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Abstract. Path planning is a central problem in virtual environments
and games. When computer-controlled characters move around in vir-
tual worlds they have to plan their paths to desired locations. These
paths must avoid collisions with the environment and with other moving
characters. Also a chosen path must be natural, meaning that it is the
kind of path a real human being could take. The algorithms for planning
such paths must be able to handle hundreds of characters in real-time
and must be flexible.

The Corridor Map Method (cmm) was recently introduced as a flexible
path planning method in interactive virtual environments and games.
The method is fast and flexible and the resulting paths are reasonable.
However, the paths tend to take unnatural turns when characters get
close to other characters or small obstacles. In this paper we will improve
on the cmm by decoupling collision avoidance with the environment and
local steering behavior. The result is a method that keeps the advantages
of the cmm but has much more natural steering. Also the method allows
for more flexibility in the desired routes of the characters.

1 Introduction

Virtual worlds are nowadays commonly used in computer games, simulations,
city models, and on-line communities like Second Life. Such worlds are often
populated by computer-controlled characters. The characters must move around
in the environment and need to plan their paths to desired locations. These paths
must avoid collisions with the environment and with other moving characters.
Also a chosen path must be natural, meaning that it is the kind of path a real
human being could take. The algorithms for planning such paths must be able
to handle hundreds of characters in real-time and must be flexible to e.g. avoid
local hazards or incorporate animation constraints.

The path planning or motion planning problem had received considerable at-
tention over the past twenty years and many algorithms have been devised to
tackle it. (See [1, 2] for an overview.) These algorithms were mainly developed
in the field of robotics, aiming at creating a path for one or a few robots hav-
ing many degrees of freedom. In virtual worlds the requirements though are
completely different. The environment is very complex and even though path
planning normally can be performed in the 2-dimensional footprint of the envi-
ronment, we still need to deal with thousands of polygons. We need to plan the
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(a) Corridor map (b) Backbone path (c) Resulting path

Fig. 1. The Corridor Map Method in action

motion of hundreds of characters in real-time using only a small percentage of
the cpu time. Per character only a (fraction of a) millisecond per second cpu

time may be spent on path planning. Also paths need not only be collision-free
but they must also be natural. On the positive side, we can represent the char-
acter as a disk, and, hence, have to deal with only two degrees of freedom of
movement.

In conclusion, virtual world applications require algorithms for path planning
that are fast, flexible, and generate natural paths. In practice, currently two
approaches are common. The first is to let designers script most of the motion, for
example using waypoints, and then using potential field approaches (see e.g. [3])
to avoid obstacles and other characters. Such an approach is only possible when
the virtual world is predefined by designers. It is also expensive because of the
manual work involved. In addition, the method is not very flexible. The potential
field approach has the risk of characters getting stuck in local minima and not
reaching their goals. Also, as can be seen from many (recent) games, it leads to
rather unnatural paths, in particular when waypoints get blocked.

The second common approach is the put a grid on the world and using searches
based on A* to create a path through the empty cells. See for example [4,
5]. This method is guaranteed to find a path if one exists. However, it lacks
flexibility because a single fixed path is returned. In addition, the paths tend
to be unnatural. Also, even though some optimization algorithms exist, when
the grids get large and the motion of many characters must be planned, the
approach can become too slow to be applied in real-time [6].

Recently, the Corridor Map Method (cmm) has been proposed as a new path
planning method in interactive virtual environments and games [7]. The method
is fast and flexible and the quality of resulting paths is reasonable. Globally
speaking the cmm works as follows (see Fig. 1 for an example). In a preprocess-
ing phase a roadmap of paths is computed for the static part of the environment.
Often the medial axis is used for this. With the roadmap, clearance information
is stored, defining collision-free corridors around the roadmap edges. This data
structure is called the corridor map. When a path planning query must be solved
a backbone path is extracted from the roadmap together with a collision-free cor-
ridor around it. We move an attraction point along the backbone path which
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attracts the character in such a way that no collisions occur with the environ-
ment. This leads the character toward the goal. Local motions are controlled by
potential fields inside a corridor, providing the desired flexibility.

