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ABSTRACT

Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment.
This paper describes how crowd density information can be used to guide a large number of characters through a crowded
environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also
encourages characters to use a wide variety of routes to reach their destination. Our technique measures the desirability
of a route by combining distance information with crowd density information. We start by building a navigation mesh
for the walkable regions in a polygonal two-dimensional (2-D) or multilayered three-dimensional (3-D) environment. The
skeleton of this navigation mesh is the medial axis. Each walkable region in the navigation mesh maintains an up-to-date
density value. This density value is equal to the area occupied by all the characters inside a given region divided by the
total area of this region. These density values are mapped onto the medial axis to form a weighted graph. An A� search
on this graph yields a backbone path for each character, and forces are used to guide the characters through the weighted
environment. The characters periodically replan their routes as the density values are updated. Our experiments show that
we can compute congestion-avoiding paths for tens of thousands of characters in real-time. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Virtual characters often need to plan visually convinc-
ing paths through a crowded environment. Such paths
should be easy to compute and should permit characters
to avoid static obstacles as well as other moving characters.
Although the shortest paths can be used to guide characters
through an environment, traffic jams can occur when many
characters traverse the same route. Please refer to Figures 1
and 2 for examples.

1.1. Goal and Contributions

The goal of this paper is to use continuously updated
density information to guide tens of thousands of char-
acters through a crowded environment in real-time. The
desirability of a route is measured by combining distance
information with crowd density information.

Figure 2 shows the intuition behind our approach:
density-aware path planning can guide characters around
congested areas, thus, avoiding difficult local collision-
avoidance problems. When applied to an entire crowd, as in

Figure 1, the characters will spread among multiple routes
on the basis of their individual choices.

Our algorithms work for any polygonal two-dimensional
(2-D) or multilayered three-dimensional (3-D) environ-
ment. A multilayered 3-D environment is represented by
a set of 2-D layers and a set of connections. Each layer is
a collection of 2-D polygons that all lie in a single plane,
and each connection provides a means of moving between
layers [1]. Examples of multilayered 3-D environments are
airports and multistory buildings. Please refer to Figure 1
for an example of a multilayered 3-D environment.

The real-world concept of crowd density is often
expressed in characters per square meter [2]. Studies have
shown that when crowd density is low, characters can move
quickly through the environment. As density increases,
real-world characters will move more slowly through the
environment [3]. Our technique will model this behavior
by reducing the maximum speed of characters on the basis
of the crowd density information.

We maintain crowd density information in a navigation
mesh that partitions the environment into a collection of
walkable regions. Each walkable region maintains a den-
sity value that represents the crowd density in that walkable
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(a) Without Density Information (b) With Density Information

Figure 1. A multilayered three-dimensional environment is shown, which has three layers and five staircase connections. (a) Without
density information, most of the characters follow the same short path. This leads to a traffic jam. (b) When density information is

considered, the characters will naturally spread out among the available routes.

(a) Scenario (b) Short Path (c) Density-Aware Path

Figure 2. (a) Scenario: A character (shown as a blue disk) wants to move to the top-left corner of an environment with light gray
obstacles. The left half of the scene is occupied by many other characters (shown as black disks). (b) Short path: The shortest
route, for the blue character, runs through the congested region. Local forces cannot steer the blue character around the black disks.
(c) Density-aware path: If we use density information when determining a global path, uncongested routes become more attractive.

region. This density value is equal to the total area occupied
by the characters inside the walkable region divided by the
total area of the walkable region. We update the density
values each time the characters move. These density val-
ues are mapped onto the medial axis to form a weighted
graph, and an A* search [4] on this graph is used to guide
each character through the crowded environment. Because
the medial axis is sparse, it can be searched more efficiently
than a grid.

