
Camera Planning in Virtual EnvironmentsUsing

the Corridor Map Method

Roland Geraerts�

Institute of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, the Netherlands

roland@cs.uu.nl

Abstract. Planning high-quality camera motions is a challenging prob-
lem for applications dealing with interactive virtual environments. This
challenge is caused by conflicting requirements. On the one hand we
need good motions, formed by trajectories that are collision-free and
keep the character that is being followed in clear view. On the other
hand, we need frame coherence, i.e. the view must change smoothly
such that the viewer does not get disoriented. Since camera motions
dynamically evolve, good motions may require the camera to jump,
leading to a broken frame coherence. Hence, a careful trade-off must
be made. In addition to this challenge, interactive applications require
real-time computations, preventing an exhaustive search for ‘the best’
solution.

We propose a new method for planning camera motions which tack-
les this trade-off in real-time. The method can be used for planning
camera motions of npc’s and first-person characters. Experiments show
that high-quality camera motions are obtained for both scenarios in
real-time.

1 Introduction

In interactive virtual environment applications, such as games, training systems
and architectural applications, a virtual camera needs to be steered. In contrast
to first-person games, in which the camera is steered by the user, we focus
at applications which require automatic planning of camera motions. In such
applications, manual camera control would require too much mental energy or
would be too difficult for inexperienced users [1, 2].

A camera motion consists of two paths: a camera path, which describes the
camera positions in the environment over time, and an aim path, which describes
the corresponding positions the camera looks at. We aim at creating good cam-
era motions which feature a high spatial awareness of the viewer and coherent
motions preventing the viewer from getting motion sick.
� This research has been funded by the Dutch bsik/bricks Project and the Metaversel

Project.

A. Egges, R. Geraerts, and M. Overmars (Eds.): MIG 2009, LNCS 5884, pp. 194–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method 195

The viewer’s spatial awareness, i.e. the knowledge of the viewer’s location
and orientation within the environment, can be maintained if the following con-
straints are satisfied. The camera and aim positions must not collide with ob-
stacles in the environment. In addition, the character should always be in view.
Finally, the camera should not be too close to the character or obstacles (oth-
erwise a large part of the view would be blocked), nor should it be too far
(because the camera needs to stay behind the character to maintain the under-
standing of its orientation). This can be accomplished by keeping some minimal
amount of clearance from the camera to the obstacles in the environment. Also,
the camera should be placed behind the character at a certain preferred dis-
tance.

A viewer can get motion sick when its view changes too abruptly, and, hence,
the positions on the paths should change smoothly and the angular velocity
of the camera view should be minimal. Also, motion-sickness can be reduced
by anticipating the direction in which the view is going. Hence, keeping frame
coherence is of major importance.

Automated camera planning is a difficult task because a careful trade-off
must be made between satisfying the constraints and frame coherence [3]. That
is, favoring the constraints (e.g. keeping the character always in view) can lead
to a broken frame coherence. Likewise, favoring frame coherence can lead to
situations where the character blocks the user’s view.

In related work, a distinction can be made between methods that deal with
camera planning for known input paths [3, 4, 2] versus unknown paths [5, 3, 1].
Applications that deal with known input paths are games and architectural
applications. In a game, the known path could be a character’s path which
is replayed or an npc’s (Non-Player Character) path which is being followed.
In an architectural application, the path could be a walk-through in a vir-
tual environment. A typical application in which the character’s positions are
created dynamically (so the path is unknown in advance) is a third-person
game.

We will present a new method for planning good camera motions in real-time.
We induce collision-free motions by using the Corridor Map Method, which is
a global path planning technique [6, 7]. The character is kept in clear view by
anticipating on the future trajectory. Next, frame coherence is maintained by
modeling the motions as forces applied to the camera and its view.

