
Indicative Routes for Path Planning and Crowd Simulation

Ioannis Karamouzas Roland Geraerts Mark Overmars

Department of Information and Computing Sciences, Utrecht University
Padualaan 14, De Uithof, 3584CH Utrecht, The Netherlands

{ioannis, roland, markov}@cs.uu.nl

ABSTRACT

An important challenge in virtual environment applications
is to steer virtual characters through complex and dynamic
worlds. The characters should be able to plan their paths
and move toward their desired locations, avoiding at the
same time collisions with the environment and with other
moving entities. In this paper we propose a general method
for realistic path planning, the Indicative Route Method
(irm). In the irm, a so-called indicative route determines
a global route for the character, whereas a corridor around
this route is used to handle a broad range of other path
planning issues, such as avoiding characters and comput-
ing smooth paths. As we will show, our method can be
used for real-time navigation of many moving characters in
complicated environments. It is fast, flexible and generates
believable paths.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics—Kinematics and
dynamics; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems—games

1. INTRODUCTION
The path planning problem has been extensively studied

over the past years and many sophisticated algorithms have
been devised to tackle it. These algorithms were mainly
developed in the field of robotics, where the focus of the
research was to generate collision-free and short paths for
mostly static environments with a few moving robots (see
[14, 15] for an extensive overview).

However, in interactive applications, such as computer
games, the set of requirements is rather different. Com-
plex and dynamic virtual environments are populated by a
large number of computer-controlled characters. The char-
acters must plan their paths and move toward their desired
locations avoiding at the same time collisions with the envi-
ronment and with other moving entities. The algorithms for
computing these paths should be able to handle hundreds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFDG 2009, April 26-30, 2009, Orlando, FL, USA
Copyright 2009 ACM 978-1-60558-437-9 ...$5.00.

of characters in real-time using only a small percentage of
the cpu time. They should also generate natural paths, i.e.
paths that would be taken in real-life or paths that at least
look convincing and believable to the player. In this paper,
we present a new approach to plan such paths.

1.1 Related Work
The game development community mainly uses grid-based

methods, navigation meshes, or waypoints graphs for the
global navigation of the characters. Collisions with obsta-
cles and other moving entities are then typically resolved by
applying a reactive steering approach.

Grid-based methods divide the environment into a grid of
cells that can be searched using A*-based algorithms [3, 25].
This approach guarantees that a path, if one exists, will be
found. However, it lacks flexibility, since the same path is re-
trieved in response to a fixed query. In addition, grid-based
methods can become computationally expensive, especially
for large and complicated environments with many moving
characters. Also, paths created by A* algorithms tend to be
unnatural, as can be observed in many (recent) games.

Navigation meshes [3] partition the terrain into convex
polygons that represent the walkable area of the environ-
ment. The static part of the game world is taken into ac-
count upon the construction of the mesh, and thus, the char-
acter only has to consider collisions with dynamic obstacles.
Similar to a grid, a navigation mesh consists of linked cells
that share a common edge. As a result, a free path can be
retrieved by applying an A* search algorithm, which leads
to the same drawbacks discussed above.

Another commonly used approach is to let the designers
explicitly describe the motion of the characters using, for ex-
ample, waypoint graphs. However, this is a labor intensive
process and cannot adapt well to changes in the environ-
ment, limiting its applicability. Furthermore, the method
is not very flexible, leading to repetitive behavior that can
easily destroy the suspension of disbelief of the player.

Compared to the previous approaches, reactive methods
can handle large dynamic environments providing enough
flexibility for the characters to avoid local hazards, such as
small obstacles and other moving entities. In general, reac-
tive steering is based on variants of potential field methods
[24]. However, the local nature of these methods gives no
guarantees on the resulting paths. The characters are run-
ning the risk of getting stuck in local minima and not being
able to reach their goals. This easily leads to deadlock situa-
tions that can only be resolved by rather unnatural motions,
such as characters moving through walls or (re)appearing at
different locations.

Path planning has recently also received a lot of attention
in the computer graphics and animation community. Many
models have been proposed to simulate individuals, groups
and crowds of characters, including agents-based methods
[22, 23], rule-based techniques [16, 17], (social) forces and
particle systems [2, 19, 7]. These approaches work well in
open environments and generate reasonable natural move-
ments. The main drawback is that the characters base their
decisions on local information and hence, they can easily get
stuck in cluttered environments.