Finally, periodic replanning ensures that characters
avoid crowded routes whenever possible. We present a ver-
sion of the A* algorithm that allows characters to replan
their paths partially, which is more efficient than replan-
ning the entire paths. The intuition behind this approach
is that the density values of areas that are far away are
not immediately important because they may have changed
drastically by the time a character is close to these areas
and wants to replan again.

1.2. Related Work on Crowd Simulation

Many techniques exist to help characters move realistically
through virtual environments. Graph-based techniques

such as probabilistic roadmaps [5], rapidly exploring
random trees [6], and waypoint graphs [7] represent the
environment by using a set of one-dimensional edges.
By contrast, a navigation mesh partitions the environment
into walkable regions that are two-dimensional [8–12].
These walkable regions permit characters to control their
movements inside each 2-D region [13]. This flexibility
also makes it much easier for characters to avoid other
moving characters.

Many navigation meshes can only be used for 2-D prob-
lems. By contrast, the navigation graphs technique of Pettré
et al. [11] uses a clever sampling-based approach to cap-
ture the topology of any 3-D multilayered environment.
It can also handle level-of-detail optimizations for high-
performance applications. Our own method [1] computes
the medial axis of a multilayered environment, leading to a
compact and exact navigation mesh.

A navigation mesh is typically used to compute a global
route through the environment. Local collision-avoidance
routines are then applied to avoid other moving charac-
ters that are encountered along the route [14,15]. One
drawback to this two-level approach is that a character
can get stuck when the global route is very congested
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by other characters. Our new approach can prevent such
congestions by guiding the global planning phase with
local density information.

Techniques based on potential fields address the same
problem by combining the global and local path plan-
ning phases. A potential field is a grid representation of
the walkable space in which each cell stores the optimal
walking direction toward a fixed goal. These optimal direc-
tions can be updated by using continuum-based techniques
[16–18]. Whereas potential fields can successfully model
large crowds in real-time, they use a grid to approximate
the environment. Such grids are expensive to store and
update. For us to ensure real-time performance, the crowd
is often assumed to consist of homogeneous groups. Within
a group, characters share a single potential field and cannot
have individual goals. Hence, potential fields alone may
not be suitable for simulations that require individuality
among the characters.

Yersin et al. [19] present a hybrid approach that uses a
navigation graph for global planning and grid-based meth-
ods for local avoidance. They define potential fields only
for those parts of a navigation graph that lie in a high-
interest region. This combined method is very scalable,
but the potential fields are again based on homogeneous
groups. By contrast, our approach permits each character
to plan its own distinct global path on the basis of current
crowd density information.

Hence, unlike these field-based approaches, we sepa-
rate the global and local planning phases to support indi-
viduality among characters. This paper focuses on global
planning on a navigation mesh; local collision-avoidance
techniques can still be added as an extra level [14,15].
Our density-based planning algorithm can prevent the
congestion problems of the previous two-level techniques.

1.3. Related Work on Crowd Density

Crowd density has been previously studied by other
researchers. Weidmann [2] shows that a character’s move-
ments are influenced by environmental factors (e.g.,
weather conditions or the incline of a surface) and per-
sonal factors (e.g., age or gender). The study also reveals
that the expected walking speed of a character decreases
as the crowd density near the character increases. These
real-world observations have influenced several recent sim-
ulation models [20]. Our model will reduce the maxi-
mum speed of a character as the crowd density near that
character increases.

Karamouzas et al. [21] present a grid-based method
for density-based crowd simulation. They mark each cell
in a grid as ‘dense’ when a character enters it, and this
density value decreases gradually over time. It is shown
that path planning on this grid leads to a natural variety
among characters. However, this grid is an approxima-
tion of the environment’s geometry, and path planning is
usually more expensive on a grid than in methods such

as ours that describe the walkable space in an exact and
compact fashion. Their technique is also not based on the
real-world density concept which has been validated in
many studies [2,20].