The paper is organized as follows. In Section 2 we will review the Corridor Map
Method which is the framework we use for the new method. Its key ingredient,
i.e. creating smooth collision-free paths, is discussed in Section 3. We will then
introduce our new method in Section 4 which creates smooth camera motions,
composed of a smooth camera and aim path, for a known character path. We
will adjust the method in Section 5 such that we can deal with paths whose
positions are unknown in advance. Next, we will conduct experiments in Section
6 to test the quality and performance of the method and conclude in Section 7
that high-quality camera motions are computed in real-time.

196 R. Geraerts

2 The Corridor Map Method

The Corridor Map Method (cmm) has been designed for path planning in real-
time interactive environments and games [8]. The strength of the cmm is that
it combines a fast global planner with a powerful local planner, providing real-
time performance and the flexibility to handle a broad diversity of path planning
problems. The cmm consists of an off-line construction phase and a on-line query
phase (see Fig. 1). In the construction phase, we build a Corridor Map which
is a data structure that represents the free space, i.e. the 2D walkable space,
in a virtual environment. The free space is defined as the space that is not
occupied by the footprint of the environment. This footprint is made up of a
collection of geometric primitives, such as points, lines, polygons, and disks, all
lying in the ground plane. The underlying graph of the map is the Generalized
Voronoi Diagram [7]. The edges of this graph are sampled. We assign to each
sampled point on an edge the radius of the largest empty disk. Each point/radius
combination forms a maximum clearance disk. Then, a sequence of disks forms
a Corridor, and a system of corridors is referred to as the Corridor Map.

In the query phase, we use the Corridor Map to compute the shortest corridor
which encloses the future path of the character. We connect the start and goal
positions of the character to the map and retrieve the shortest path in the map
connecting these positions. We refer to this path as the backbone path of the
corridor. The corresponding sequence of disks forms the corridor which guides
the global motions of the character (or camera). An example of such a corridor,
backbone path (small disks), and query is displayed in Fig. 1(c).

(a) Footprint (b) Corridor map

s

g

(c) Corridor and query

(d) Control path (e) Smooth path (f) Camera & aim path

Fig. 1. The construction phase (a–b) and query phase (c–f) of the cmm

Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method 197

The local motions of a character are created by following an attraction point
which moves along a control path toward the goal. In [6], we used the backbone
path as control path. If a character is attracted by this path, its final path
will have much clearance because the backbone path is composed of maximum
clearance points. Nevertheless, the final path might be longer than is necessary.
We are interested in a short control path that has some amount of minimum
clearance to the environment. Such a path is created by shrinking the corridor
with the preferred amount of clearance. The control path is then the shortest
path inside the shrunk corridor [9]. We refer the reader to Fig. 1(d) for an
example of such a path. It might be tempting to use the control path as final
path for the character. However, this path is not smooth. In addition, traversing
the fixed control path would decrease the flexibility of the method. Because the
character is able to deviate from the control path, the character’s motions can
become smooth as is shown in Fig. 1(e).

In the next section we will discuss the technique for creating a smooth path
for the character. This technique will form the basis for creating smooth camera
motions such as visualized in Fig. 1(f). The two open disks denote the character’s
start and goal positions. The black closed disks denote the camera positions and
the arrows denote the aim positions.

3 Creating a Smooth Path

Given a start position s and goal position g, we extract a corridor from the
corridor map which encloses the future path connecting the start to the goal.
Next we extract a control path which is represented by a continuous sequence
of points. This control path is then used to create the smooth path.

The algorithm computes a path Π which is defined as a continuous sequence
of two-dimensional positions. Each position is annotated with a time stamp. We
require that the character, modeled by a disk with radius r, is inside the corridor
for any position along the path. More formally, we define a path as follows:

Definition 1 (Path Π). A path Π inside a corridor C is a continuous map
Π ∈ [0, tmax] → R

2 such that ∀t ∈ [0, tmax] : Π [t] ∈ C.

By Π [t] we denote the position at time t. For example, the start and goal position
are equal to s = Π [0] and g = Π [tmax], respectively. Of course, the value for
tmax will be known after the computation of the path.