To address this, local models have been combined with
global navigation techniques [1, 28, 13, 21, 26]. However,
these methods do not scale well to dynamic environments
with many characters. An alternative approach based on
continuum dynamics has been proposed by Treuille et al.
[30]. Although related to our research, their method sim-
ulates homogeneous groups of characters moving toward a
common goal. In contrast, we focus on independent charac-
ters that have distinct characteristics and goals.

Crowd simulation has also been extensively studied in civil
and traffic engineering and numerous models have been gen-
erated that exhibit emergent behaviors. The most popular
is the work of Helbing [9]. Helbing simulated the behav-
ior of pedestrians and traffic using physical forces. These
are closely related to the potential field methods mentioned
above and suffer from the same local-minima problems, be-
cause only local information is taken into account.

More recently, we have proposed the Corridor Map Method
(cmm) as a new path planning method in interactive vir-
tual worlds and games [5]. The intuition behind the cmm

is straightforward. In a preprocessing phase the medial
axis of the virtual environment is approximated (by exploit-
ing graphics hardware) and a high-quality roadmap is con-
structed. This roadmap, enhanced with clearance informa-
tion, defines the corridor map. When a character has to plan
its path to a specified goal position a so-called backbone path
is extracted from the corridor map together with a collision-
free corridor around it. Then, a potential field approach is
used to guide the local motion of the character inside the
corridor, providing the desired flexibility. In particular, an
attraction point moves along the backbone path and attracts
the character in such a way that no collisions occur with the
environment. The cmm has been successfully used to steer
in real-time thousands of characters that navigate through
complex virtual worlds, as well as to plan the motions of
coherent groups of characters [4].

Although the method is fast and flexible, it limits the
global behavior of the characters since the medial axis is
used for global navigation. This encourages the characters
to stay in the middle of the environment leading to unrealis-
tic behavior. Furthermore, the generated paths tend to look
unnatural when the characters have to avoid collisions with
small static obstacles and with each other (see Figure 1(a)).
The reason is that, due to the way the attraction point is de-
fined, an almost infinite force steers the character during the
simulation. Thus, the character has to be very close to an
obstacle to avoid it and only at the very last moment adapts
its motion, while in real-life people react much earlier.

1.2 Contributions
In this paper, we propose a general method for planning

natural paths, called the Indicative Route Method (irm),
which is applicable to a wide range of interactive applica-

(a) cmm leads to jerky paths

(b) irm leads to smoother paths

Figure 1: Obstacle avoidance inside corridors.

tions in computer games and virtual environments.
Our framework is inspired by the cmm, but provides more

flexibility to handle a broad range of path planning issues,
such as avoiding other characters and computing believable
paths. We introduce the notion of indicative routes to indi-
cate the global routes of the characters. This allows more
freedom in the global planning, as the characters no longer
have to follow the medial axis of the environment.

Given the indicative route of a character, we again form a
corridor around that path and move an attraction point to
steer the character toward its goal. We use, though, a dif-
ferent potential function to direct the character inside the
corridor, providing better control over the local motions.
Briefly, separate forces are applied to move the character
forward and keep it inside the corridor. Additional forces
are exerted to steer the character away from other charac-
ters, small obstacles and local hazards (see Figure 1(b) for an
example). Furthermore, we take into account random vari-
ations in the character’s behavior to increase the realism of
the simulation.

As we will show, our method is relatively easy to imple-
ment and can be used for real-time navigation of many mov-
ing characters in complex and dynamic environments. It is
fast, flexible and generates believable paths.

2. THE INDICATIVE ROUTE METHOD
In our problem setting, we are given a virtual environ-

ment, either 3D or 2D, in which a character has to move
from a start to a specified goal position without colliding
with the environment and other characters or dynamic ob-
stacles. For simplicity, we assume that the character moves
on a plane or a terrain and is modeled as a disc (cylinder in
3D) with radius r. At a fixed time t, the character is at po-
sition x(t), defined by the center of the disc, and moves with

velocity u(t) (hereafter, for notational convenience, we will
not explicitly indicate the time dependence). In addition,
the actual motion of the character is limited by a maximum
speed umax.

We propose a three-phase method to tackle the path plan-
ning problem. The first phase of our approach consists of
computing the so-called indicative route of the character.
The indicative route ΠIR is a path that runs from the start
(s) to the goal position (g) of the character and provides
an indication/rough estimation of the character’s preferred
route. The character should be able to traverse this path,
which means that the clearance at every point on the path
must be at least the radius r of the character. More formally,
the indicative route is a continuous map ΠIR ∈ [0, 1] → R

2,
such that ΠIR[0] = s, ΠIR[1] = g and ∀s ∈ [0, 1] : ΠIR[s] ∈
Cwalk. Cwalk denotes the walkable (free) space in the environ-
ment consisting of all placements where the character does
not intersect with the environment.

