
Using the Corridor Map Method for

Path Planning for a Large Number of Characters

Roland Geraerts, Arno Kamphuis, Ioannis Karamouzas, and Mark Overmars

Institute of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, the Netherlands

roland@cs.uu.nl

Abstract. A central problem in games is planning high-quality paths for
characters avoiding obstacles in the environment. Current games require
a path planner that is fast (to ensure real-time interaction) and flexible
(to avoid local hazards). In addition, a path needs to be natural, meaning
that the path is smooth, short, keeps some clearance to obstacles, avoids
other characters, etcetera.

Game worlds are normally populated with a large number of characters.
In this paper we show how the recently introduced Corridor Map Method
can be extended and used to efficiently compute smooth motions for these
characters.Wewill consider crowds inwhich the characterswander around,
characters have goals, and characters behave as a coherent group.

The approach is very fast. Even in environments with 5000 characters
it uses only 40% of the processing power of a single core of a cpu. Also
the resulting paths are indeed natural.

1 Introduction

One of the main challenges of applications dealing with virtual environments is
path planning for characters. These characters have to traverse from a start to
a goal position in the virtual world without colliding with obstacles and other
characters. In the past twenty years, many algorithms have been devised to tackle
the path planning problem [1,2]. These algorithms were mainly developed in the
field of robotics, aiming at creating a path for one or a few robots having many
degrees of freedom. Usually, much cpu time was available for computing a nice
path, which often meant a short path having some clearance to the obstacles,
because a bad path could be expensive to traverse, and could damage the robot
or environment.

While these algorithms were successfully applied in fields such as mobile
robots, manipulation planning and human robot planning [1], current virtual
environment applications, such as games, pose many new challenges to the algo-
rithms. That is, natural paths for many characters traversing in the ever growing
environments need to be planned simultaneously and in real-time. Consequently,
only a (fraction of a) millisecond per second cpu time may be spent per char-
acter for computing the natural path (i.e. a path that is smooth, short, keeps
some clearance to obstacles, avoids other characters, etcetera).

A. Egges, A. Kamphuis, and M. Overmars (Eds.): MIG 2008, LNCS 5277, pp. 11–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 R. Geraerts et al.

In conclusion, current virtual environments require a fast flexible planner
which can generate natural paths. A candidate for the flexible planner is a Po-
tential Field method [3], because it can be used to evade characters and to create
smooth paths. Due to the method’s local behavior, it will not always find a path.

Roadmap based methods, such as Visibility graphs [1], Probabilistic Roadmap
Methods [2], and the A* method operating on a graph-like grid [4], can usually
ensure that a path can be found if one exists. However, they lack flexibility
because they output a fixed path (extracted from a one-dimensional graph). In
addition, the paths are unnatural. While some optimization algorithms exist,
they are too slow to be applied in real-time [5].

Recently, the Corridor Map Method (cmm) has been proposed, which satisfies
the requirements mentioned above [6]. The cmm directs the global motions of a
character traversing a corridor. Such a corridor is extracted from the corridor
map which is a graph with clearance information. Local motions are controlled
by potential fields inside a corridor, providing the desired flexibility.

In this paper, we show how the cmm can be used to simultaneously plan the
motions of a large number of characters in real-time. To this end, we first, in
Section 2, indicate how to create high-quality corridor maps and how to extract a
path efficiently. Next, in Section 3, to obtain more natural motions, we introduce
variations in the local behavior of the characters. In particular, we will give a
simple approach to get natural lane formation. Also, in Section 4, we describe
how the characters can avoid each other. Based on this we introduce in Section 5
two ways of modeling large crowds. The first method uses goal oriented behavior
by repeatedly planning paths for the individual characters. The second method
uses the corridor map itself to create wandering behavior. Finally, in Section 6, we
show how we can plan the motions of coherent groups of characters. Experiments
show that we can plan the simultaneous motions of thousands of characters in
real-time making the cmm favorable over common A* techniques.

2 The Corridor Map Method

The Corridor Map Method (cmm) consists of an off-line construction phase and
an on-line query phase [6]. These two phases are visualized in Fig. 1.

In the construction phase, a corridor map is created, representing the free space
(i.e. the space that is not occupied by the static obstacles) of the environment. The
skeleton of the corridors is a graph. We refer the reader to Fig. 1(a) for an example.