Pettré et al. [22] propose subdividing a crowd into sep-
arate flows through their navigation graphs according to
density. They construct navigation flow queries to suc-
cessfully dispatch many entities that move between shared
locations. In our method, characters can have individ-
ual start and goal locations. We also investigate periodic
replanning by entities as the density information changes
over time.

Our density-based planning algorithm is a generaliza-
tion of the fastest path algorithm in Höcker et al. [23].
Kneidl and Borrmann [24] have shown that the fastest path
algorithm can lead to behavior that matches real crowds.
However, Höcker et al. [23] use a collection of squares
to approximate the local density information. A drawback
of this method is that these squares can overlap and cause
some parts of the walkable space to be represented more
than once. This leads to a bias where some parts of the
walkable space are implicitly considered to be more impor-
tant than other parts. Furthermore, some parts of the walk-
able space may not be represented at all. By contrast, our
method partitions any 2-D or multilayered 3-D polygo-
nal environment into a set of nonoverlapping polygonal
regions. Another improvement is that we address the issue
of (partial) replanning during the simulation.

The rest of this paper is organized as follows. Section 2
describes the main algorithm that takes the density values
into account. Section 3 discusses experiments that steer
tens of thousands of characters simultaneously through a
crowded environment in real-time.

2. DENSITY-BASED NAVIGATION

A navigation mesh partitions the environment into a
set of two-dimensional walkable regions. These two-
dimensional regions give characters the flexibility to move
anywhere inside a walkable region while avoiding other
moving characters.

Our navigation mesh is based on the medial axis of
a polygonal environment and the Explicit Corridor Map
(ECM) data structure [1,8]. The medial axis is the set of all
points in an environment that have more than one distinct
closest point on the boundary of the environment [25]. The
medial axis is a compact structure that is well defined for
all environments, including ‘difficult’ environments that
are highly detailed and have very narrow corridors [1].

The ECM is a structure that uses the medial axis to par-
tition the environment into a set of nonoverlapping regions
such that each region contains exactly one edge of the
medial axis. For us to convert the medial axis into an
ECM, a linear number of extra line segments are added
to connect the vertices of the medial axis to the clos-
est obstacles. As illustrated in Figure 3, these extra line
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Figure 3. Our navigation mesh is an augmented medial axis.
The medial axis of the environment is shown in blue. Orange line
segments connect the vertices of the medial axis to the nearest
obstacles. The arrangement of the orange edges partitions the
environment into a set of walkable regions E DfR1; : : : ;Rmg.
For example, we have highlighted two walkable regions Ri and
Rj . Notice that each of these walkable regions contains exactly

one edge of the medial axis.

segments partition the environment into a set of walka-
ble regions E DfR1; : : : ; Rmg. Notice that each walkable
region contains exactly one edge of the medial axis.

An advantage of the ECM data structure, with respect
to approaches that triangulate the environment, is that the
ECM efficiently represents all homotopic routes through
the environment. This means that an A* search [4] will
only examine one vertex at each possible point where the
homotopy class of the route could change. By contrast,
methods that triangulate the environment typically have
more vertices, and this increases the running time of an
A* search.

Let Ri 2 E be a simple polygon that represents a walka-
ble region. We say that the density value �i of the walkable
region Ri is the area of all characters currently inside Ri
divided by the total area of Ri . Although our method per-
mits each character to have a distinct size, we follow the
suggestion of Weidmann [2] and model each character as a
disk with a radius of 0:24 m.

We refer to the set E DfR1; : : : ; Rmg of all walka-
ble regions in a polygonal environment as a density map
because any point in the environment can be mapped onto
its containing region Ri and onto the associated den-
sity value �i . When compared to grid-based decomposi-
tions, this paradigm has the advantage that it partitions the
entire walkable space of the environment in a compact and
exact manner.

The density value of each walkable region will be used
to weigh the medial axis edge that touches this region.
The resulting medial axis serves as a weighted graph

G D .V ;E/. The graph G has a set V of vertices and a
set E of edges. G can be quickly searched to determine a
global route for each character.

