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Abstract— A central problem of applications dealing with
virtual environments is planning a collision-free path for a
character. Since environments and their characters are growing
more realistic, a character’s path needs to be visually con-
vincing, meaning that the path is smooth, short, has some
clearance to the obstacles in the environment, and avoids other
characters. Up to now, it has proved difficult to meet these
criteria simultaneously and in real-time.

We introduce a new data structure, i.e. the Explicit Corridor
Map, which allows creating the shortest path, the path that has
the largest amount of clearance, or any path in between. Besides
being efficient, the corresponding algorithms are surprisingly
simple. By integrating the data structure and algorithms into
the Indicative Route Method, we show that visually convincing
short paths can be obtained in real-time.

I. INTRODUCTION

One of the main challenges in applications dealing with

virtual environments is planning a path for a character.

Traditionally, algorithms were devised which computed the

character’s positions from a start to a goal location without

colliding with obstacles and other characters. While these

algorithms were successfully applied in fields such as mobile

robots, manipulation planning and human robot planning

[1]–[3], current virtual environment applications, such as

games and crowd simulations, pose many new challenges to

the algorithms. That is, visually convincing short paths for

many characters traversing in the ever growing environments

need to be planned simultaneously and in real-time. Hence,

only a fraction of a millisecond per second CPU time may

be spent per character for computing the visually convincing

short path, i.e. a path that is smooth, short, keeps some

clearance to obstacles and avoids other characters. The path

should be short because it usually takes the least time to

traverse. However, the path should not be the shortest one

because such a path would touch the obstacles, possibly

leading to collisions with the environment when the character

is animated. Hence, a shortest path having some amount

of minimum clearance to the obstacles is required. Current

planners do not satisfy these criteria simultaneously, are slow

or cost much memory when operating on large environments.

Introduced in 1968, the A*-algorithm is one of the first

planners [4]. This planner is still popular because of its

simplicity and ability to find the shortest path in a grid of

free cells covering the environment. Nevertheless, resulting

paths tend to have little clearance to the obstacles and can

be aesthetically unpleasant, so care must be taken to smooth

them.
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Fig. 1. A smooth, short path with clearance inside an Explicit Corridor.

Like the A*-algorithm, the Potential-Field method [5]

is able to include obstacle avoidance. In addition, smooth

paths can be produced by following the direction of the

steepest descent of the potential toward the goal. While it

is possible to compute a potential without local minima

[6], the computation is rather expensive, and, hence, may

compromise the real-time performance.

Roadmap-based methods, such as Visibility graphs [2],

Rapidly-exploring Random Trees [7] and Probabilistic

Roadmap Methods [8], [9], do not have local minima and

usually ensure that a path can be found if one exists.

These methods build a roadmap graph which represents the

free space in the environment. Because this graph can be

constructed off-line, real-time performance can be achieved

when a path is extracted from this graph. In addition,

their strength is that they can be applied to problems with

many degrees of freedom. Nevertheless, they lack flexibility

because they output a fixed path extracted from a one-

dimensional graph. In addition, the paths are jerky. While

optimization algorithms exist, they are still too slow for real-

time performance [10].

Another category of algorithms use the Voronoi diagram

for obtaining paths that have the maximum amount of

clearance to obstacles [11], [12]. In contrast, references [13]

and [14] find the shortest path for disks moving in the plane.

Recently, the concept of path planning inside corridors has

been introduced [15]–[17]. Such a corridor is defined as a

sequence of empty disks. Because the union of these disks

is two-dimensional, corridors facilitate creating collision-free

smooth paths for characters while avoiding other characters.