A corridor consists of a backbone path and a set of balls centered around this
path. A corridorB = (B[t], R[t]) is defined a sequence of maximum clearance balls
with radii R[t] whose center points B[t] lie along its backbone path B. The param-
eter t is an index ranging between 0 and 1, and B is defined as a list of coordinates.

In the query phase, we connect the start and goal position of the character
(modeled by a ball with radius r) to the graph and find the shortest backbone
path in the graph connecting these positions. From the map, we now extract

Using the CMM for Path Planning for a Large Number of Characters 13

(a) Corridor map (b) Corridor and query (c) Path

Fig. 1. The construction phase (a) and the query phase (b,c) of the cmm

a corridor which is formed by concatenating the corridors corresponding to the
edges being part of this path. These steps sre visualized in Fig. 1(b).

While the corridor guides the global motions of the character, its local motions
are led by an attraction point, α(x), moving on the backbone path of the corridor
toward the goal. The attraction point is defined such that making a step toward
this point leads the character, located at position x, toward the goal.

The attraction point attracts the character with force Fa. Let d be the Eu-
clidean distance between the character’s position and the attraction point α(x).
Then Fa(x) = f α(x)−x

||α(x)−x|| , where f = 1
R[t]−r−d − 1

R[t]−r . The scalar f is chosen
such that f is 0 when the character is positioned on the attraction point. In
addition, f is ∞ when the character touches the ball’s boundary.

Additional behavior can be incorporated by adding extra forces to Fa, re-
sulting in a force F. The final path is obtained by iteratively integrating F over
time while updating the velocity, position and attraction point of the character.
In [6], it is proved that the resulting path is smooth (i.e. C1-continuous). An
example of such a path is displayed in Fig. 1(c).

2.1 Creating High-Quality Corridor Maps

An important impact on the quality of the paths is the quality of the corridor
map. In [7], we described an approach to create high-quality maps. The corridors
of the map were extracted from the Generalized Voronoi Diagram (gvd) [8].

Using the gvd as basis for the map has three main advantages. First, if a path
exists in the free space then it can always be found (because the gvd is a complete
representation of the free space). Second, a gvd includes all cycles present in
the environment. These cycles provide short global paths and alternative routes
which allow for variation in the characters’ routes. Third, corridors extracted
from the gvd have a maximum clearance. Such a corridor provides maximum
local flexibility.

14 R. Geraerts et al.

(a) Environment (b) Footprint and corridor map

Fig. 2. The City environment. While its geometry is three-dimensional, its footprint
(used for generating the corridor map) is only two-dimensional.

To keep the map small and to improve the running times in the query phase,
we sampled the corridors such that the coverage of the free space was still large
while the efficiency in the query phase was high.

As an example, consider Fig. 2 which shows our test environment. The city
measures 500x500 meter. Its geometry, displayed in Fig. 2.1, is composed of 220K
triangles. Using this number of triangles will lead to a low performance. Instead,
we used its footprint (2,122 triangles) to generate the corridor map, see Fig. 2.1.
This took 0.64 seconds on a pc with a nvidia GeForce 8800 gtx graphics
card and an Intel Core2 Quad cpu (2.4 ghz) with 4 gb memory. (While this
processor has four cpu’s, our application, implemented in Visual c++ and
run under Windows xp, used only one core.) The map comprised 1,434 ver-
tices, 1,606 edges and 25,863 samples (i.e. the total number of balls in all
corridors).

2.2 Fast Extraction of a Corridor

In [7], we elaborated on how to facilitate efficient extraction of corridors and
paths. We showed that the average extraction time for a corridor (excluding the
times for finding the shortest backbone path and connecting the query) was 0.87
ms in the City environment. (We took the average of 10,000 random corridors.)

We looked at two different algorithms for finding the shortest corridor en-
closing the query. Experiments showed that Dijkstra’s algorithm increased the
time by 138.2% while A* increased the time by only 11.5%. Then, we looked
at two different approaches for connecting a query to the corridor map. Using
linear search increased the time by 59.7% while using a search structure based
on a kd-tree only increased the time by 1.0%. In conclusion, by using A* and a
kd-tree, the average extraction time of a corridor was low, i.e. 1.19 ms.