An indicative route could be indicated manually by a de-
signer using, for example, waypoints. Alternatively, one
could calculate the medial axis of the environment and ex-
tract a path with enough clearance. Another option is to
divide the environment into a coarse grid and search for an
appropriate path using A*-like approaches.

Note that the paths produced by these methods are in
general not natural. Natural paths typically follow smooth
curves, keep a preferred amount of clearance from obstacles,
avoid unnecessary detours, allow for variations and can be
easily adapted, if additional constraints (like avoiding other
characters) impose this.

Therefore, the character should not traverse exactly the
indicative route, but rather use it as a guide to plan its final
motion. The second phase will allow for this by creating a
corridor around that route, where the character can move
without colliding with the environment. The corridor keeps
the character’s path in the same homotopic1 class as the in-
dicative route, providing at the same time enough flexibility
for the character’s local movements. Section 3 enunciates
this phase.

In the third phase of our approach the path Πf of the
character is extracted from the corridor using a potential
field approach. In particular, we move an attraction point
along the indicative route and apply (social) forces to guide
the character’s motion through the corridor. This leads to
a high-quality path as discussed in Section 4.

The specific choice of the indicative route is application
and character dependent and falls outside the scope of this
paper. Hence, for the rest of the paper we assume that the
indicative route of the character is given and we will mainly
focus on the other two phases of our proposed method. How-
ever, in Section 5 we will give an example of how indicative
routes can be obtained for crowd simulation.

3. COMPUTING CORRIDORS
In this section we extend the indicative route to form a

corridor in which the character can move freely. We first
outline the basic aspects of the corridor map structure, in-
troduced in [5] as an efficient data structure that represents
the walkable (free) space of the environment and provides

1Two paths Π0 and Π1, with endpoints fixed, are said to be
homotopic only if one path can be continuously transformed
into the other without intersecting any obstacles.

a network of collision-free corridors. Then, we explain how
the corresponding corridor of an indicative route can be effi-
ciently computed given the corridor map of the environment.

3.1 The Corridor Map
The corridor map is an enhanced graph G = (V, E) whose

edges represent collision-free corridors. These corridors are
extracted from the Generalized Voronoi Diagram (gvd) or
medial axis of the environment.

The gvd decomposes the free space of the environment
into regions, such that all points in a region are closer to
a particular obstacle than to any other obstacle in the en-
vironment. Such a region is called a Voronoi region. The
boundaries of the Voronoi regions (Voronoi edges) maintain
a maximum clearance from the obstacles and define the so-
called backbone paths of the corridor map. Together, the
backbone paths form the skeleton (i.e. the underlying graph)
of the map. See Figure 2 for an example of a virtual city,
its footprint and the skeleton defining the corridor map.

The skeleton of the map is densely sampled and for each
sampled point, the radius of the largest empty disc centered
at this point is stored. A corridor C = (B[s], R[s]) can then
be defined as a sequence of maximum clearance discs with
radii R[s] whose center points B [s] lie along the backbone
path B. The parameter s is an index ranging between 0 and
1. We refer the reader to Figure 2(c) for an example of a
corridor.

Each sampled point on the skeleton is also enhanced with
its set of closest obstacle points. This allows us to obtain
an explicit representation of the corridor’s boundary. Such
an explicit description is needed to accurately compute the
boundary force that is exerted on a character (see Section
4.1).

The corridor map can be efficiently constructed by exploit-
ing graphics hardware as proposed in [6]. Note that the map
is created only once during the preprocessing phase. Hence,
it does not impose any limitations on the performance of the
path planner.

3.2 Retraction and Corridor Construction
The corridor map provides a system of collision-free cor-

ridors whose backbone paths lie on the medial axis. Thus,
to create a corridor around the indicative route, we retract
that route onto the medial axis and then retrieve the corre-
sponding corridor from the corridor map structure.

Up to now we referred to the character’s indicative route
as a continuous path. However, such a continuous represen-
tation does not allow for an efficient/easy retraction of the
route onto the medial axis. Hence, a discrete representation
will be used. This can be obtained by dividing the route into
a series of n adjacent points π0 . . . πn−1, where the distance
d(πi, πi−1) is at most a predetermined step size.