This flexibility is hard to obtain for methods operating

on one-dimensional graphs. Besides this desired flexibility,

corridors allow creating many paths in real-time because they

are extracted from a data structure that can be computed off-
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line. Nevertheless, the references mentioned above currently

do not support creating shortest paths with some amount of

minimal clearance. Creating such paths is supported though

in [18]. Paths are extracted from the Visibility-Voronoi

Complex, which is a data structure that allows interpolating

between the Visibility graph (which yields shortest paths)

and Voronoi diagram (which yields maximum clearance

paths). The strength of their work is that their algorithm is

exact and yields visually convincing short paths. In addition,

global shortest paths can be computed, but at the cost

of quadratic storage requirements. Also, their algorithm is

intricate (because it uses complex algebraic elements) and

slow in practice (because it uses exact number types).

We propose a data structure that has linear complexity

(in the number of vertices of the obstacles), at the cost of

the possibility of not finding the global shortest path. This

structure, i.e. the Explicit Corridor Map, allows our new

and simple algorithm to compute the shortest path with a

variable amount of minimum clearance inside a corridor. By

integrating the algorithm into the Indicative Route Method

[19], flexible smooth short minimum-clearance paths are ob-

tained within a few milliseconds. Hence, our algorithm may

be applied in interactive environments with many characters.

The paper has been organized as follows: In Section II

we introduce the Explicit Corridor Map and show how

this data structure can be constructed efficiently by using

graphics hardware. From this structure, we extract an Explicit

Corridor given a certain start and goal position of the

character. Then, we give in Section III and IV algorithms

for computing the shortest path or a path with a desired

amount of minimum clearance to the obstacles within this

corridor. While the resulting paths are now short and safe,

they are rigid because the character’s motions are limited to

the computed path. We show in Section V that a corridor

allows for deviating from the computed path so that other

characters can be avoided and smoothness is added. Next,

we will conduct experiments in Section VI and conclude in

Section VII that visually convincing short paths, such as the

one depicted in Fig. 1, can be computed in real-time.

II. THE EXPLICIT CORRIDOR MAP

Our goal is to construct an efficient data structure with

small storage costs which allows for fast extraction of the

shortest path (within a corridor) with a desired amount

of minimum clearance to the obstacles. A small memory

footprint of the data structure is desirable, i.e. a structure that

is linear in the number of vertices of all obstacles, because

modern virtual environments can be huge. Since the structure

may be queried by many characters in a short amount of time,

a path needs to be computed efficiently. The data structure

we propose, i.e. the Explicit Corridor Map (ECM), will meet

these criteria.

Definition 1 (Explicit Corridor Map). The Explicit Corridor

Map is a generalized Voronoi diagram G = (V,E), where V
and E are its Voronoi vertices and Voronoi edges. The edges

are annotated with event points together with their closest

points to obstacles.

(a) Footprint (b) Framebuffer (c) Z-buffer

(d) Implicit Corridor Map (e) Implicit Corridor (f) Explicit Corridor Map

(g) Left/right closest
points of a corridor

(h) Explicit Corridor (i) Shortest minimum
clearance path

Fig. 2. Construction of the Corridor Map, Implicit and Explicit Corridor.

While the diagram consist of 1-dimensional curves, its

annotation explicitly defines a 2D-arrangement of the free

space in the environment. We will show that this arrangement

can be used for planning the desired paths.

Before we show how to annotate an edge (Section II-B)

and how the arrangement can be constructed (Section II-

C), we will discuss some preliminaries and review how the

Generalized Voronoi diagram can be computed efficiently

using graphics hardware.

A. The Generalized Voronoi Diagram

Path planning occurs in the free space, i.e. the 2D walkable

space, of the virtual environment. The free space is defined

as the space that is not occupied by the footprint of the

environment. This footprint consists of a collection of convex

obstacles, including points, lines and convex polygons, all

lying in the ground plane.