The algorithm iteratively computes positions and time stamps that make up
the path. The algorithm finishes when the Euclidean distance between the last
computed position and the goal is smaller than a small threshold ε = 0.01.

The character is initially placed at position x = s and is set into motion and
steered by receiving steering and boundary forces [8]. The steering force Fs(x)
guides the character toward the goal and is defined by the difference between
the character’s attraction point α(x) and the character’s current position x.
For computing the attraction point, we first need to find the closest point on
the backbone path. Given its associated disk, we compute α(x) as the furthest

198 R. Geraerts

intersection point between this disk and the control path. The line segment
connecting x with α(x) is free of collisions, ensuring a collision-free path.

The boundary force Fb(x) pushes the character away from the corridor’s
boundary, and, hence, it keeps the character inside the corridor. If the char-
acter’s clearance to the boundary is larger than its preferred safe distance then
this force is 0. (We set the safe distance to the character’s radius r.) Otherwise,
the force is directed away from the boundary and its magnitude goes to infinity
when the character touches the boundary.

The combined force is defined as F(x) = Fs(x) + Fb(x). When this force is
applied to the character, it starts accelerating. This phenomenon is summed up
by Newton’s Second Law, i.e. F = Ma, where M is the mass of the character and
a is its acceleration. Without loss of generality, we assume that M = 1. Hence,
the force can be expressed as F(x) = d2x

dt2 m/s2. Combining the two expressions
for F(x) gives us d2x

dt2 = Fs(x) + Fb(x), which is an equation providing the
positions for the character. Because this equation cannot be solved analytically,
we have to revert to a numerical approximation, such as Euler integration [10],
to compute the positions of the character’s path.

In Euler’s integration scheme, the position x is updated by moving it during
Δt time with velocity V. The velocity is updated similarly. If its magnitude
becomes larger then the maximum velocity vmax, then V is scaled such that
its magnitude becomes equal to vmax. Consequently, the character’s speed is
limited to the maximum velocity. The new position is added to the path and is
annotated with the current time stamp. Finally, the time is increased with the
step size Δt and the loop continues.

The algorithm produces a smooth path, i.e. the path is C1-continuous when
Δt → 0, because the positions are the result of a function that was doubly
integrated [6]. We use such a smooth path as input for creating camera motions.

4 Following a Known Path

In this section we will present an algorithm which computes a camera motion for
a path whose positions are known (or can be computed) in advance. Applications
such as games (replay a path, follow an npc) and architectural applications
(create a virtual walk-through inside a city) can benefit from the approach.

A camera motion consists of two paths which comply to Definition 1, i.e. a
camera path Πcam, which describes the camera positions in the environment
over time, and an aim path Πaim, which describes the corresponding positions
the camera looks at. The algorithm consists of the following steps.

The first step is to ensure that we have the right input. The next step is to
find a proper initial camera placement if this is not given. Then, the camera and
aim paths are computed. Next, additional constraints are incorporated into the
algorithm. Finally, we handle the case in which a character stops moving, e.g.
when the character reaches its destination.

Initialization. As input we have a known path which may be traversed by a
character or may be a path observed by the camera. We call this the character

Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method 199

xcam

Πchar[0]

Fig. 2. Computing a collision-free initial placement of the camera. The camera can be
placed on the black disks but not on the white disks.

path Πchar. In an architectural application, such a path may not be given, and,
hence, we need to create a path from a given start to a given goal. We con-
struct this path (and corresponding corridor) by the approach from the previous
section. By constructing a path that has enough clearance, we can create cam-
era motions that will not run too close to the obstacles. Also, having enough
clearance will decrease the need for sharp turns and prevents views that are
blocked by the obstacles. Since the path is also short and smooth, the final cam-
era motions will be efficient and smooth too. If path Πchar is given in advance,
we smooth it first for the same reasons mentioned above. Next, we compute a
corridor C containing this path. Details on this procedure can be found in [8].