Using the CMM for Path Planning for a Large Number of Characters 15

2.3 Fast Extraction of a Path

We wanted to know how fast we could compute a path. We extracted 10,000
paths in the City environment and recorded the average running time.
Experimental results showed that computing a path took 1.8 ms (including the
1.19 ms for computing a corridor). To view this result in the right perspective,
we defined the cpu-load. That is, the cpu-load is the total cpu time / averaged
traversed time ∗ 100%. Since the averaged traversed time of a character (walking
at 1.2 m/s) was 260 seconds, the cpu-load is 0.00069%. Hence, the cmm can be
used for steering many characters simultaneously. This will be discussed further
in Section 5 and 6.

3 Path Variation

The original cmm can be easily extended to create high-quality alternative paths
that a character can follow within a corridor. This not only presents a more
challenging and less predictable opponent for the player, but also enhances the
realism of the gaming experience.

To generate slightly different paths every time the same path planning prob-
lem has to be solved, a random force (bias) is added to the attractive force Fa. A
coherent-noise function like Perlin Noise [9] can be used to control the direction
of the bias, ensuring that it will change smoothly at every step of the integration.

In our problem setting, Perlin Noise is implemented as a 2D function. The
current attraction point α(x) is given as an input and a direction for the bias is
computed which varies pseudo-randomly. Let θ denotes this direction expressed
as an angle of rotation with respect to the current attractive vector, i.e. α(x)−x.
Then, the random force can be defined as:

Frand = crand R(θ)
α(x) − x

||α(x) − x|| ,

where crand is a small constant specifying the relative strength of the force, R(θ)
represents the 2D rotation matrix and the angle θ ∈ [−π/2, +π/2].

The quality of the computed path is affected by the frequency of the noise
function. A too high frequency noise leads to the retrieval of unrealistic paths,
since the character will change its direction at almost every successive time
step. On the contrary, a low frequency results in smooth changes, generating
aesthetically pleasant paths like the ones depicted in Fig. 3.

As individuals usually show a preference for certain paths over others, deter-
ministic variations of paths are also necessary to simulate behaviors that have
been widely noted in the crowd and pedestrian literature.

For example, lanes can be formed on either side of the corridor by exert-
ing at every time step a force perpendicular to the attractive force, hence θ ∈
{−π/2, +π/2}. A positive angle steers the character to the left of the backbone
path, whereas a negative one to the right. The perpendicular force is defined as:

Fperp = cperp R(θ)
α(x) − x

||α(x) − x|| ,

16 R. Geraerts et al.

(a) 100 random paths (b) Lane formation inside
the corridor

(c) Following a shorter and
more direct path

Fig. 3. Generating high-quality alternative paths using the cmm

where cperp = k R[t]−2r
d and k is a constant used to specify how close to the

boundary of the corridor the character moves.
We refer the reader to Fig. 3 for a graphical representation of the described

technique. Different left/right paths are computed by varying the value of the
constant k.

Another example, resulting in a more natural and visually interesting move-
ment, is to generate paths that either take tight or wide corners. In this approach
the direction of the backbone path is used to bias the character’s motion [10].
The character looks intelligent, in the sense that it anticipates the direction of
the path it has to follow and starts to turn in advance. A convincing path is
computed as can be examined in Fig. 3.

3.1 Results

We implemented the presented approaches to test their applicability in real-time
applications like computer games. Since the proposed methods can be computed
efficiently, which was experimentally confirmed in [10], they influence the run-
ning time of the algorithm marginally. Consequently, alternative paths can be
computed in real-time.

Apart from the performance, we are also interested in the quality of the resulting
paths. Experiments in [10] have indicated that our proposed techniques can suc-
cessfully generate alternative routes that are aesthetically pleasant to the observer.

The first method uses a noise function to generate slightly different paths in
response to a given query. As expected, the computed paths have almost the
same clearance and length as the smooth path computed by the original cmm.

The second method forms different lanes on either side of the extracted corri-
dor. Although the computed paths can get close to the boundary of the corridor,
they still keep a safe amount of clearance. In addition, no significant difference
in the length of the paths is observed.

In the third method the character takes shortcuts through the turns of the
backbone path, trying to avoid any unnecessary detour and minimize the time
needed to reach its goal. Thus, a shorter and more direct path is generated.