The walkable space can be represented concisely by the

Generalized Voronoi Diagram (GVD), which is a decompo-

sition of the free space into regions such that all points p
in a region R(p) are closer to a particular obstacle than to

any other obstacle in the environment [20]. Such a region

is called a Voronoi region. The boundaries of the Voronoi

regions form the underlying graph of the GVD. Each vertex

in this graph is located at a non-convex corner (induced by

at least two obstacles) or at a location at which three or more

edges of the graph meet. An edge connects two vertices

and manifests itself as the boundary between two Voronoi

regions.
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A GVD can be computed efficiently by exploiting graphics

hardware [11]. A 3D distance mesh, consisting of polygons,

is computed for each obstacle. Each of the meshes is ren-

dered on the graphics card in a different color. A parallel

projection of these meshes gives the GVD. The diagram can

be retrieved from the graphics card’s frame buffer and the

clearance values (i.e. distance values) can be found in its

Z-buffer, which is visualized in Fig. 2(a-c).

We require that all obstacles are convex, which assures

that edges run into concavities, and, hence, the GVD is a

complete representation for path planning purposes [21].

This requirement does not limit us because non-convex

obstacles (read: polygons) can be converted into convex ones

by applying a decomposition scheme, such as triangulation

[22] or optimal convex decomposition [23], [24].

Usually, exactly two different convex obstacles form an

edge in the graph because the points on the edge are on the

boundaries separated by two different colors in the frame

buffer. By linking each color to an obstacle, we know for

each point its two closest obstacles. These facts will be

useful in our analysis. In general, an edge can be formed

by a set of obstacles forming a convex chain of obstacle

parts. In our analysis we will process the convex chain as a

single ‘obstacle’ casting a single color. Hence, without loss

of generality, we will now assume that an edge traces the

boundary of two Voronoi regions induced by exactly two

convex obstacles.

In [20], we sampled the edges of the GVD and referred

to the result as the (implicit) Corridor Map. An example of

such a map is given in Fig. 2(d). To each sample point,

the radius of the largest empty disk was assigned. Each

point/radius combination formed a maximum clearance disk.

Then, a sequence of adjacent disks was referred to as an

(implicit) Corridor, see Fig. 2(e). While an implicit Corridor

(Map) was used for planning reasonably short paths, they

do not easily support computing shortest minimum-clearance

paths because they do not provide an explicit description of

the corridor’s boundaries.1 Another disadvantage of having

samples is that they do not fully cover the free space. In

addition, their memory footprint can be more than linear.

By assigning to some selected samples their left and right

closest points on the obstacles, we can obtain an explicit

description of the corridor’s boundaries, as is shown in Fig.

2(f-h). As we will see, they allow for efficiently computing

a shortest minimum-clearance path. We refer the reader to

Fig. 2(i) for an example of such a path.

B. Annotating a Voronoi edge

In this section we will describe how an edge of the Explicit

Corridor Map can be computed. An edge consists of a

Voronoi edge connecting its incident Voronoi vertices, and

on this edge, a set of event points, together with their closest

points on the two obstacles that formed this edge.

1While we could compute the boundaries of a set of disks, this would
still be an approximation of the real boundaries and would take more than
linear time [22], which may compromise real-time computations.

A Voronoi edge is the locus of points that are equidistant

to two obstacles. This edge is formed by a concatenation of

curves, i.e. line segments and parabolic arcs. Let B1 and B2

denote the end points of such a curve and (l1, r1) and (l2, r2)
denote the corresponding closest points on their left and right

closest obstacle, respectively. The curve is a line segment

(i.e. bisector) if l1 = l2 ∧ r1 = r2, or if the line segment

connecting l1 with l2 traces (a part of) the left obstacle and

the line segment connecting r1 with r2 traces (a part of) the

right obstacle. Note that a line segment traces an obstacle if

it does not intersect the obstacle. The curve is a parabolic

arc2 (by definition) if l1 = l2 ∧ r1 6= r2, assuming the line

segment from l1 to l2 does not intersect its left obstacle.

Similarly, we have a parabolic arc if l1 6= l2 ∧ r1 = r2.

