2006 from Utrecht University in the

Netherlands. Currently, he is a researcher/lecturer at the
Department of Computer Science at the same university.
His interests include motion planning and virtual
environments.

Mark Overmars received his Ph.D. in computer science
in 1983 from Utrecht University in the Netherlands.
Currently, he is a full professor at the Department of
Computer Science at the same university. Here, he is
scientific director of the Center for Advanced Gaming
and Simulation (AGS; www.gameresearch.nl).

His main research interests include motion planning,
virtual environments, and game designing. Over the
past years, he published over 250 papers in refereed
journals and conferences, and he is the author
of one of the prime textbooks on computational
geometry.

..
Copyright © 2007 John Wiley & Sons, Ltd. 119 Comp. Anim. Virtual Worlds 2007; 18: 107–119

DOI: 10.1002/cav