To retract a point p of a discrete path onto the medial
axis, we need to find its closest obstacle point cpo and then
move p toward the −−→cpop direction until the closest obstacle
point changes [18]. From the corridor map structure we
already know the points that lie on the medial axis, as well
as their corresponding closest obstacle points. Thus, the
problem delegates to retrieve the edge in the corridor map
and the point p′ on this edge so that the distance between
p and the line connecting p′ and its closest obstacle point
becomes minimal. This can be efficiently implemented using

(a) 3D Environment[10] (b) Skeleton of the corridor map (c) Backbone path and its corridor

Figure 2: The McKenna MOUT training site at Fort Benning, Georgia, USA.

a kd-tree data structure.
Consequently, a simple approach to retract the indicative

route of the character would be to query the kd-tree for
every point of the route. However, this is a rather time-
consuming process. A more efficient solution is the following.
Suppose that the corridor map edge e and the retracted
point corresponding to the start position of the character
(i.e. the π0) have been retrieved from the kd-tree. Let us
also assume that the indicative route moves along that edge
toward a vertex ν in the graph. Then, for each point πi :
i ∈ [1, n − 1] we only have to search for its retracted point
along the current edge. This can be easily achieved using
simple geometric calculations. If the retracted point reaches
the end of the edge at vertex ν, we query the outgoing edges
of ν and retrieve the new Voronoi edge from the corridor
map. The procedure continues until all the points of the
indicative route are retracted onto the medial axis.

The resulting backbone path is then used to define the
corridor of the character’s indicative route. As an exam-
ple, consider Figure 3(b). It depicts the backbone path and
its corresponding corridor for the indicative route shown in
Figure 3(a). The method is very fast. Retracting this route
took 0.21 ms on a Pentium IV 2.4 ghz.

4. LOCAL NAVIGATION IN IRM
Once the corridor has been created, the character plans

its final path using a force field approach. Several forces are
defined that act on the character and influence its move-
ment. First, the character must stay inside the corridor and
hence, a repulsive force pushes the character away from the
boundary of the corridor. Second, a steering force advances
the character toward its goal. Third, a noise force allows for
random variations in the character’s path. Finally, a repul-
sive force is exerted on the character to avoid collisions with
static and dynamic obstacles, as well as other characters.

4.1 The Boundary Force
To ensure that the character remains inside the corridor, a

repulsive force Fb from the boundary of the corridor toward
the character is applied. Since an individual prefers to keep
a safe distance from walls, streets, buildings, etcetera [27,
29], such a force is only exerted if the Euclidean distance db

between the character at position x and its corresponding
closest point on the boundary of the corridor b(x) is below

a threshold value. Let r be the radius of the character and
let ds denote the preferred safe distance. Then, the force is
defined as follows:

Fb =

cb

x− b(x)

‖x − b(x)‖
, if db − r < ds

0 otherwise.

(1)

The scalar cb =
ds + r − db

(db − r)κ
is chosen such that the force

will become infinite when the character and the boundary
point touch, whereas the constant κ indicates the steepness
of the repulsive potential. By modifying the safe distance ds

a wide variety of behaviors can be achieved. For example,
a small safe distance allows the character to get close to
obstacles, whereas a large one makes the character stay in
the middle of the corridor.

However, to guarantee that in any step of the simulation
the character will not collide with the environment, a lower
bound on the safe distance is set based on the character’s
maximum speed umax. In addition, to avoid oscillations, an
upper bound is also determined by taking into account the
minimum clearance Rmin of the corridor. Thus, the set of
admissible safe distances D for the character is defined as:

D =
{

ds

∣

∣umax∆t < ds < Rmin − r
}

, (2)

where ∆t denotes the time step size of the simulation.

4.2 The Steering Force
While the boundary force keeps the character inside the

corridor, an additional force is needed to guide the character
forward toward its goal position. For this purpose, we move
an attraction point along the indicative route of the charac-
ter. Based on this attraction point, a steering force Fs is
generated that steers the character positioned at x toward
the attraction point pα(x). Let cs be a constant specifying
the relative strength of the force. Then, Fs is given by:

Fs (x) = cs
pα(x) − x

‖pα(x) − x‖
(3)

4.3 Choosing an Attraction Point
To advance the character along its indicative route, the

chosen point of attraction is of paramount importance. In
every cycle of the simulation the attraction point should

(a) Indicative route (b) Retraction and corridor (c) Final path

Figure 3: The Indicative Route Method.

b(x)

∂K

pα(x)

ΠIR

B[s]

x

B

Figure 4: The attraction point pα(x) for the charac-

ter positioned at x.

steer the character toward its goal, ensuring at the same
time that it does not get stuck in local minima.