Using the CMM for Path Planning for a Large Number of Characters 17

In conclusion, our techniques extend the basic functionality of the cmm by cre-
ating in real-time high-quality alternative paths. Combined with existing agent-
based models the proposed methods lead to convincing characters that exhibit
human-like path planning as discussed below.

4 Obstacle Avoidance

When we are dealing with more than one character, we have to choose an ap-
propriate force such that characters evade each other naturally.

We use a part of Helbing and Molnár’s social force model for collisions avoid-
ance because their simulations have shown that it exhibits realistic crowd
behavior [11]. The model describes three force functions which represent the
acceleration toward the desired velocity of motion, the behavior of characters
keeping a certain distance to other characters and borders, and attractive effects
among characters. The force Fa described in Section 2 captures the effect of
their acceleration force and the force keeping characters away from borders. As
collision avoidance force, Fc, we use the force described in equation (3) of their
paper. Unlike [11], we do not model attractive effects among characters.

In the computation of force Fc, we have to find the set of neighbors for each
character. Since this operation is carried out many times, we have to revert to
an efficient data structure for answering nearest neighbors queries. We maintain
a 2D grid storing the locations of all characters (with radius r). Each cell in the
grid stores a sorted set of character id’s. Preliminary experiments have shown
that the cell size c can be chosen fairly small, e.g. c = 3 + 2r meter, to obtain
realistic collision avoidance. By including the term 2r, we only have to check 3 by
3 cells for carrying out a nearest neighbors query. Also, an update corresponding
to a changed position of a character is efficient since we use a set.

5 Crowd Simulation

Real-time crowd simulation has gained much attention recently [11, 12, 13, 14].
It requires the modeling of group behavior, pedestrian dynamics, path planning
and graphical rendering [13]. We focus on the path planning part.

We model two types of behavior for the characters, i.e. goal-oriented and
wandering behavior. In Section 5.1, we discuss how to model a crowd in which
each character has its own (long term) goal. Next, we elaborate on wandering
behavior in Section 5.2 which comprises making decisions more locally.

5.1 Goal Oriented Behavior

Goal oriented behavior can be achieved easily by assigning each character a
random start and goal position. These positions will fix a corridor. When a
character has reached its goal, a new goal will be chosen, ad infinitum.

If we only used force Fa to guide characters toward their goals (and force
Fc to avoid each other), they would have the tendency to clutter up around

18 R. Geraerts et al.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

cp
u

lo
ad

number of characters

Fig. 4. The relation between the number of characters in the crowd simulation and the
cpu-load

their backbone paths. To enforce a nice spread (and path variation) inside the
corridors, we add the force Fperp biasing a character to the right with respect
to its desired direction.

The simulation consists of some user defined number of iterations. For each
character, the task per iteration includes computing the forces, integrating the
final force F = Fa + Fc + Fperp, adding the new position of the character to its
path, and possibly choosing a new goal (and corresponding corridor).

Results. We integrated force F with Verlet integration with step size Δt = 0.1
and set the maximum speed to 1.2 m/s [15]. The cell size of the nearest neighbor
grid was set to c = 3 + 2r = 3.5 meter. In the experiments, we measured the
cpu-load for a varying number of characters. When the cpu-load was at most
100%, we considered the performance as real-time.

We simulated crowds in the City Environment from Fig. 2 with a varying
number of characters (with a radius of 25 cm, i.e. r = 0.25). Fig. 4 shows the
performance of our application for crowds with up to 10,000 characters. The
figure makes clear that approximately 10,000 characters can be simulated in
real-time. In addition, the performance does not degrade significantly when the
environment becomes rather crowded. We conclude that the cmm can be used
for real-time path planning with many characters.

5.2 Wandering Behavior

Rather than using the corridor map to plan paths for each of the characters in
the crowd, there is also an alternative approach in which the characters simply
wander around. The idea is as follows. As before, for a character at position
x there is an attraction point α(x). This attraction point lies on some edge ε
of the graph and we assume that we have decided on a direction along which
the attraction point will move along ε toward a vertex ν. We compute forces
as before and move the character accordingly. Next, we update the attraction
point by moving it further along ε toward ν. If the attraction point reaches ν,

Using the CMM for Path Planning for a Large Number of Characters 19

we randomly pick one of the outgoing edges ε′ of vertex ν, unequal to edge ε,
and continue moving the attraction point along edge ε′. So the attraction point
will follow some random walk through the graph and the character follows the
attraction point.