For efficiency reasons, it is important to determine the

minimum number of curves that describe the edge. There-

fore, we need to find the positions where a curve must end

and another one must start. Such a position is referred to as

an event point on the edge. Let the edge be parameterized

by B[t], where 0 ≤ t ≤ 1, and let l[t] and r[t] be

their corresponding left and right closest points, respectively.

Furthermore, let nl[t] and nr[t] denote their left and right

normals formed by vectors B[t] − l[t] and B[t] − r[t],
respectively. Note that nl[t] and nr[t] are the normals to

their left and right obstacles, and that they can only change

at a vertex of an obstacle. Then the event points are given

by the discrete set of points S for which the normals first

start changing or first stop changing, i.e. for the left side

S = {B[t] : (nl[t− δt] = nl[t]∧nl[t+ δt] 6= nl[t])∨ (nl[t−
δt] 6= nl[t]∧nl[t+ δt] = nl[t])}, where δ is an infinitesimal

number. Similarly, the event points are added to S for the

right side.

If we are given the edge, we can compute the set S as

follows. First, we compute for each obstacle its normals. We

associate normal ni with edge ei and vertex vi with normals

ni and ni+1. The event points then correspond to the points

on the edge which intersect with the half lines starting at vi
with directions ni and ni+1, respectively.

For efficiency reasons, we compute the Voronoi edge and

its set of closest points using graphics hardware. Let P =
p1, · · · , pn correspond to the coordinates of the pixels in the

frame buffer tracing the Voronoi edge [20]. Since the edge

is determined by two obstacles, the left and right obstacles

can be retrieved by looking at the local direction determined

by any two adjacent points p1 = (x1, y1) and p2 = (x2, y2).
For instance, the corresponding direction is upwards if y2 <
y1. Hence, its left obstacle can be retrieved by considering

the obstacle with the id stored at pixel (x1 − 1, y1) in the

frame buffer. For the right obstacle we need to look at pixel

(x1, y1). The id can be retrieved similarly if the direction is

leftwards, rightwards, or downwards.

Now that we know the coordinates of the Voronoi edge and

2This arc can be represented by three control points defining a quadratic
Bézier spline with control points B1, the intersection of the tangents at
B1 and B2, and point B2. The tangent at B1 is given by the line through
B1 and the midpoint between points l1 and r1. For B2, we have the line
through B2 and the midpoint between points l2 and r2.
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its left and right closest obstacle, we can compute the event

points S together with their closest points using simple linear

algebra. Note that we do not have to store the intermediate

points on the edge in between two event points since the

corresponding curve is determined by their closest points.

The storage complexity of a GVD is linear in the number

of obstacle vertices |v| [22]. Since each obstacle (with m
vertices) yields at most two edges and we have at most O(m)
events per obstacle, the storage complexity of the ECM is also

linear, i.e. O(|v|). Consequently, the ECM is an efficient data

structure, being able to represent large environments.

While the graphics card can efficiently compute a GVD, it

may introduce errors in the ECM due to being limited to a

finite resolution while two obstacles can be placed arbitrarily

close to each other. Such an error manifest itself as an edge

not being found (when the distance between them is less than

the width of a few pixels). In practical problems however, this

is not an issue because we can use high enough resolutions.

Such a high resolution can be obtained by rendering the GVD

in several blocks while concatenating the resulting ECM’s.

Furthermore, if an edge is found, the obstacle boundaries

are traced exactly while their vertices may be closer to each

other than the width of a pixel.

C. The Explicit Corridor

For finding the global route of a character, an Explicit

Corridor is extracted from the Explicit Corridor Map. We

refer the reader to [20] for more details on this procedure.

The elements of the corridor can be a part of a single edge,

or can be a concatenation of edges forming a chain in the

graph. The Explicit Corridor is defined as follows:

Definition 2 (Explicit Corridor). An Explicit Corridor is the

sequence (Bi, Ri, li, ri), where (Bi, Ri) is the sequence of

maximum clearance disks with center points Bi and radii

Ri (1 ≤ i ≤ n). Each center Bi is assigned its left (li) and

right (ri) closest point to the obstacles’ boundaries.