Each time the characters move, the density values for all
of the walkable regions need to be updated. We do this by
keeping track of each character’s current walkable region.
When a character leaves the current walkable region Ri ,
we subtract the area of that character from an area sum
for Ri . Similarly, when a character enters a new walkable
region Rj , we add the area of that character to an area
sum for Rj .

Section 2.1 describes the medial axis that we use to
plan the global density-avoiding routes. Section 2.2 intro-
duces an efficient partial replanning approach that permits
characters to periodically update their global routes as
the density information changes. Section 2.3 summarizes
our approach.

2.1. Planning Algorithm

Given the density values for all of the walkable regions,
we can easily compute the density value for each of the
medial axis edges. The density value for any medial axis
edge e 2 E is simply the density value of the walkable
region that contains e. It will be useful to let kek denote
the arc length of e and to let �.e/ be the density value of e.
The cost to traverse any single graph edge e equals

tmin.e/Cw � tdelay.e/

where tmin.e/ is the time required to traverse the edge e
at maximum speed, tdelay.e/ is the expected extra traversal
time caused by the density of e, and w is a nonnegative
weight.

The weight w provides a natural means of interpolating
between the shortest path and the least dense path in the
graph. If w D 0, characters will look for the shortest path.
Asw increases, characters will have an increasing desire to
avoid dense regions. If w D 1, characters will look for the
fastest path as in Höcker et al. [23]. Note that it is possible
to choose a unique value of w for each character.

The monotonic function tdelay.e/ should return zero
when �.e/ D 0, and it should return1 when �.e/ D 1. A
variety of functions are known to successfully model this
concept [20]. We choose the following function:

tdelay.e/D
kek � �.e/

vmax.1� �.e//

where vmax is the maximum speed of a character.
The above equations can be used to assign a weight to

each edge of the medial axis to produce a weighted graph.
By running the A* search algorithm [4] on this graph, the
best path for any character can be quickly determined. The
straight-line time to reach the goal is used as the A* heuris-
tic function. This heuristic function estimates the time to
reach the goal position and ignores the density information
(by assuming that w D 0).
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2.2. Partial Replanning

For a moving crowd, the density values of the walkable
regions can change rapidly. This means that characters
should regularly replan their global routes. Because it may
be infeasible for characters to recompute their entire paths
in large simulations, we describe an efficient and optimal
technique for partial replanning.

The key idea is to speed up the replanning step by only
permitting the character to ‘see’ nearby density informa-
tion. Given a character at a position s, the replanning dis-
tance from this character to any point t on the medial axis
is determined as follows. Let p be the closest point on the
medial axis to s. We say that the replanning distance from s

to t equals the Euclidean distance ks�pk plus the weighted
length of an optimal path through the medial axis from
p to t .

LetD be some threshold value. All points on the medial
axis that have a replanning distance of, at most, D are
said to be visible to a character. Similarly, all points on the
medial axis that have a replanning distance larger than D
are said to be invisible.

During the A* search of the medial axis, a character
sees the true density values for only the visible points on
the medial axis. All invisible points on the medial axis are
assumed to have zero density.

An advantage of this approach is that we can often halt
the A* search early without losing optimality. As illus-
trated in Figure 4, consider an invisible point q on the
medial axis that has a replanning distance larger than D.
Once the A* search reaches the invisible point q, all future
points that can be reached from q must also be invisi-
ble because they must have a replanning distance larger
than D.

We call a point on the medial axis mutually invisible if
and only if that point is invisible in both the original path
and the replanned path. Let q be the first mutually invisible
point that is encountered during replanning.

Theorem 1. As soon as the A* search reaches a mutually
invisible point q, we can halt the search and simply copy
all points from q to the target point t on the original path
onto the new replanned path. The resulting replanned path
is optimal.