Besides path Πchar and corridor C, we have the following input. The parameter
dcam denotes the preferred distance from the camera to the character. Next,
the camera looks at a future position of the character. The corresponding look
ahead time is denoted by tla. Finally, we are given the maximum velocity vmax

of the camera and aim. This value should be at least at large as the character’s
maximum velocity to assure that the camera can keep the character in view.

Before we create the camera path, we need to set the initial camera and aim
positions. The camera initially looks at the character’s start position. Since the
camera stands still, its aim and camera velocity is set to 0.

Placement of the camera. If the camera position xcam is not provided in
advance, we need to choose a proper camera placement (see Fig. 2). The camera,
modeled as a disk with radius r, does not have to be placed inside the corridor.
We try to place the camera behind the character at the preferred distance dcam.
By ‘behind’ we mean a position on the line segment which starts at Πchar[0] and
is extended in the direction v = Πchar[0]− Πchar[Δt], where Δt is a small time
step. The initial preferred placement is then given by xcam = Πchar[0] + dcam ∗
v/||v||. If this camera placement or the line through xcam and Πchar[0] is not
inside the free space, we need to try other placements. We first consider a series
of placements on the half circle with center Πchar[0], radius dcam, behind the
line that is perpendicular to direction v. If all placements collide, we decrease
the radius (e.g. by dcam/3) and test a new series of placements. We continue
this procedure until we find a collision-free placement xcam. After finding xcam,
we test whether xcam is inside the corridor C. If it is outside the corridor, we
extract a new one enclosing the path from xcam to Πchar[0] and add it to C.

200 R. Geraerts

Creating the camera and aim paths. Like in Section 3, we compute a smooth
camera and aim path by iteratively updating their positions and time stamps
until the last position of the character’s path is being viewed by the camera. For
the aim as well as the camera path, we define corresponding attraction points.

For the aim’s attraction point α(xaim) we take a future position on the char-
acter’s path determined by the current time stamp t plus the time lapse tla.
Since the camera starts looking at a location in which the character will be in
tla time, the viewer gets a hint about the possible changes in direction, leading
to a smaller chance of getting motion sick. The force, which will be applied to
the aim position xaim is computed like in Section 3. This force is also composed
of a steering force (i.e. α(xaim)− xaim) and boundary force. Next, we integrate
the force function, compute the new aim position, and add it to the aim path.

The attraction point for the camera α(xcam) is computed differently. The
camera is attracted to its optimal position, which is located behind the char-
acter on the line which runs through the character and has the same direction
as the current aim direction v, where v = Πaim[Δt] − Πaim[t − Δt]. Hence,
α(xcam) = Πchar[t]− dcam ∗v/||v||. If t = 0, then the aim position Πaim[t−Δt]
does not exist; we then use α(xcam) = xcam instead. We need to ensure that the
camera can ‘see’ its attraction point, otherwise the camera could get stuck be-
hind an obstacle. This can be checked by determining whether the line segment
through xcam and α(xcam) is inside the corridor. If they cannot see each other,
we iteratively decrease the preferred camera distance dcam and update α(xcam)
correspondingly until the line segment is inside C. The camera’s steering and
border forces are then computed like the aim’s forces. These forces are applied
to the camera, resulting in a new camera position which is added to the path.

Satisfying additional constraints. We have now described a procedure for
creating camera motions which satisfy almost all criteria mentioned in the in-
troduction. That is, the camera and aim paths are collision-free because they
are kept inside the corridor by the boundary force. Moreover, this force assures
a minimum clearance to the obstacles so that the view is blocked less by the
obstacles. Next, the camera is placed as much as possible at a certain preferred
distance behind the character to keep a good view. This criterion, together with
the fact that the two paths change smoothly prevent motion-sickness.