While the corridor is represented as a discrete sequence

of annotated disks, their closest points embody a continuous

sequence (i.e. an infinite number of maximum clearance

disks if n > 1), forming a continuous corridor.

The boundaries of this corridor will play an important role

in efficiently computing the shortest path with a variable

amount of clearance to the obstacles. Below, we will show

that these boundaries are represented explicitly by the closest

points and center points, hence the name Explicit corridor.

Let (Bi, Ri, li, ri) be an Explicit Corridor (1 ≤ i ≤ n),

and BCl and BCr denote the left and right sides of the

corridor’s boundaries, respectively. Both sides consist of a

beginning, a middle, and an ending part. We will only give

the construction of the right side because the left side is

constructed similarly. We refer the reader to Fig. 3 for a

visual impression of the construction.

The beginning part of BCr is the counter-clockwise arc,

tracing disk (B1, R1), from s to r1. The start point s lies

exactly in the middle of the arc connecting l1 to r1.

Bn

r1

rj

rj+1rn

l1

∗ln

s

e ∗∗ ∗∗ = Bj, Bj+1

∗ = lj, lj+1

B1

Fig. 3. Constructing the boundaries of an Explicit Corridor.

(a) Explicit Corridor (b) Different shrunk corridors

Fig. 4. Acquiring an amount of minimum clearance in an Explicit Corridor.

Similarly, the ending part of BCr is the counter-clockwise

arc, tracing disk (Bn, Rn), from rn to e. The end point e
lies exactly in the middle of the arc connecting rn to ln.

The middle part of BCr consists of a concatenation of

curves. The type of the curve is dependent on the tuple under

consideration. Let (B′, R′, l′, r′) and (B′′, R′′, l′′, r′′) be a

pair of adjacent tuples of an Explicit Corridor.

We first look at the situation in which disks from a pair

of incident edges were concatenated. While these disks have

the same coordinates, they can have different (right) closest

points, i.e. B′ = B′′ ∧ r′ 6= r′′. The corresponding part of

BCr is the counter-clockwise arc, tracing disk (B′, R′), from

r′ to r′′. In Fig. 3, this happens at disks j and j+1. The right

boundary part is a circular arc from rj to rj+1. Note that the

left boundary part is a degenerated circular arc, consisting

of a single point, because li = li+1.

If a pair of adjacent disks is taken from the same edge,

the boundary is the line segment that traces an obstacle from

point r′ to r′′. Note that the boundary cannot intersect an

obstacle because adjacent closest points always lie on the

same edge of the obstacle.

The construction shows that we can compute the left

and right boundary parts for any pair of adjacent disks in

constant time. Consequently, the corridor’s boundaries can

be computed in O(n) time.

III. MINIMUM CLEARANCE IN EXPLICIT CORRIDORS

In many path planning applications, a path should keep

some amount of minimum clearance, clmin, to the obstacles.

Traveling along such a path avoids collisions with these

obstacles. We will show in this section how to shrink the

corridor such that the distance from each point on the
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corridor’s boundaries to any obstacle is at least clmin. A

set of shrunk corridors is displayed in Fig. 4.

For an Explicit Corridor (Bi, Ri, li, ri) it holds that the

distance from a closest point cpi ∈ {li, ri} to the obstacles is

zero and that the distance between the center Bi and closest

point cpi is Ri. For any point p on the line segment through

Bi and cpi we have that cpi is the closest point to p. Hence,

we shrink the corridor by moving cpi on this segment to

Bi. The coordinates of cpi are set to cpi + clmin ∗ (Bi −
cpi)/||Bi−cpi|| and its radius equals Ri−clmin. However, if

clmin > Ri, we have the following two cases. If clmin > Ri

and clmin > Ri+1, then cpi = Bi and cpi+1 = Bi+1; their

clearances are set to zero. If one of the corresponding radii

is larger than clmin but the other one is smaller, we need to

insert one disk if the corresponding curve is a line, and one

or two disks if the curve is a parabolic arc. The point(s) are

placed at the position(s) where their clearance equals clmin.