Let x be the current position of the character, B[s] denote
its corresponding (retracted) point on the backbone path
and K(B[s], R[s]) be the largest clearance disk with radius
R[s] centered at B[s], where s : s ∈ [0, 1].

Then, the attraction point pα(x) can be defined as the
furthest point on the character’s indicative route ΠIR that
still intersects the boundary ∂K of the clearance disc K (see
Figure 4):

pα(x) = ΠIR

(

arg max
s′∈(s,1]

{

ΠIR[s′] ∩ ∂K 6= ∅
}

)

(4)

Such an intersection point always exists, since there is a
one-to-one mapping between the character’s indicative route
and the backbone path. In general, it can be easily shown
that if the number of intersection points is odd, the charac-
ter’s goal lies inside the clearance disc and thus, it is used to
attract the character. If an even number of points intersects
the clearance disc, selecting the one with the largest index
drives the character forward toward its goal.

This intersection point lies always ahead of the character,
i.e. ‖pα(x) − x‖ > 0, and hence, the magnitude of the
steering force Fs is always larger than zero (except when
the goal position is reached). In addition, the intersection
point can never be located on the closest boundary point
b(x) corresponding to the character’s current position, since
we require the clearance at every point along the indicative
route to be at least the radius r of the character. Therefore,

the boundary force Fb does not cancel out the steering force
Fs and consequently Fs + Fb 6= 0. The latter guarantees
that, in the absence of any local hazards, a path to the goal
will always be found.

4.4 Path Variation
To take into account random variations in the paths that

the characters follow and generate a (slightly) different path
every time the same path planning problem has to be solved,
a noise force Fn is also introduced in our model. Like in [11],
we use a Perlin noise [20] function to control the direction
of the force, ensuring that it changes smoothly during the
simulation. In our problem setting, Perlin noise is imple-
mented as a function over time. The current time step of
the simulation is given as an input and a direction for the
force is returned that varies pseudo-randomly. Let θ denote
this direction, expressed as an angle of rotation around the
current steering vector. Then, the noise force is defined as:

Fn (x) = cn R(θ)
pα(x) − x

‖pα(x) − x‖
, (5)

where R(θ) represents the 2D rotation matrix and pα(x) is
the attraction point of the character positioned at x.

The constant cn specifies the relative strength of the force.
It must be small with respect to the magnitude of the steer-
ing force, whereas θ ∈ [−π/2, +π/2]. As a result, the char-
acter retains its steering direction while at the same time
performs small random displacements. However, care should
be taken not to vary the direction of the force (i.e. the noise
function) too frequently. A low frequency leads to smooth
movements, whereas a relatively high frequency generates
erratic and unusable behavior.

4.5 Avoiding Obstacles
Although the corridor provides a collision-free area around

the control path, the character may still have to avoid a
number of obstacles while moving inside the corridor. Such
obstacles can either be small static obstacles that were not
taken into account when the corridor map was created or
dynamic obstacles, such as other characters and moving en-
tities. Thus, an additional collision response force has to be
applied.

Let O ∈ R
2 denote a set of n obstacles that the character

needs to avoid, while planning its motion inside the corridor.
Every obstacle Oi : i ∈ [1 : n] exerts a repulsive force, which

in its simplest form is monotonically decreasing with the
Euclidean distance di between the obstacle and the character
at position x. Such a force is only applied if the character
lies inside the influence region of the obstacle defined by do,
that is, if di − ri − r ≤ do, where r is the radius of the
character and ri the radius of the obstacle. Let kr be a
parameter used to scale the effect of the repulsive force on
the character. Then, the total obstacle avoidance force Fo

that acts on the character can be described by:

Fo (x) =

n
∑

i=1

co

x − Oi

‖x − Oi|
, where co =

kr

di − ri − r
(6)

Figure 1(b) shows an example path created by our method,
using the medial axis as the indicative route of the character.
The repulsive potential described above has been applied to
avoid a number of static obstacles inside the extracted cor-
ridor. Clearly, the resulting path is more natural than the
path produced by the cmm (Figure 1(a)).

Although we do not distinguish between static and dy-
namic obstacles, the problem becomes more challenging when
many characters populate the virtual environment. There-
fore, more elaborate avoidance approaches can be used to
e.g. simulate crowds, like the models proposed in [8, 9].