Proof . Both the original path and the replanned path must
contain the exact same subpath from q to t . This follows
because this subpath is based on the same distance and
density information in both cases. This means that the A*
algorithm can stop searching as soon as it reaches q. �

An alternative to our optimal replanning algorithm is
the D* Lite algorithm [26]. However, the D* Lite algo-
rithm uses a state-space representation for each character
which is too much overhead for a crowd. The traditional
D* Lite algorithm also takes all updated density values into
account. By contrast, our approach uses a threshold value
D to provide a tradeoff between speed and accuracy.

(a) Initial Path (b) Replanned Path

Figure 4. (a) Initial path: A character initially computes a path
from a point s0 to a target point t. The portion of the path with
the replanning distance, at most D, to the character is shown
in green, and the remainder of the path is shown in gray. (b)
Replanned path: When replanning this character’s path at some
future position s1, the character plans a new route to t, and
this new route eventually meets the original path at a mutually
invisible point q. The subpath from q to t is always shared by

both paths.

Our experiments in Section 3.4 will show that smaller
values of D result in faster replanning operations because
they take less density information into account. By con-
trast, larger values of D lead to slower replanning opera-
tions, but the replanned paths are more accurate because
they take more density information into account. Note that
choosing a value of D D 1 will cause all of the density
information in the environment to be considered during the
optimal replanning step.

2.3. Approach

Our algorithm can be summarized as follows. Given a
polygonal 2-D or multilayered 3-D environment, we com-
pute the medial axis of this environment. Extra edges are
added to connect the medial axis to the nearest obstacles as
in [8]. The resulting augmented medial axis defines a nav-
igation mesh that partitions the walkable environment into
a set of walkable regions. Given a set of moving charac-
ters, density values are computed for each walkable region,
and these density values are used to assign weights to the
edges of the medial axis. The resulting medial axis is a
weighted graph. Given the current position and the goal
position of a character, a global path can be computed by
determining the nearest points on the medial axis to the
current position and goal position. An A* search is then
used to compute a path through the weighted graph of
the medial axis. At each step of the simulation, characters
are pushed toward their goal by attractive forces [27]. The
density values are updated each time a character enters a
new walkable region. Periodic replanning operations per-
mit characters to update their global routes in real-time as
the density information changes.
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3. EXPERIMENTS

We have implemented our density-based crowd simula-
tor in C++ with Microsoft Visual Studio 2008. All of the
experiments were performed on a personal computer with a
2.5 GHz Intel Xeon E5420 processor, an NVIDIA Quadro
FX 1700 graphics card, and 4 GB of RAM. The machine
uses Windows XP (64-bit, Service Pack 2).

Section 3.1 describes the environments and settings that
were used in the experiments. Section 3.2 shows that
density values can be efficiently maintained. Section 3.3
describes several experiments that influence crowd move-
ments. In Section 3.4, we test the performance of our
replanning algorithm by varying the amount of density
information that is visible to each character. Section 3.5
describes how often replanning operations can occur with-
out losing real-time behavior. Section 3.6 describes a per-
formance boost that is achieved by using multiple central
processing unit (CPU) cores. All other experiments use
only a single CPU core.

Although our method permits each character to have a
distinct size, we follow the suggestion of Weidmann [2]
and model each character as a disk with a radius of 0:24 m
and an area of approximately 0:18m2. Characters have a
walking speed of 1:4 m/s through walkable regions that
have a density value of 0. As the density value of a walk-
able region increases from 0 to 1, the walking speed of a
character decreases linearly to 0 m/s. The simulation step
time was set to 10 frames per second as in [27].

3.1. Environments and Settings

Our experiments were performed in one multilayered 3-D
environment and in three 2-D environments. We refer to
the multilayered 3-D environment in Figures 1 and 5 as the
Layers environment.