The boundaries of the shrunk corridor are constructed like

the boundaries of the original corridor. There is a small

difference though. In the original corridor, a sequence of

multiple center points can have closest points which have

the same coordinates c, see e.g. points lj and lj+1 in Fig.

3. These closest points are mapped onto a circular arc when

the corridor is shrunk. Hence, instead of line segments, they

must be connected with a circular arc which traces a disk

with center c and radius clmin.

Because it takes constant time per update of each closest

point, a shrunk Corridor, whose boundaries have a clearance

of at least clmin to the obstacles (wherever possible), can be

computed in linear time in the number of disks.

IV. SHORTEST PATHS

In many path planning applications, a path should be short

because it usually takes the least time to traverse. We will

show in this section how to create the shortest path inside

an Explicit Corridor in linear time in the number of disks.3

The corridor’s boundaries can be considered as a polygon

(with circular arcs). Given a (simple) polygon, the shortest

path from a start to a goal position can be computed in linear

time in the number of its vertices [25]. First, a triangulation

of the polygon is computed. Then, the dual graph of this

triangulation is determined. In this graph, a vertex is placed

in the face of each triangle. An edge in the graph connects

two vertices if they share an edge in the triangulation. After

computing the Depth First Search (DFS) on the dual graph at

the start position, the sequence of diagonals that are crossed

by the DFS is known. These diagonals are used by their

‘Funnel’ algorithm which computes the shortest path. In [26],

this algorithm is extended such that triangles are allowed to

have circular arcs.

The most difficult step in the algorithm is the triangulation.

Theoretically, a polygon can be triangulated in linear time

[27]. While being impressive, this algorithm is complex and

may have never been implemented. Fortunately, it is easy to

3When we refer to the shortest path we mean the shortest path lying in
the same homotopic class as the curves in the corridor.

(a) Triangulation (b) Shortest path

(c) Triangulation in a shrunk
corridor

(d) Shortest minimum-clear-
ance path in a shrunk corridor

Fig. 5. Computing the shortest path in an Explicit Corridor.

build the triangulation with at most 2n+2 triangles by using

the Explicit Corridor (Bi, Ri, li, ri), where 1 ≤ i ≤ n. An

example of such a triangulation is displayed in Fig. 5(a).

The triangulation is constructed by connecting adjacent

closest points. That is, each pair of adjacent left closest

points (lj and lj+1) and right closest points (rj and rj+1)

contributes the 2jth and 2j + 1th triangle, i.e, (lj , rj , lj+1)
and (rj , lj+1, rj+1), respectively. If lj = lj+1 or rj = rj+1,

the corresponding triangle is a line and can be discarded. If

the start position s is not included in one of the triangles,

we add triangle (s, l1, r1) to the front of the triangle list.

Likewise, if the goal position g is not included, we add

triangle (ln, rn, g) to the back of the list.

This triangulation is valid since each triangle shares two

edges (except the first and last one). Each triangle is empty

because each edge traces the boundary of an obstacle, lies

inside one disk, or splits an empty convex quadrilateral.

The triangulation takes O(n) time because we spend

constant time per closest point. We can now directly apply

the extended Funnel algorithm from [26] because the dual

graph of our triangulation is a list (and applying a DFS on

a list yields the same list). Since this algorithm takes O(n)
time, our algorithm is linear in the number of disks.

A resulting shortest path is displayed in Fig. 5(b). Note

that this path can be traversed only by a point (and not by

a character) because it is the shortest one in the corridor,

touching the obstacles. We just need some clearance.