4.6 Time Integration and Final Path
Given the applied forces, the final force F exerting on the

character at position x is defined as:

F (x) = Fs (x) + Fb (x) + Fn (x) + Fo (x) (7)

The force F results in an acceleration term as described by
Newton’s second law of motion, i.e. F = ma, where m is
the mass of the character and a its acceleration. Assuming
m = 1, the position of the character at time t is computed
by integrating the equation of motion, that is

d2(x(t))

dt2
= F(x(t)) (8)

Any numerical integration scheme, such as Euler’s method,
can be used to solve this differential equation. However,
since we are dealing with forces that have widely different
scales and can vary quickly, a stable integration scheme like
Verlet integration [31] is recommended. To retain stability
and avoid stiffness a relatively small time step size ∆t should
also be preferred.

The final path Πf of the character can then be obtained
by iteratively integrating F over time, while updating the
character’s position, velocity, and attraction point. As an
example consider Figure 3(c). It displays a smooth (i.e. C1-
continuous) path that was generated by applying the above
mentioned integration scheme.

5. CROWD SIMULATION IN IRM
Up until now, we have assumed that the indicative route

of a character is provided by the level designer. However,
if we want to steer crowds of characters, this process would
be inefficient and time consuming. Thus, to facilitate the
creation and extraction of indicative routes we introduce the
notion of indicative networks.

An indicative network IN = (V, E) is a roadmap of paths
that can be used to lead the characters toward their goals.
Each vertex ν ∈ V of the network corresponds to a collision-
free point in a 2D or 3D workspace, whereas each edge e ∈ E

corresponds to an indicative route Πe that a character can
follow. Such a network is constructed in a pre-processing
phase.

In practice, any roadmap graph that captures the connec-
tivity of the free space is suited for guiding the motions of
the characters. For example, we can use the medial axis
itself to encourage the characters to stay in the middle of
the environment. We can also compute an indicative net-
work based on the Voronoi-Visibility diagram [32], allowing
characters to take shortcuts when there is enough clearance.

Alternatively, an indicative network can be determined
manually by the level designer, to encourage certain behav-
ior, e.g. characters that prefer to stay on the sidewalks of
a road. The network should be flexible enough so that the
designer can easily manipulate it by adding, changing, or
removing indicative routes.

Given an indicative network, created in a preprocessing
phase, the indicative route of the character is extracted from
the network as follows. We first connect the start position s
of the character to the network. This can be done by adding
an edge between the start position and the closest visible
point that lies on one of the local routes Πe of the network.
We proceed in the same way for the goal position g of the
character. Then, we run an A* shortest path algorithm
on the network graph to retrieve the character’s indicative
route. Given this route, we can now use the irm method to
compute the path of the character.

Since we are dealing with many moving characters, we
have to choose a more realistic collision avoidance approach
than the one described in Section 4.5, so that the characters
can evade each other naturally. Therefore, we use part of
the social force model proposed by Helbing and Molnar in
[9] and known to exhibit emergent crowd behavior.

In their model, every character has its own personal space,
which is defined as an ellipse directed toward the character’s
motion. As soon as a character steps into the personal space
of another character, a repulsive force is acted from the latter
to the former, ensuring that they will avoid each other in a
human-like manner.

For computing the repulsive forces, we have to know/find
the neighbors of each character. Since this operation is per-
formed many times, an efficient data structure for answering
nearest neighbors queries has to be implemented. For ex-
ample, a spatial hash data structure or a 2D grid map that
stores and updates at every simulation step the locations of
the characters can be employed [26, 6].

6. EXPERIMENTS
We have implemented our proposed irm to experimentally

test its effectiveness and applicability in real-time applica-
tions. All the experiments were performed on a pc running
Windows xp, with a 2.4 ghz Intel Core2 Duo cpu and 2 gb

memory.
The experiments were conducted for the environment de-

picted in Figure 5(a). This is a model of a virtual city. The
city measures 500x500 meter. Its geometry is composed of
220K triangles, while its 2d footprint, displayed in Figure
5(b), consists of 2122 triangles. An indicative network was
used for the extraction of the indicative routes.

In our simulations we used Verlet integration with a small
step size ∆t = 0.1 to keep the errors minimal. The maximum
speed of a character was set to 1.4 m/s [12] (umax = 1.4),
its radius to 0.25 cm (r = 0.25) and its safe distance from

(a) 3D Model (b) Footprint (c) 2000 paths generated by the
IRM

Figure 5: The City environment.

the boundaries of the corridors to 2.0 m (ds = 2).