Although the cmm is fast and flexible, the paths tend to take unnatural turns
when characters get close to other characters or small obstacles. In this paper
we will extend the cmm as follows. We separate the corridor map from the
so-called control network. The corridor map is defined as above. The control
network provides a roadmap of paths that can be used to lead the characters
to their goals. When a query must be solved a control path is extracted from
the control network. With the control path we find a corresponding corridor in
the corridor map. We again move an attraction point along the control path but
this is only used to lead the character to the goal. Separate forces are used to
keep the character inside the corridor. Again we use additional forces to steer
the character away from other characters, small obstacles and other hazards. As
we will show, separating the collision-avoiding forces in the corridor from the
attraction forces along the control path, leads to much more natural paths while
hardly increasing the computation time. We initially still use the medial axis
for the control network but we will also show how even more flexibility can be
obtained by using other control networks and paths.

This paper is organized as follows. In Section 2 we provide definitions of corri-
dors and corridor maps and show how such maps can be computed efficiently. In
Section 3 we briefly review the original approach for using corridors for path plan-
ning. In Section 4 we present our improved approach in which we use the medial
axis as a control network to obtain more natural paths. In section 5 we provide re-
sults from experiments that show that the resulting paths are considerably better
than those produced by the original cmm. In Section 6 we will indicate how the
approach can be extended using other control networks and control paths. Finally,
in Section 7 we provide some conclusions and plans for further research.

2 The Corridor Map

The corridor map is an efficient data structure representing the (walkable) free
space in the environment. It was introduced by Geraerts and Overmars [7] and we
will outline the most important aspects here. As the walkable space is normally
2-dimensional we will define the corridor map in the plane. The obstacles are
the footprints of the original 3-dimensional obstacles in the environment.

The corridor map is a graph whose edges represent collision-free corridors.
Such a corridor consists of a backbone path and a set of disks centered around
this path. More formally, a corridor B = (B[t], R[t]) is defined as a sequence
of maximum clearance disks with radii R[t] whose center points lie along its
backbone path B[t]. The parameter t is an index ranging between 0 and 1, and
B[t] denotes the coordinates of the center of the disk corresponding to index t.
Together, the backbone paths form the skeleton of the corridor map. See Fig.
2 for an example of a virtual city, its footprint, and the skeleton defining the
corridor map.
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(a) 3D model (b) Footprint and skeleton

Fig. 2. The McKenna mout training site at Fort Benning, Georgia, usa

We will use the corridors to provide the flexibility to handle a broad range
of path planning issues, such as avoiding other characters and computing nat-
ural paths. To approach these issues, we set the following requirements for the
corridor map. First, if a path exists in the free space then a corridor must exist
in the map that leads the character from its start to goal position. Second, the
map includes all cycles that are present in the environment. These cycles pro-
vide short global paths and alternative routes which allow for variation in the
characters’ routes. Third, corridors extracted from the map have a maximum
clearance. Such a corridor provides maximum local flexibility.

These requirements are met by using the Generalized Voronoi Diagram (gvd)
as skeleton for the corridor map [8]. A gvd is a decomposition of the free space
into regions such that all points p in a region R(p) are closer to a particular
obstacle than to any other obstacle in the environment. Such a region is called
a Voronoi region. The boundaries of the Voronoi regions form the skeleton (i.e.
the underlying graph) of the corridor map. We refer the reader to Fig. 2(b) for
an example. The boundaries are densely sampled and with each such sampled
point, we store the radius of the maximum clearance disk centered at this point.
A sequence of these disks forms the corridor.

A gvd can be computed efficiently by exploiting graphics hardware. Like
in [9], we compute a 3D distance mesh, consisting of polygons, for each geometric
obstacle present in the footprint of the environment. Each of the meshes is
rendered on the graphics card in a different color. A parallel projection of the
upper envelope of the arrangement of these meshes gives the gvd. The diagram
can be retrieved from the graphics card’s frame buffer and the clearance values
(i.e. distance values) can be found in the Z-buffer. These steps are visualized in
Fig. 3. The approach is very fast. For example, the corridor map in Fig. 2(b) was
computed in 0.05 seconds on a modern PC with a nvidia GeForce 8800 gtx

graphics card. Note that the computation of the corridor map happens only once
during preprocessing.
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(a) Environment (b) Frame buffer (c) Z-buffer (d) Corridor map

Fig. 3. Construction of the Corridor map using graphics hardware

3 The Original Corridor Map Method

In our original description [7], the corridor map is used as follows to answer
path planning queries. To plan a path for a character, which is modeled by a
disk with radius r, we first compute the shortest backbone path connecting the
start to the goal. After connecting the start and goal positions to the roadmap,
this backbone path is obtained by applying the A* shortest path algorithm on
the skeleton graph. The corresponding corridor is formed by concatenating the
corridors of the edges of the backbone path. See Fig. 1(b) for an example of a
backbone path.