Shortest minimum-clearance paths

For a character with radius r, we want to compute the

shortest path having a desired amount of minimal clearance

clsafe. The path can be obtained by first shrinking the cor-

ridor with clearance clmin = r+ clsafe and then computing
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the shortest path for a point in the shrunk corridor. We refer

the reader to Fig. 5(c) and Fig. 5(d) for an example. A

triangulation was computed inside a shrunk corridor. Next,

the shortest path was computed based on this triangulation.

While the path is short and safe, it is rigid because

the character’s motions are limited to the computed path.

In the next section we show how more flexibility can be

obtained which is necessary when dealing with smoothness

and dynamic character avoidance.

V. PATH PLANNING

Recently, the Indicative Route Method (IRM) has been

introduced [19]. The IRM is a framework for real-time path

planning in interactive virtual environments. The method

directs the global motions of a character traversing a corridor.

Such a corridor is extracted from the Corridor Map. Local

motions are controlled by potential fields inside a corridor,

providing the desired flexibility, including smoothness and

obstacle avoidance. The potential field is defined such that

the character stays inside the corridor, locally adjusts its

path if necessary and is led to the goal. For this purpose,

an attraction point is defined which attracts the character

and moves on a control path toward the goal. A good

candidate for the control path is the shortest minimum-

clearance path. The attraction point attracts the character at

position x with force Fa(x). Obstacle avoidance is included

by adding an extra force Fo(x). The total force, applied to

the character (with mass m), is then F(x) = Fa(x)+Fo(x).

The differential equation md2x
dt2

= Fa(x) + Fo(x) gives

the positions of the character’s path. Because this non-

linear equation cannot be solved analytically, a numerical

approximation must be used to compute the path, such as

Verlet integration [28].

We refer the reader to Fig. 6 which displays visually

convincing short paths. Both paths keep some minimum

clearance to the corridor’s boundaries and try to follow

the shortest path. The first one is a smooth path (i.e. C1-

continuous). The second one avoids the gray obstacles while

it stays smooth and short.

VI. EXPERIMENTS

In this section, we will describe the experiments we

have conducted on Explicit Corridors. In particular, we

investigated the efficiency of computing the Explicit Corridor

Map, Explicit Corridors, triangulations, and smooth shortest

minimum-clearance paths. All the experiments were tested

on a large virtual city and were run on a PC with a NVIDIA

GeForce 8800 GTX graphics card and an Intel Core2 Quad

CPU (2.4 GHz) with 4 GB memory. Only one core was used.

A. Experimental setup

We have conducted experiments with the city environment

depicted in Fig. 7(a). The city measured 500x500 meter

and was populated with 181 buildings and trees. We cre-

ated a corresponding footprint. Non-convex polygons were

decomposed into convex ones by using the CGAL package

[24], which took 1s. This decomposition is visualized in

(a) Smooth short path (b) Obstacle avoidance

Fig. 6. Flexible path planning.

(a) City environment

(b) Footprint and Explicit Corridor Map

Fig. 7. The test environment, its footprints and Explicit Corridor Map.
For clarity, the closest points have been left out. A close-up of these closest
points is shown in Fig. 8(a).
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Fig. 7(b) as black line segments which are overlaid on the

footprint. The resulting 548 convex polygons, some of which

were degenerated into a point or line segment, formed the

input obstacles of the Explicit Corridor Map. This map

was created using a resolution of 4,000x4,000 pixels by

the application developed in [20]. We have extended this

application to include computing the Explicit Corridor Map.

Next, we have integrated the techniques from this paper into

the IRM framework [19]. The applications were implemented

in Visual C++ under Windows XP.

First, we have conducted experiments to measure the

running times for constructing the Explicit Corridor Map.

Next, we measured the average running times of con-

structing 1,000 random Explicit Corridors and their shortest

(minimum-clearance) paths. When we refer to the construc-

tion time of a path, it embodies the whole query phase,

including querying the map, computing the Explicit Corridor,

shrinking the corridor (by 1 meter), building a triangulation

and computing the shortest (smooth) path inside the shrunk

corridor. To see the resulting times in the right perspective,

we defined the CPU-load, which was the spent CPU time

/ averaged traversed time ∗ 100%. The traversed time

was defined as the traveled distance (m) divided by the

character’s average speed (m/s), which was set to a fast

walking pace of 2m/s.