There is one complication. When ν is a dead end in the graph, that is, it has
only edge ε as an outgoing edge, the attraction point must move backwards along
the same edge. However, because of the way attraction points are defined (i.e.
the furthest point for which x still lies in the clearance disk) the result is that the
attraction point jumps far back along the edge, and, hence, the characters will
not even get close to vertex ν, leaving part of the dead end in the environment
void of characters. To remedy this we make a distinction between short dead
ends and long dead ends. We recursively remove short edges that represent dead
ends. For long dead ends we create some invisible obstacle at the end vertex ν
and create a corridor around it. As a result, characters will move till the end
of the dead end, move around the invisible obstacle, and return again along
the edge.

The method is very fast because no searches in the graph are required. Pre-
liminary experiments show, in particular when combined with lane formation as
described in Section 3, that the approach leads to natural wandering behavior.
We can extend the method by giving certain edges preference over other edges
and choosing the random continuation edge ε′ taking these preferences into ac-
count. The method can also be combined easily with other characters that do
have goal oriented behavior.

6 Coherent Groups

A virtual environment, such as a city, is usually populated with many characters
which often operate in groups. Take for example a guided tour through the city.
Here, each group member needs to stay in close proximity to other members
while moving from one location in the city to another. The cmm enables us to
plan such paths very efficiently [16].

For a coherent group of characters, the distances between the characters need
to be limited. This can be achieved in two directions, i.e. the lateral and lon-
gitudinal direction. The lateral direction is the direction perpendicular to the
direction of movement, i.e. the direction of the backbone path. The longitudinal
direction is the direction along the backbone path. We refer to the separation
of the characters in the lateral and longitudinal directions as the lateral disper-
sion and the longitudinal dispersion, respectively. Please note, if the dispersion
increases, the coherence decreases.

By using the cmm to create a corridor for the group, the lateral coherence is
bounded, namely by the radius R[t] of the clearance balls on every point on the
backbone path. Since no character can leave the corridor, the maximum lateral
distance between any two characters is limited by the maximum radius of all
clearance balls along the backbone path. However, this maximum radius might
be too large. Therefore, we introduce a constant gw that represents the maximum

20 R. Geraerts et al.

width of the coherence group. Using this constant we adapt the corridor B to
B∗ = (B[t], max{R[t], gw}).

The longitudinal dispersion can be bounded in a different manner. Let us
introduce another constant, gA, called the group area, which represents the area
in the corridor that the group is allowed to occupy. The group area is defined as
the union of clearance balls from a start point to an end point on the backbone
path. The start point is defined as the center of the furthest advanced ball
in which the least advanced character is enclosed. The end point is defined as
the center of the least advanced ball in which the furthest advanced character
is enclosed. Now, we define the minimum attraction point, αmin, as the least
advanced attraction point of all attraction points, α(xi), of the characters in the
group. By definition, this is the start point of the group area. The maximum
allowed attraction point, αmax, is defined as the point on the backbone path
such that the union of balls from αmin to αmax is exactly gA. If an attraction
point α(x) for any character is further advanced on the backbone path than the
maximum attraction point αmax, the maximum attraction point is used as the
attraction point of the character. Consequently, characters that are in front of
the group will be attracted backward, making them wait for the rest.

By varying the two parameters, gw and gA, we can influence the behavior
of the group. That is, high values result in a weak coherent group while small
values result in a strong coherent group. Please note that the area should not
be chosen too small, otherwise the characters will not fit inside this area.

6.1 Results

We generated several paths for a group of 50 characters with varying degrees of
coherence. The first series of paths were created with a large value for both gw

and gA (gw = 30, gA = 1000). A snapshot of the paths is depicted in Fig. 5(a).