6.1 Results and Discussion
To test the performance of our method, we selected a vary-

ing number of characters and placed them randomly in the
city environment. Each character had to advance toward a
random goal position. When it had reached its destination,
a new goal was assigned. See Figure 5(c) for an example.

We performed experiments for up to 5,000 characters and
set the maximum number of simulation steps to one thou-
sand. We measured the cpu-load as the amount of cpu time
that is required to generate one second of characters’ move-
ments, that is cpu-load = total cpu time

avg traversed time
∗ 100%. Bearing

in mind that in virtual environment applications, such as
computer games, only a small fraction of processor time is
scheduled to the path planner, we considered the perfor-
mance as real-time when the cpu-load was at most 30%.

During our benchmark, the scene and character rendering
was disabled, as our goal was to analyse the path planning
cost of the irm. Note that due to our current implementation
only one cpu core was used for path computation. The
results are shown in Figure 6.

As an example, consider the processor usage that was
needed for 1,000 characters. On average, it took 7.25 ms
to compute a character’s path. The average time to tra-
verse all the resulting paths was 118 s. Hence, 61.5 ms per
second traversed time were required to simultaneously steer
the characters, which implies a cpu-load of 6,15%.

As the figure indicates, approximately 3,500 characters
can be simulated in real-time. In addition, the cpu-load
scales almost linearly with the number of characters. Even
for 5,000 characters our method can efficiently plan paths
at interactive rates requiring less than 55% of the processor
power. We conclude that the irm can be used for real-time
path planning of a large number of characters.

Besides the performance, we are also interested in the
quality of the paths generated by the irm. As can be seen
from Figure 1, the quality of the resulting paths is much
better than using the cmm method.

We refer the reader to http://people.cs.uu.nl/ioannis/irm
for the results we obtained in simulating crowds. As we used
part of the Helbing’s social force model for the local interac-
tion of the characters, we also observed the phenomenon of
lane formation that is widely noted in pedestrian literature.
However, an artifact of this model is that the characters

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

C
p

u
 L

o
a

d
 %

Number of Characters

Figure 6: The performance of the IRM on the

crowd-simulation scenario.

tend to adapt their motions rather late in order to evade
a potential collision. Such behavior is visible in, basically,
all crowd simulation solutions available today. In the irm,
though, it is easy to incorporate other local methods, which
we are currently investigating.

In addition, using corridors, our framework can be easily
extended to capture a wide variety of crowd characteristics.
For example, we can include in our simulations coherent
groups of characters or characters that wander through a
virtual environment without any specific goal [4].

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a new method for high-

quality path planning, the indicative route method (irm).
In the irm, an indicative route directs the global motion of
the character, whereas a potential field approach is used to
guide the character through a corridor around this route.

We have experimentally shown that our method can be
used to plan in real-time high quality paths for a large num-
ber of characters in complex and dynamic environments. It
is relatively easy to implement and is flexible enough to in-
corporate many additional constraints.

Inspired by our current research, we believe that the irm

has a lot of potential and can form the basis for further
research. We currently work on techniques to automatically
create networks of indicative routes. To facilitate this, we
plan to exploit existing video recordings and motion capture
data to understand how people solve a typical path planning
problem in real life.

We also want to incorporate the notion of influence regions
into our path planner, so that the characters can adapt their
indicative routes based on local information. Such regions
can either be dangerous places the characters prefer to avoid
or appealing locations they would like to visit.

8. ACKNOWLEDGMENTS
This research has been supported by the gate project,

funded by the Netherlands Organization for Scientific Re-
search (nwo) and the Netherlands ict Research and Inno-
vation Authority (ict Regie).

9. REFERENCES

[1] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better
group behaviors in complex environments using global
roadmaps. In ICAL 2003: Proceedings of the eighth
international conference on Artificial life, pages
362–370, Cambridge, MA, USA, 2003. MIT Press.

[2] O. Cordeiro, A. Braun, C. Silveira, S. Musse, and
G. Cavalheiro. Concurrency on social forces simulation
model. In Proc. First International Workshop on
Crowd Simulation (V-Crowds’05), 2005.

[3] M. DeLoura. Game Programming Gems 1. Charles
River Media, Inc., 2000.

[4] R. Geraerts, A. Kamphuis, I. Karamouzas, and M. H.
Overmars. Using the corridor map method for path
planning for a large number of characters. In Motion
in Games, First International Workshop, MIG 2008,
Utrecht, The Netherlands. Revised Papers, pages
11–22. Springer-Verlag, 2008.