The Layers environment contains three layers (‘floors’)
that are connected by five staircases. The environment also

Figure 5. The multilayered 3-D environment that is used in our
experiments. There are three layers and five staircase connec-
tions between layers. Obstacles are shown as raised blocks,
the medial axis is displayed in blue, and the boundaries of the

walkable regions are shown in orange.

contains a number of nonconvex obstacles that permit char-
acters to choose from numerous routes when they traverse
the environment. As shown in Figure 1(a), nearly all of the
characters follow the same short path when density infor-
mation is not considered. This leads to a traffic jam. By
contrast, Figure 1(b) shows that characters will naturally
spread out among all of the available routes when density
information is considered. Each character in the simula-
tion has also been assigned an offset between �1:0 and
1:0. This offset changes where a character prefers to walk
along a homotopic route. An offset of 0 ensures that a char-
acter prefers to walk along the edges of the medial axis. An
offset of �0:5 makes a character prefer to walk halfway
between the medial axis and the nearest obstacle to the left
of the current medial axis edge. An offset of 1:0 causes a
character to walk as close as possible to the nearest obstacle
to the right of the current medial axis edge.

Figure 6 illustrates our three 2-D environments. The
Blocks environment is a small example that has a number
of potential routes which characters may choose. This envi-
ronment has also appeared in [21]. The Zelda environment
is a medium-sized example of a village that appeared in
the computer game The Legend of Zelda: A Link To the
Past. The City environment is a large virtual city that con-
tains many polygonal obstacles and routes. More details for
these scenes can be found in Table I. The medial axes for
these environments were all built with the Graphics
Processing Unit (GPU) Explicit Corridor Map ECM
algorithm of Geraerts [8].

3.2. Overhead of Density Values

Our first experiment measured the overhead to maintain the
density values for the walkable regions and the medial axis.
We inserted a large number of characters with random start
and goal positions into each of our environments and sim-
ulated their movement. Characters were removed from the
environment as soon as they reached their goal position.
Table II shows the time needed to perform each frame of
the simulation for the entire crowd.

In the Layers environment, simulating 10 000 simulta-
neously moving characters took 23millisecond per step on
average when density updates were switched off. With the
densities enabled, the average step time for 10 000 simul-
taneously moving characters was 24 millisecond. Conse-
quently, the total CPU load with densities enabled was
24% during the simulation. In the Blocks environment,
the step time for 10 000 characters was 15 millisecond
without density updates, and 16 millisecond with den-
sity updates. In the Zelda environment, the step time for
10 000 characters was 16 millisecond without density
updates versus 17 millisecond with density updates. The
step time for 20 000 characters in the City environment was
32 millisecond without densities, and 34 millisecond with
densities. Thus, updating the crowd’s density information
only marginally affects the running time, and large crowds
can still be steered in real-time.
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Zelda Environment Zelda Navigation MeshBlocks Navigation Mesh

(a) (b)

City Navigation Mesh3D City Environment

(c)

Figure 6. Three 2-D environments were used in our experiments. Obstacles are shown in gray, the medial axis is shown in blue,
and the extra edges that connect the medial axis to the nearest obstacles are shown in orange. (a) The Blocks environment contains
many alternative routes that can be used by characters to get from the bottom of the environment to the top of the environment.

(b) The Zelda environment represents a village in a video game. (c) The City environment represents a large city.

Table I. The navigation meshes for the Layers, Blocks, Zelda, and City environments were constructed
with the GPU. The navigation meshes of Layers, Blocks, and Zelda were computed using a resolution of
1000 � 1000 pixels. For City, we used a resolution of 4000 � 4000 pixels. This is the reason for the longer

construction time.