Two constraints however may not have been satisfied yet. First, when the
character is inside a narrow passage, it may not be in the camera’s view. If the
camera cannot see its corresponding aim point, we anticipate on the blocked
view by temporarily increasing the camera’s maximum velocity and decreasing
the preferred distance dcam to the camera. We increase the velocity vmax in
each iteration until they see each other. Hence, the camera’s speed will change
smoothly. Besides, we iteratively decrease dcam. When the character is in the
camera’s view again, we decrease vmax and increase dcam until they have reached
their initial values. As a result, the camera speeds up before the character would
get out of view and the character stays (longer) in view. Nevertheless, increasing
the camera’s velocity may increase the camera’s angular velocity, which may
cause the view to change too fast. The angular velocity vrot is defined by the

Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method 201

angle between the current camera direction and the previous one. If vrot becomes
larger than some predefined maximum angular velocity vrot max, we decrease the
camera’s maximum velocity, like we described in the previous paragraph, and
increase the velocity again when vrot ≤ vrot max. Note that these two constraints
contradict each other. Depending on the application, we can favor one particular
constraint. We will discuss this trade-off further in Section 6.

Reaching the destination. A nice property of modeling motion by forces
is that the camera and aim smoothly accelerate until a they reach a certain
maximum velocity. When the character (suddenly) stops moving, they both can
have a high velocity, and, hence, they continue moving for a short while, which
may result in oscillating motions near their steady attraction points. We handle
this problem by appropriately slowing down the camera and aim during a short
amount of time ts (e.g. ts = 1 second). We set the aim’s attraction point to
the character’s current location (if it has not reached this location yet). The
camera’s attraction point is left unchanged. Next, during ts time, we lower the
maximum velocity like we did in the previous section. Such a scheme assures
that the camera (and aim) smoothly decelerate within ts seconds.

5 Following an Unknown Path

In third person games, a camera needs to follow a character which is controlled
by the player. Consequently, the character’s path is being created dynamically.
We will adjust our approach such that the camera motions are also computed on
the fly. This means that we cannot refer anymore to future character positions.
This happens twice in our approach. First, the algorithm that finds the initial
camera position assumes that the character’s initial direction is known. Since we
think this is a reasonable assumption, we require that this direction is given as
input to the algorithm. Second, we need to adjust the computation of the aim’s
attraction point α(xaim). We place α(xaim) on its estimated future position.
Starting from the character’s current location Πchar[t], we move in the aim’s
direction v = Πchar[t]−Πchar[t−Δt] with displacement tla ∗ vmax. If t = 0, we
set α(xaim) to the character’s start position.

We have observed that good estimations are obtained when a smoothed ver-
sion was used of the character’s path instead of the original path. Each position
(with time stamp t) is smoothed by computing an averaged position over a small
time window tw (e.g. tw = 0.25 seconds).

Finally, the algorithm makes use of a corridor which is unknown in advance.
We dynamically update the corridor while the character moves. That is, if the
character moves out of the corridor (which initially is computed by the sequence
of disks that connect the initial camera position with the initial character posi-
tion), we add the new disk that encloses the character’s new position.

We refer the reader to Fig. 3 which visualizes the effect of having knowledge
(or not) about the character’s future positions. To compare these effects, we
used the same input character path. If the character’s positions are known in
advance (left picture), then the camera’s motions anticipate well to changes of

202 R. Geraerts

(a) Known path (b) Unknown path

Fig. 3. Camera motions induced by knowing (or not) the character’s path in advance

the character’s future positions. That is, the character’s positions (disks) are
located behind the character as is required and its aim (arrows) is targeted at
the character’s near future positions. If the character’s positions are unknown in
advance, its future positions are estimated. Consequently, the camera motions
react later on a change in the character’s direction then the case in which the
path is known in advance.

6 Experiments

We have tested our method inside a large virtual city. We experimentally ver-
ified whether the method can create high-quality camera motions in real-time.
We implemented two applications in Visual c++ under Windows xp. The first
one generated the Corridor Map of the city [7]. The second one was our cmm
framework [6] in which we integrated camera planning. All the experiments were
run on a pc with a nvidia GeForce 8800 gtx graphics card and an Intel Core2
Quad cpu (2.4 ghz) with 4 gb memory. Our application used one core.