[5] R. Geraerts and M. Overmars. The corridor map
method: A general framework for real-time
high-quality path planning. Computer Animation and
Virtual Worlds, 18:107–119, 2007.

[6] R. Geraerts and M. Overmars. Enhancing corridor
maps for real-time path planning in virtual
environments. In Computer Animation and Social
Agents, pages 64–71, 2008.

[7] L. Heigeas, A. Luciani, J. Thollot, and N. Castagné. A
physically-based particle model of emergent crowd
behaviors. In Graphicon, 2003.

[8] D. Helbing, I. Farkas, and T. Vicsek. Simulating
dynamical features of escape panic. Nature,
407(6803):487–490, 2000.

[9] D. Helbing and P. Molnar. Social force model for
pedestrian dynamics. Physical Review E,
51:4282–4286, 1995.

[10] M. Inc. Metavr real-time pc-based 3d visual
simulation. http://www.metavr.com (Accessed
February 18, 2009).

[11] I. Karamouzas and M. H. Overmars. Adding variation
to path planning. Computer Animation and Virtual
Worlds, 19(3-4):283–293, 2008.

[12] R. Knoblauch, M. Pietrucha, and M. Nitzburg. Field
studies of pedestrian walking speed and start-up time.
Transportation Research Record, 1538:27–38, 1996.

[13] F. Lamarche and S. Donikian. Crowd of virtual
humans: a new approach for real time navigation in
complex and structured environments. Computer
Graphics Forum, 23:509–518, 2004.

[14] J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.

[15] S. M. LaValle. Planning Algorithms. Cambridge
University Press, 2006. Also available at
http://planning.cs.uiuc.edu/.

[16] C. Loscos, D. Marchal, and A. Meyer. Intuitive crowd
behaviour in dense urban environments using local
laws. Theory and Practice of Computer Graphics,
2003.

[17] S. R. Musse and D. Thalmann. Hierarchical model for
real time simulation of virtual human crowds. IEEE
Transactions on Visualization and Computer
Graphics, 7(2):152–164, 2001.

[18] C. Ó’Dúnlaing, M. Sharir, and C. Yap. Retraction: A
new approach to motion planning. In ACM Symposium
on Theory of Computing, pages 207–220, 1983.

[19] N. Pelechano, J. M. Allbeck, and N. I. Badler.
Controlling individual agents in high-density crowd
simulation. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, pages 99–108, 2007.

[20] K. Perlin. An image synthesizer. Computer Graphics,
19(3):287–296, July 1985. Proc. of SIGGRAPH ’85.

[21] J. Pettré, P. de Heras Ciechomski, J. Mäım, B. Yersin,
J.-P. Laumond, and D. Thalmann. Real-time
navigating crowds: scalable simulation and rendering.
Computer Animation and Virtual Worlds,
17(3-4):445–455, 2006.

[22] C. W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21(4):25–34, 1987. Proceedings of SIGGRAPH ’87.

[23] C. W. Reynolds. Steering behaviors for autonomous
characters. In Proc. of Game Developers Conference,
pages 763–782, San Jose, California, 1999.

[24] E. Rimon and D. Koditschek. Exact robot navigation
using artificial potential fields. IEEE Transactions on
Robotics and Automation, 8:501–518, 1992.

[25] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 1994.

[26] W. Shao and D. Terzopoulos. Autonomous
pedestrians. Graphical Models, 69(5-6):246–274, 2007.

[27] P. Stucki. Obstacles in pedestrian simulations.
Master’s thesis, Swiss Federal Institute of Technology
ETH, 2003.

[28] M. Sung, M. Gleicher, and S. Chenney. Scalable
behaviors for crowd simulation. Computer Graphics
Forum, 23(3):519–528, 2004.

[29] Transportation Research Board, National Research
Council, Washington, D.C. Highway Capacity Manual,
2000.

[30] A. Treuille, S. Cooper, and Z. Popović. Continuum
crowds. ACM Trans. Graph., 25(3):1160–1168, 2006.

[31] L. Verlet. Computer Experiments on Classical Fluids.
I. Thermodynamical Properties of Lennard-Jones
Molecules. Physical Review, 159(1):98+, July 1967.

[32] R. Wein, J. Berg, and D. Halperin. The
Visibility-Voronoi complex and its applications. In
Annual Symposium on Computational Geometry,
pages 63–72, 2005.