The backbone path guides the global motions of the character. Its local mo-
tions are controlled by continuously applying one or more forces to the character.
The basic force steers the character toward the goal and keeps the character in-
side the corridor. For this purpose, we create an attraction point α(x) that runs
along the backbone path and attracts the character.

Definition 1 (Attraction point). Let x be the current position of the character
with radius r. The attraction point α(x) is the point B[t] on the backbone path
B having the largest time index t : t ∈ [0 : 1] such that Euclidean distance
(x, B[t]) < R[t] − r.

The character is attracted to the attraction point with force Fa. Let d be the
Euclidean distance between the character’s position x and the attraction point
α(x). Then

Fa(x) = f
α(x) − x

||α(x) − x|| , where f =
1

R[t] − r − d
− 1

R[t] − r
.

The scalar f is chosen such that the force will be 0 when the character is po-
sitioned on the attraction point. In addition, f will be ∞ when the character
touches the boundary of the clearance disk. (However, f will never reach ∞ since
we require that the radii of the disks are strictly larger than r.)

Additional behavior can be incorporated by adding extra forces to Fa, re-
sulting in a force F. The final path is obtained by iteratively integrating F over
time while updating the velocity, position and attraction point of the character.
In [7], it is proved that the resulting path is smooth (i.e. C1-continuous). An
example of such a path is displayed in Fig. 1(c).
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4 The Improved Approach

In the previous section, we used a force function Fa which simultaneously steers
the character toward the goal and keeps it inside the corridor. This sometimes
results in rather unnatural motions, in particular when characters also have to
avoid each other. The cause for this is that due to the choice of the attraction
point, the position of the character lies close to the boundary of the clearance
disk, and, hence, the force Fa gets very large.

In this section we will show how to avoid this by decoupling Fa into two
forces. The boundary force Fb will push the character away from the boundary
of the corridor. The steering force Fs will guide the character toward the goal.
For the latter we again use an attraction point on a path to the goal. However
this path no longer needs to be the same as the backbone path of the corridor.
Hence, from now on we refer to this path as the control path.

To be able to compute the boundary force we need an explicit representation
of the boundary of the corridor.

4.1 Computing an Explicit Corridor Boundary Representation

Up to now we used an implicit description of a corridor, i.e. the corridor is
retrieved from the map as a sequence of disks. However, such a sequential repre-
sentation does not allow for easy/efficient computation of a closest point on the
boundary which is required for computing the boundary force. Hence, we need
an explicit description of the corridor’s boundary (see Fig. 4(c)).

We can obtain this description by adding information to the corridor map in
the preprocessing phase. For each sampled point on the skeleton we compute the
set of closest points to the obstacles. By exploiting graphics hardware, we can
efficiently compute these closest points. Let B be a sample point on the skeleton.
We determine the position of B in the frame buffer. Next we consider the colors

(a) Closest points stored in
the corridor map

(b) Closest points corre-
sponding to a corridor

(c) Explicit representation
of the corridor’s boundary

Fig. 4. Closest points to the obstacles. By concatenating the points with line segments
and circular arcs, we obtain an explicit representation of the corridor’s boundary.
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of the pixels neighboring B. These colors correspond to unique obstacles and the
closest points must lie on these obstacles. Computing these points can then be
achieved by simple geometric calculations.

Fig. 4(a) shows the corridor map and corresponding closest points of our running
example. Each sample point is linked to exactly two closest points, except for the
vertices of an edge because they have at least two (and at most four) closest points.

To obtain an explicit description of a corridor’s boundary, we need to know
for each point B which closest point is on the left side and which one is on the
right side with respect to the local orientation of the edge at B. This information
can easily be obtained by inspecting the location of the pixels in the frame buffer
relative to this orientation. An example of a corridor, together with its left and
right closest points, is displayed in Fig. 4(b).

From this information we can efficiently compute the closest boundary point
cp(x) to any point x in the corridor. First, the sample point B is retrieved whose
corresponding left (or right) boundary point is closest to point x. Then the
previous and next sample point are extracted along with their corresponding
boundary points. In case the three boundary points define a line segment on
the outline of the corridor, the closest boundary point cp(x) is computed using
simple linear algebra. Otherwise, cp(x) lies on an arc. Let a and b denote the
start and the end of the arc, respectively, and θ = arccos(a − B, x − B). Then
cp(x) = R(θ) (a − B) where R(θ) represents the 2D rotation matrix.