We conducted experiments with the city environment depicted in Fig. 4. The
city measured 500x500m. Its footprint (2,122 triangles) formed the input prim-
itives for the Corridor Map. Creating the map took 0.64s, resulting in 1,434
vertices, 1,606 edges and 25,863 samples (i.e. the number of disks in all corri-
dors). The characters’ radius was set to r = 0.25 and the time step to Δt = 0.1s.

We performed two experiments. In the first one, we extracted 1,000 uniform
random collision-free queries, yielding 1,000 character paths. Each path was re-
spectively treated as a path that was known or unknown in advance. We recorded
the average running times for both cases. To view these times in the right per-
spective, we defined the cpu-load, which is the spent cpu time / averaged tra-
versed time ∗ 100%. We set the character’s maximum velocity to 2m/s which
corresponds to a fast walking speed [11]. We considered a cpu-load of 1% to be
real-time. In the second experiment, we selected one representative query. Its
start was located in the lower part while its goal part was located in the upper
part of the city. Then, a corridor, enclosing the query, was extracted from the
Corridor Map [7]. The first half of the corridor corresponded to places with much
clearance and little curvature while the second half corresponded to places with

Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method 203

(a) City environment (b) Footprint and Corridor Map

Fig. 4. The test environment, its footprints and corridor map

relatively little clearance and much curvature. Clearly, creating good camera
motions will be more difficult in the second half.

We considered two cases. In the first case, we created camera motions for a
virtual walk-through (so the character’s path is known in advance). Its control
path was constructed by extracting the shortest minimum clearance path inside
this corridor [9]. By using much clearance (i.e. 3m), a good overview of the
environment was to be expected. We set the camera distance dcam to 5m, the
time lapse tla to 2s and maximum velocity vmax to 2m/s. These settings favored
looking ahead and anticipated well to future directional changes. In addition, we
used a low maximum angular velocity (i.e. vrot max = 2m/s) at the expense of
higher velocities at straight parts of the path. These settings favor a slow change
of the user’s rotating view.

In the second case, we created camera motions for following a character in-
side a third-person game (so the character’s path is unknown in advance). We
simulated a user-controlled path by creating a control path with many local
changes [8]. In addition, the path sometimes ran close the obstacles, leading to
an increased chance for a bad view. We used a shorter camera distance (i.e. 3m)
to keep a good third-person view and used a smaller time lapse (i.e. 0.5s) to
minimize the errors induced by wrongly estimating the future directions. We
used vrot max = 5m/s to favor fast reactions on the character’s motions.

Both control paths were smoothed. The algorithm created an aim and camera
path, annotated with time stamps. The two paths were composed of x- and y-
coordinates. A z-coordinate was added (i.e. z = 1.8m) to place the camera above
the ground. We will now discuss the results.

For the known character path, the 1,000 queries were computed in 27.3ms
on average. The averaged traversed time was 105.2s. Hence, the cpu-load was
0.026%. For the unknown character path, the queries were computed in 29.6ms

204 R. Geraerts

s

g

(a) Control path (b) Smoothed char. path (c) Camera motions

g

s

(d) Control path (e) Smoothed char. path (f) Camera motions

Fig. 5. Creating camera motions. A virtual walk-through is constructed for a known
path (first row). A character’s unknown path is followed (second row).

and the traversed time was 105.2s, resulting in a cpu-load of 0.028%. Conse-
quently, the running times can be considered as real-time.

The top row of Fig. 5 shows the results for the virtual walk-through. We used
the smoothed control path to create the camera motions. The camera (disks) and
aim path (arrows), as well as the view (i.e. the line connecting the camera with
its aim) was collision-free as none of these glyphs intersected with the obstacles.
The camera motions were smooth, i.e. there were no sudden changes in positions
or orientations, even not at the locations with little clearance and high curva-
ture. Since the latter is hard to see, we created a movie which can be viewed at
http://people.cs.uu.nl/roland/motion_planning/camera. The movie con-
firms that the motions were smooth. The maximum angle constraint reduced the
camera’s speed wherever required, leading to coherent motions. After a sharp

Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method 205

corner, the camera’s velocity was temporarily increased to make up for the delay.
Finally, by anticipating on the character’s positions, it was not lost out of sight.