Environment Navigation Mesh

Name Size (meters) Vertices Vertices Construction time (milliseconds)

Layers 100 � 100 332 248 38
Blocks 100 � 100 52 132 25
Zelda 100 � 100 560 1243 49
City 500 � 500 2638 6273 403

3.3. Crowd Variety

Our second experiment used the Blocks environment to
test the effect of planning paths first without density infor-
mation, then with density information but without any
replanning, and finally with both density information and
periodic replanning. In every step of the simulation, we

added two characters at random positions at the bottom of
the Blocks scene and with random goal positions at the top
of the scene. We ran the crowd simulation for 5000 steps
(i.e., 500 seconds). Without considering any density infor-
mation (i.e., setting w D 0), all of the characters moved
along the shortest path in the graph. Hence, almost all of
the paths ran through the environment’s middle section.
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Table II. The overhead of maintaining the density values is small.

Step time without Step time with
Environment Characters densities (milliseconds) densities (milliseconds)

Layers 10 000 23 24
Blocks 10 000 15 16
Zelda 10 000 16 17
City 20 000 32 34

Table III. The average speed and path lengths of characters.

Experiment Average path length (meters) Average speed (meters per second)

No density values (w D 0) 106.87 0.67
Density values (w D 1) 115.90 0.91
Density values and replanning (w D 1) 114.85 0.96
Density values and replanning (w D 5) 132.96 1.01

This led to traffic jams that slowed down the crowd. As
illustrated in Table III, characters traversed 106:87 m, on
average, to reach their goal positions, but they had a low
average speed of 0:67m/s. Figure 7(a) shows a snapshot of
the simulation.

With density information (i.e., w D 1) but without any
replanning, characters in the Blocks environment initially
took the shortest path. This led to traffic jams in the central
sections. Newly created characters detected this conges-
tion and chose other paths. These paths crowded the other
routes, whereas the central section was gradually emptied.
This periodic behavior was repeated several times during
the simulation. A snapshot is shown in Figure 7(b). The
average walking speed of each character was much higher
(0:91 m/s), whereas the traversed paths were not much
longer (115:90 m on average).

We also ran the experiment with density information
(i.e., w D 1) while letting characters replan their paths
every 100 steps using the current density information.
This spread the characters among the available routes.

As shown in Figure 7(c), the crowd looked visually
convincing because it did not leave any gaps in the avail-
able routes. The average speed of the characters was
high (0:96 m/s), whereas the distance traversed by each
character was still quite short (114:85 m).

Choosing a weight value of w D 5 along with replan-
ning every 100 steps caused characters to switch between
routes frequently and to take large detours to avoid con-
gested regions. The average walking speed of the charac-
ters increased to 1:01 m/s, and their paths became longer
(132:96 m) because of increased indecisiveness.

3.4. Replanning Efficiency

Our third experiment investigates how the path-planning
time can be reduced by changing the maximum distance
D at which updated density information is visible to the
characters. We simultaneously added 5000 characters to
the City environment with random start and goal positions

(a) Without Density Information (b) With Density Information (c) With Density + Replanning

Figure 7. Screenshots of a crowd simulation with a variety of settings. Obstacles are shown in gray, and characters are shown in
blue. Routes with little utilization are highlighted in red. (a) When density information is not considered, there are many routes that
are not very much utilized. (b) If density information is taken into account, but characters never replan their paths, then some routes
are still underutilized. (c) When density information is taken into account and replanning is performed, we obtain an emergent crowd

flow that efficiently spreads the characters among the available routes.
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in such a way that the Euclidean distance between each
characters’ start and goal positions was at least 100 m. We
set w D 5 for all experiments so that convincing detours
would be explored and added all characters to the envi-
ronment at the same time. We let each character replan
its path every 10 seconds, and we ran the simulation for
over 40 seconds to ensure that each character replanned
up to four times. Figure 8 illustrates the time to update an
existing path on the basis of updated density information.

With D D1, each character can use all of the updated
density values. Optimal routes containing 20 vertices took
between 0:2 and 1 millisecond to compute, whereas routes
with 40 vertices required between 0:5 and 2:5milliseconds.
Routes with 60 vertices took between 1:5 and 3 millisec-
onds to update. The average time to replan each path was
2 milliseconds.