4.2 The Boundary Force

To ensure that the character remains inside the corridor, a repulsive force Fb

from the boundary of the corridor toward the character is applied. Since people
prefer to keep a safe distance from walls, streets, buildings, etc. [10, 11], such a
force is only exerted if the distance between the character and its corresponding
boundary point is below a threshold value. Let db be the Euclidean distance
between the character’s position x and its corresponding closest point cp(x) on
the boundary of the corridor. Let r be the radius of the character and let dsafe
denote the preferred safe distance. Then the force is defined as follows:

Fb =

⎧
⎪⎪⎨

⎪⎪⎩

cb
x − cp(x)

||x − cp(x)|| , if db − r < dsafe

0 otherwise.

The scalar cb =
dsafe + r − db

db
is chosen such that the force will become ∞

when the character and the boundary point touch. By modifying the safe distance
dsafe a wide variety of behaviors can be achieved. A typical value that is also
used in our experiments is to set dsafe = r.1

1 Note that the safe distance should be taken into account upon the extraction of a
corridor. i.e. R[t] > r + dsafe. Otherwise, the character will be continuously pushed
from the left to the right side of the corridor and vice versa (db will always be less
than r + dsafe and hence, a Fb will be exerted on the character at every time step).
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4.3 The Steering Force

The character should also feel the urge to move forward toward its goal position.
Thus, at every time step a steering force Fs is needed to guide the character at
position x toward an attraction point α(x). The force is defined as

Fs = cs
α(x) − x

||α(x) − x|| ,

where cs specifies the relative strength of the force. This scalar can remain fixed,
or it can vary depending on the distance between the character and the attraction
point, making the character speed up or slow down. In our experimental setting
we used cs = 1.

Having defined the forces that acted upon the character, we calculate its
new position by numerically integrating its acceleration and velocity. We use
an integration scheme that is quite stable and can deal with stiff differential
equations. In our simulations we used Verlet integration with step size Δt = 0.05
and set the maximum acceleration to 5m/s2 in order to keep the error minimal.

5 Experiments

We have implemented the new method to experimentally validate whether it can
generate paths that are smoother than the ones computed by the original cmm.
All the simulations were performed on a Pentium IV 2.4 GHz computer with
1GB memory.

The experiments were conducted for the environment depicted in Fig. 2. This
is a model of the McKenna mout (military operations in urban terrain) training
center, hosted at Fort Benning, Georgia, usa. Its corridor map, displayed in Fig.
2(b), was computed in 0.3 seconds (0.05s for the gvd and clearance, and 0.25s
for the closest points).

In all of the experiments we used the medial axis as the control network of the
new method and defined the attraction points as in the original cmm. Therefore,
the two approaches were only differentiated by the forces used to generate the
character’s motion inside the corridor. In the original cmm the attraction force
Fa makes the character both move forward and stay inside the corridor, whereas
in the new approach the two forces (Fs + Fb) are used to guide the character
through the corridor.

To evaluate the quality of the paths when avoiding other characters we popu-
lated the environment with a number of static characters (obstacles). We chose
static characters because this makes it easier to compare the results. To avoid
the static characters, an additional collision response force has to be applied
on the character. Thus, both of the methods were enhanced with a simple ob-
stacle avoidance model [7]. At every iteration a repulsive force is exerted from
each obstacle Oi : i ∈ [1 : n] that lies inside the clearance disk corresponding to
the attraction point α(x) of the character. This force is monotonically decreasing
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(a) Path generated by the original
cmm.

(b) Path generated by the revised
method.

Fig. 5. Comparing the paths generated by the original and the revised cmm

with the Euclidean distance di between the obstacle Oi and the character’s
position x. Given the radius r of the character and the radius ri of each obstacle,
the total repulsive force Fobs can be computed as

Fobs =
n∑

i=1

cobs
x − Oi

||x − Oi||
, where cobs =

1
di − ri − r

.

5.1 Results

Fig. 5 shows the paths created by the two methods for an example query (r =
0.75, ri = 1). It must be pointed out that some of the artifacts in the resulting
paths are due to the simple obstacle avoidance method that was used. A more
sophisticated approach would have improved the quality of the paths. However,
our goal was to evaluate the two methods regardless of any specific details.