The bottom row Fig. 5 shows the results for a dynamic third-person cam-
era. The control path was rather bumpy. In each iteration, a small part of this
path was smoothed. The final smoothed path is displayed in Fig. 5(e). By using
smoothed character positions, relatively smooth camera motions were created as
can be seen in Fig. 5(f). The figure also shows that no collisions occurred. We
refer the reader to the corresponding movie. Is makes clear that the motions are
indeed smooth. However, the view moved faster than in the case in which the
character’s path was known in advance, because the character’s future positions
were being estimated while constructing the camera motions. However, these
estimations and a small camera distance still made sure that the character was
centered in the view. Consequently, the viewer would not get disoriented.

7 Conclusions

We introduced a new method for planning good camera motions in real-time.
Good motions are composed of camera and aim positions which are collision-
free and keep the character in clear view. Camera planning is a challenging
problem because a sequence of good camera motions may not be continuous
while continuity of the user’s view (i.e. frame coherence) is of major importance.
By smoothing the character’s positions, looking ahead, slowing down when the
view’s angle gets too large, and by modeling the camera motions by forces,
we have obtained good camera motions while keeping frame coherence. These
motions were generated for both paths that were known as well as paths that
were unknown in advance. Real-time performance was achieved by using the
Corridor Map for answering collision and visibility queries.

We tested our approach on a static flat environment. We will extend the
method such that a clear view is maintained as much as possible when dynamic
changes occur, e.g. when another character blocks the user’s view. Then, we
would also like to handle 2.5D environments which include terrains and bridges.

References

1. Li, T.Y., Cheng, C.C.: Real-time camera planning for navigation in virtual envi-
ronments. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG
2008. LNCS, vol. 5166, pp. 118–129. Springer, Heidelberg (2008)

2. Nieuwenhuisen, D., Overmars, M.: Motion planning for camera movements. In:
IEEE International Conference on Robotics and Automation, pp. 3870–3876 (2004)

3. Halper, N., Helbing, R., Strothotte, T.: A camera engine for computer games:
Managing the trade-off between constraint satisfaction and frame coherence. Eu-
rographics 20, 174–183 (2001)

4. Li, T.Y., Yu, T.H.: Planning tracking motions for an intelligent virtual camera.
In: IEEE International Conference on Robotics and Automation, pp. 1353–1358
(1999)

206 R. Geraerts

5. Bourne, O., Sattar, A.: Evolving behaviours for a real-time autonomous camera.
In: Australasian conference on Interactive entertainment, pp. 27–33 (2005)

6. Geraerts, R., Overmars, M.: The corridor map method: A general framework for
real-time high-quality path planning. Computer Animation and Virtual Worlds 18,
107–119 (2007)

7. Geraerts, R., Overmars, M.: Enhancing corridor maps for real-time path planning
in virtual environments. In: Computer Animation and Social Agents, pp. 64–71
(2008)

8. Overmars, M., Karamouzas, I., Geraerts, R.: Flexible path planning using corridor
maps. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 1–12.
Springer, Heidelberg (2008)

9. Geraerts, R.: Planning short paths with clearance using explicit corridors. In: IEEE
International Conference on Robotics and Automation (submitted, 2010)

10. Butcher, J.: Numerical Methods for Ordinary Differential Equations. Wiley, Chich-
ester (2003)

11. Knoblauch, R., Pietrucha, M., Nitzburg, M.: Field studies of pedestrian walking
speed and start-up time. Transportation Research Record, 27–38 (1996)

	Camera Planning in Virtual EnvironmentsUsing the Corridor Map Method
	Introduction
	The Corridor Map Method
	Creating a Smooth Path
	Following a Known Path
	Following an Unknown Path
	Experiments
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