With D D 350 m, each character can see all density
updates within 350 m of the current position. The average
time to perform each replanning operation was reduced to
1 millisecond.

With D D 0:1 m, each character, essentially, cannot see
any updated density values. The average time to perform
each replanning operation was 0:3 millisecond.

Notice that larger values of D take longer to compute
because they take more density information into account.
Likewise, smaller values of D take less time to compute
because they take less density information into account.

We performed a similar experiment in the Zelda environ-
ment. With D D 1, replanning operations took between
0:5 and 0:8 millisecond to calculate. With D D 0:1 m,
replanning operations took only 0:3 millisecond. This
means that replanning operations can be performed in
real-time.

3.5. Real-time Replanning

If we set each character to replan its path periodically, then
we can compute the highest replanning frequency that pre-
serves real-time performance. Let tstep be the number of
milliseconds required for each step of the simulation with-
out replanning. Given that there are 10 simulation steps per
second, we have trem D 100�tstep milliseconds left in each
frame for other tasks. Let us assume that trem can be spent
entirely on replanning so that we can ignore rendering,
local collision avoidance, and other tasks.†

Recall that in Table II, without any replanning, 20 000
characters can be steered through the City environment in
tstep D 32ms per frame. Hence, trem D 66 milliseconds.
If D D 1, then the average replanning time is 2

milliseconds per character. This means that 33 characters
can replan their paths each frame with a 100% CPU load.
Consequently, all 20 000 characters can replan their paths
every 60.6 seconds without losing real-time performance.

†In reality, these extra steps are needed to obtain a complete
simulation. However, for a simple theoretical analysis, it is useful
to ignore these factors.
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Figure 8. Replanning times for 5000 characters in the City envi-
ronment with (a) D D 1, (b) D D 350, and (c) D D 0:1 m.
Characters replan their path every 10 seconds. Each point in
this figure corresponds to one replanning action. The horizontal
axis shows the number of vertices in the newly computed path.
The vertical axis shows the running time of our path planner

in milliseconds.

By similar reasoning, all 20 000 characters can replan their
paths every 30.3 seconds when D D 350 m.

3.6. Multithreaded Speedup

We have built the simulator by using OpenMP technology,
so that it can plan paths for multiple characters at the same
time. Using only one CPU core, our method can simulta-
neously steer 50 000 characters through the Blocks envi-
ronment in 90 milliseconds per frame. However, with four
CPU cores, we can simultaneously steer 50 000 characters
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through the Blocks environment in 30 milliseconds per
frame. This means that using four processors can make
the simulation 3 times as fast. These runtimes suggest that
in the very near future our method should be able to steer
hundreds of thousands of characters at interactive rates.

4. CONCLUSION

Although it is common to steer characters along short paths
to their destinations, high congestion can lead to traffic
jams that seem unnatural when many routes are underuti-
lized in an environment. To improve the realism of our
simulations, we use crowd density information to guide a
large number of characters along a wide variety of routes.
We do this by building a navigation mesh and weighing
the desirability of routes on the basis of the crowd density
along the path. Our technique can guide tens of thousands
of characters through a polygonal 2-D or multilayered
3-D environment in real-time. The attached movie high-
lights the effectiveness of these techniques in both 2-D and
2.5-D environments (see Supporting Information).

One limitation of our technique is that an extremely
small walkable region could have a very high density value
if a large character suddenly enters that region. This large
density value could adversely affect the desirability of an
entire route. If this behavior is a problem, it might be inter-
esting to scale the density values on the basis of the length
of the affected medial axis edge.

As future work, we are interested in looking beyond den-
sity information to the speed and direction of a crowd. We
expect that this flow information will play an important
role in determining a character’s route in scenarios such
as crowd evacuation [28]. It would also be interesting to
replan paths on the basis of specific density-change events
rather than simply replanning paths periodically. Finally,
we would like to distinguish between different terrain types
and to account for height and slope information.
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