To quantitatively describe the quality of the resulting motions we measured
the length as well as the average curvature of the paths. Given any three suc-
cessive points on a path we approximated the curvature at the middle point as
κ = 1/ρ, where ρ is the radius of the circumscribing circle that passes through
each of these three points. By taking the average over all points we were able to
detect poor and irregular paths.

Table 1 shows the corresponding statistics for the two paths. As it can be
inferred both by the table and Fig. 5(a), the original cmm generates a longer
and more erratic path (high-curvature). Due to the way the attraction point
is defined (furthest advanced point for which the character is still enclosed by
the clearance disk), at every integration step the character lies very close to
the boundary of the disk. Thus, an almost infinite attraction force steers the
character, rendering impossible to exhibit smooth motions when other obstacles
and/or entities are present in the environment. The character has to be very
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Table 1. Curvature and path length statistics for the example query, shown in Fig. 5

Compared Methods

Original CMM Improved Method

Path Length 155.12 150.61

Avg. Curvature 0.27 0.13

close to an obstacle to avoid it, and only at the very last moment, it changes its
direction (i.e. when the repulsive force from the obstacle becomes very strong).
Hence, the resulting motion is far from realistic.

The revised method handles the obstacles more naturally, generating a
smoother path (i.e. the path is shorter with less curvature). As it can be ob-
served in Fig. 5(b) the oscillations noted in the original method are reduced.
The character is more “relaxed”, in the sense that it is not pulled toward the
attraction point with an infinite force. Therefore, if an obstacle is encountered
the character will start evading soon enough, ensuring a more realistic behavior.

Other queries in the same and other scenes led to similar results. The per-
formance of the two methods was similar (i.e. computing the closest boundary
points and decoupling the attraction force into two separate forces influenced
the running time marginally). Hence, we can conclude that the revised approach
has clear advantages over the original cmm. It is more flexible, it provides better
control over the character’s motion and consequently leads to more believable
paths.

Clearly, the quality of the resulting paths can be further improved by varying
the parameters of the revised model and by using a more elaborate approach
for collisions avoidance, like Helbing’s social force model [12]. For example, more
convincing paths can be obtained, as displayed in Fig. 6, as follows. We can
increase the safe distance that the character keeps from the boundary of the
corridor (dsafe = 2r). In addition, we can apply a repulsive force only for obstacles
that are perceived within the character’s desired direction of motion.

6 Using Alternative Control Paths

Up to now we have used the medial axis as the control network. This works fine in
environments in which there are no wide open spaces. However, it will encourage
the characters to stay in the middle of the corridors which can be unnatural. So
in practice one might want to use alternative control networks and control paths.
Such control networks could be indicated manually by a designer to encourage
certain character behavior. Also they could be computed automatically based
on required behavior. For example we could use the Voronoi-Visibility diagram
as introduced in [13] that allows for shortcuts when there is enough clearance.
Alternatively we can determine control paths during queries based on perceived
danger or interesting places that characters like to visit.
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Fig. 6. An alternative path is obtained by increasing the safe distance from the bound-
ary of the corridor

Using alternative control paths is possible but leads to a number of complica-
tions. First of all, given such a control path we need to compute the correspond-
ing corridor. The easiest way to achieve this is to retract the control path onto
the medial axis [14]. Using the boundary representation described in Section 4
this can be done efficiently.

Secondly, we need a method to choose the location of the attraction point
on the control path. The method described above, in which we pick the furthest
point along the control path for which the character still lies within the clearance
disk, will not be suited anymore when the control path passes close to obstacles.
Different options are possible here. We can use an attraction point that moves
with constant speed (as long as the character does not lag too far behind). We
can also use an attraction point at a particular distance from the character
(that can vary over the control path and will determine how closely the control
path must be followed). Or we can pick the attraction point based on visibility,
although such calculations are relatively expensive. In a future paper we will
explore these possibilities further.

7 Conclusions

In this paper we have presented an improved version of the Corridor Map
Method. The method can be used to plan in real time natural paths for a large
number of characters in complicated environments. It is relatively easy to imple-
ment and is flexible enough to incorporate many additional constraints on the
resulting paths.

We are currently investigating the effect of using alternative control paths on
the behavior of the characters. Also we are studying improved local force models
that create even better paths in environments with many moving characters. We
also want to incorporate the notions of dangerous and interesting regions and we
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want to incorporate small groups of moving characters that stick together. This
all should lead to very efficient and high-quality path planning for individuals,
groups and whole crowds of computer-controlled characters.
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