(a) Three snapshots of the
group at different stages on
the paths. The width of the
corridor is gw = 30, the
group area is gA = 1000

(b) A single snapshot of
the group. The width of
the corridor is gw = 3, the
group area is gA = 1000

(c) Three snapshots of the
group at different stages on
the paths. The width of the
corridor is gw = 3, the
group area is gA = 60

Fig. 5. The effect on different lateral and longitudinal dispersions on 50 characters

Using the CMM for Path Planning for a Large Number of Characters 21

This results in a weak coherent group, where the characters are scattered over
the whole corridor. By decreasing the width of the corridor (gw = 3, gA =
1000) the group becomes more coherent in the lateral direction, see Fig. 5(b).
However, the longitudinal coherence is weak. By also decreasing the area of the
group (gw = 3, gA = 60) the group becomes more coherent in both directions,
see Fig. 5(c).

7 Conclusions and Future Work

In this paper we have described how the recently introduced Corridor Map
Method (cmm) can be used to plan the motions of thousands of characters
in a virtual world in real-time. We considered crowds of wandering characters
without clear goals, characters with individual goals, and groups of characters.

The advantage of using the cmm is that it is fast, it is flexible, and it pro-
duces natural paths. Because of the flexibility it is easy to introduce additional
constraints on the paths of the characters. For example, we can incorporate all
three types of motions simultaneously. Also, we can add additional static or
dynamic obstacles that must be avoided. In addition, we can incorporate per-
sonal preferences on the motions of the characters, for example to improve the
animations.

Currently, we are investigating how we can incorporate influence regions in the
environment. Such regions can either be dangerous places the characters prefer
to avoid or nice places that they prefer to visit. Also we work on techniques
to improve the way the characters avoid each other by extending the Helbing
model. And finally, we are experimentally validating the model and approach by
observing real people using cameras and motion capture equipment. We expect
this to lead to even more natural character motions.

Acknowledgements

This research has been supported by the gate project, funded by the Nether-
lands Organization for Scientific Research (nwo) and the Netherlands ict Re-
search and Innovation Authority (ict Regie). In addition, part of this research
has been funded by the Dutch bsik/bricks Project.

References

1. Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1991)
2. LaValle, S.: Planning Algorithms (2006), http://planning.cs.uiuc.edu
3. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential fields.

IEEE Transactions on Robotics and Automation 8, 501–518 (1992)
4. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4,
100–107 (1968)

http://planning.cs.uiuc.edu

22 R. Geraerts et al.

5. Geraerts, R., Overmars, M.: Creating high-quality paths for motion planning. In-
ternational Journal of Robotics Research 26, 845–863 (2007)

6. Geraerts, R., Overmars, M.: The corridor map method: A general framework for
real-time high-quality path planning. Computer Animation and Virtual Worlds 18,
107–119 (2007)

7. Geraerts, R., Overmars, M.: Enhancing corridor maps for real-time path planning
in virtual environments. In: Computer Animation and Social Agents (2008)

8. Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.: Interactive motion planning
using hardware-accelerated computation of generalized Voronoi diagrams. In: IEEE
International Conference on Robotics and Automation, pp. 2931–2937 (2000)

9. Perlin, K.: An image synthesizer. Computer Graphics 19(3), 287–296 (1985); SIG-
GRAPH 1985 Proceedings

10. Karamouzas, I., Overmars, M.H.: Adding variation to path planning. In: Computer
Animation and Social Agents (2008)

11. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Re-
view 51, 4282–4287 (1995)

12. Morini, F., Yersina, B., Mäım, J., Thalmann, D.: Real-time scalable motion plan-
ning for crowds. In: International Conference on Cyberworlds, pp. 144–151 (2007)

13. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time nav-
igation of independent agents using adaptive roadmaps. In: ACM symposium on
Virtual reality software and technology, pp. 99–106 (2007)

14. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. Transactions on Graph-
ics 25, 1160–1168 (2006)

15. Knoblauch, R., Pietrucha, M., Nitzburg, M.: Field studies of pedestrian walking
speed and start-up time. Transportation Research Record, 27–38 (1996)

16. Kamphuis, A., Overmars, M.: Finding paths for coherent groups using clearance.
In: Eurographics/ ACM SIGGRAPH Symposium on Computer Animation, pp.
19–28 (2004)

	Using the Corridor Map Method for Path Planning for a Large Number of Characters
	Introduction
	The Corridor Map Method
	Creating High-Quality Corridor Maps
	Fast Extraction of a Corridor
	Fast Extraction of a Path

	Path Variation
	Results

	Obstacle Avoidance
	Crowd Simulation
	Goal Oriented Behavior
	Wandering Behavior

	Coherent Groups
	Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