Finally, we picked one representative corridor and corre-

sponding path and studied its construction and quality.

B. Experimental results

The Explicit Corridor Map (ECM) was computed in 0.60s,

resulting in 1,439 vertices and 1,618 edges containing 6,322

disks and pairs of closest points. While computing the map

is meant to be done in an off-line construction phase, the

method is fast enough to be applied in an on-line setting such

as a game in which a level is created by a player. Edges ran

in non-convex parts because all input obstacles were convex,

ensuring that characters could visit those places.

Next, we extracted 1,000 random corridors from the

map. The average running time for extracting an Explicit

Corridor was 1.19ms. Shrinking the corridor added 0.54ms.

Triangulating this corridor and computing the shortest path

added another 1.83ms. Hence, on average, the total time

for computing the shortest (minimum-clearance) path in a

corridor was 3.56ms. By using the resulting shortest paths

as control paths, smooth paths were obtained, increasing the

total time to 4.14ms. By having an average traveled distance

of 321m, the CPU-load was 0.002% for steering a single

character. Consequently, the approach is suitable for steering

many characters simultaneously, as occurs in a crowd [29].

We refer the reader to Fig. 8, which shows the construction

of a smooth short minimum-clearance path. First, the ECM

was computed in the off-line construction phase. A close

inspection confirms that the density of the event points

is directly related to the complexity of the obstacles. The

varying density yielded a small corridor map while paths

inside narrow corridors could still be traversed. Next, in the

on-line query phase, a representative corridor was extracted.

(a) Corridor map and closest points (b) Left/right closest points

(c) Explicit (shrunk) corridors (d) Triangulation

(e) Shortest path (f) Smooth path

Fig. 8. Construction of a smooth, short minimum-clearance path.
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By exploiting its left and right closest points, an Explicit

Corridor was obtained. We created a shrunk corridor having

a high clearance (clmin = 2.25m) to the obstacles for

visualization purposes. Note that this clearance was larger

than the available clearance in the middle part of the corridor.

In this part, the shortest path ran on the Voronoi edges

induced by the obstacles. This shortest path was created by

triangulating the shrunk corridor before it was fed to the

extended Funnel algorithm. Finally, the shortest minimum-

clearance path was used as a control path to generate a

smooth path. This path, traversed by a character (modeled by

a disk with radius 0.4m), was short, smooth, and did not run

too close to the obstacles. The query phase for this example

took 2.77ms, making the approach feasible for efficiently

constructing visually convincing short paths.

VII. CONCLUSION

We have proposed a data structure and algorithms for

computing the shortest path with a desired variable amount

of minimum clearance inside corridors. The walkable space

of the environment was represented by a new structure,

referred to as the Explicit Corridor Map. A corridor from

this structure was defined as a sequence of maximal empty

disks, annotated with closest points lying on the obstacles

in the environment. This annotation enabled constructing the

corridor’s boundaries explicitly, allowing for computing the

shortest path with clearance in linear time in the number of

disks of the corridor. Our main contribution is a combination

of two related features: simplicity of the approach together

with its practical efficiency.

While the resulting paths were short and safe, they were

fixed in response to a query, leading to possible collisions

with other characters and predictability of the characters’

motions [19]. The desired flexibility was obtained by using

the path as control path in the Indicative Route Method.

By following an attraction point, which moved along this

control path, a smooth, visually convincing short path for

the character was obtained. Experiments showed that this

approach led to a CPU-load of 0.002 percent, showing that

the algorithm can be used for real-time high-quality path

planning in the plane.

We think that our data structure and algorithms can form

the basis for solving many challenging applications, includ-

ing crowd planning, camera planning and stealth planning.
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