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Abstract. The probabilistic roadmap approach is a commonly used motion planning
technique. A crucial ingredient of the approach is a sampling algorithm that samples
the configuration space of the moving object for free configurations. Over the past
decade many sampling techniques have been proposed. It is difficult to compare the
different techniques because they were tested on different types of scenes, using differ-
ent underlying libraries, implemented by different people on different machines. We
compared 12 of such sampling techniques within a single environment on the same
scenes. The results were surprising in the sense that techniques often performed dif-
ferently than claimed by the designers. The study also showed how difficult it is to
evaluate the quality of the techniques. The results should help users in deciding which
technique is suitable for their situation.

1 Introduction

The motion planning problem asks for computing a collision-free, feasible motion for an
object (or kinematic device) from a given start to a given goal placement in a workspace with
obstacles. Besides the obvious application within robotics, motion planning also plays an
important role in animation, virtual environments, computer games, computer aided design
and maintenance, and computational chemistry.

Over the years, many different approaches to solving the motion planning problem have
been suggested. See the book of Latombe[23] for an extensive overview of the situation up to
1991 and e.g. the proceedings of the yearly IEEE International Conference on Robotics and
Automation (ICRA) or the Workshop on Foundations of Robotics (WAFR) for many more
recent results. A popular motion planning technique is the probabilistic roadmap planner
(PRM), developed independently at different sites [3, 4, 19, 20, 26, 30]. It turns out to be
very efficient, easy to implement, and applicable for many different types of motion planning
problems (see e.g. [10, 14, 16, 21, 22, 27, 28, 30, 31, 32]).

The PRM approach consists of a preprocessing phase and a query phase. In the prepro-
cessing phase a roadmap graph G = (V, E) is constructed. In the query phase, the start and
goal configurations are connected to the graph. The path is obtained by performing a Di-
jkstra’s shortest path query on the graph. Let C denote the configuration space, that is, the
space of all possible placements for the moving object. Let Cfree denote the part of C that con-
sists of feasible configurations (that is, without collisions and allowed for the moving object).
We sample Cfree for collision-free placements that are added as nodes to the graph G. Pairs



of promising nodes are chosen in the graph and a simple local motion planner (normally a
straight-line motion) is used to try to connect such placements with a path. If successful an
edge is added to the graph. This process continues until the graph covers the connectedness
of Cfree. The algorithm looks as follows.

Algorithm 1 CONSTRUCTROADMAP

1: loop
2: c← a (useful) configuration in Cfree
3: V ← V ∪ {c}
4: N

c
← a set of (useful) nodes chosen from V

5: for all c′ ∈ N
c
, in order of increasing distance from c do

6: if c′ and c are not connected in G then
7: if the local planner finds a path between c′ and c then
8: add the edge c′c to E

The basic PRM approach leaves many details to be filled in, in particular how to sample
the space, what local planner to use and how to select promising pairs. Over the past decade,
researchers have investigated these aspects and developed many improvements over the basic
scheme (see e.g. [1, 6, 7, 17, 21, 25, 27, 31, 33]). Unfortunately, the different improvements
suggested are difficult to compare because they were tested on different types of scenes, using
different underlying libraries, implemented by different people on different machines. In ad-
dition, the effectiveness of a technique sometimes depends on choices made for other parts of
the method. So it is still rather unclear what is the best technique under which circumstance.
(See [12] for a first study of this issue.)

In a previous paper [13] we made a first step toward a comparison between the differ-
ent techniques developed. We implemented a number of the techniques in a single motion
planning system and added software to compare the approaches. In this paper we further
concentrate on the choice of sampling technique, comparing a large number of additional
techniques on different scenes. This comparison gives insight in the relative merits of the
techniques and the applicability in particular types of motion planning problems. The results
are at times surprising in the sense that many of the claims of the creators could not be verified
and sometimes our results even contradicted them.

The paper is organized as follows. In Section 2 we describe our experimental setup and
the scenes we used. We also give some insight in the effects of other ingredients of the PRM
approach, in particular collision checking and the choice of neighbor selection method. In
Section 3 we study five different uniform sampling techniques. In Section 4 we consider
seven non-uniform sampling techniques that have been designed to deal with the so-called
narrow passage problem. Finally, in Section 5 we study the variation of the running time over
different runs and present a simple technique with which this can be reduced.

2 Experimental Setup

In this study we restricted ourselves to free-flying objects in a three-dimensional workspace.
Such objects have six degrees of freedom (three translational and three rotational). In all
experiments, we used the most simple local method that consists of a straight-line motion in
configuration space. For other types of devices or local planners the results might be different.



Figure 1: The 6 scenes used for testing

The PRM approach builds a roadmap which, in the query phase, is used for motion plan-
ning queries. We aim at computing a roadmap that covers the free space adequately but this is
difficult to test. Instead, in each test scene we defined a relevant query and continued building
the roadmap until the query configurations were in the same connected component.

All techniques were integrated in a single motion planning system called SAMPLE (Sys-
tem for Advanced Motion PLanning Experiments), implemented in Visual C++ under Win-
dows XP. All experiments were run on a 2.66 GHz Pentium 4 processor with 1 GB internal
memory. We used Solid as basic collision checking package [5]. In all experiments we re-
port the running time in seconds. Because the experiments were conducted under the same
circumstances, the running time is a good indication of the efficiency of the technique. For
those techniques where there are random choices involved we report the average time over
30 runs.

For the experiments we used the following six scenes (see Figure 1). Note that these
scenes are different from the ones in [13]. Futhermore, to make extensive experimentation
possible, we did not include huge environments such as those common in CAD environments.

cage This environment consists of many primitives. The flamingo (7049 polygons) has to
find a route (from a few dozen possibilities) that leads him out of the cage (1032 triangles).
The complexity of this environment will put a heavy load on the collision checker but the
paths are relatively easy.

clutter This scene consists of 500 uniformly distributed tetrahedra. A torus must move
among them from one corner to the other. The configuration space will consist of many
narrow corridors. There are many solutions to the query.

hole The moving object consists of four legs and must rotate in a complicated way to
get through the hole. The hole is placed off-center to avoid that certain grid-based methods
have an advantage. The configuration space will have two large open areas with two narrow
winding passages between them.

house The house is a complicated scene consisting of about 2200 polygons. The moving



collision checking
incremental binary line rotate-at-s

cage 2.4 1.9 1.8 2.7
clutter 1.8 1.3 1.4 3.1
hole 431.9 422.3 436.4 1206.7
house 6.4 4.9 4.7 47.1
rooms 0.5 0.4 0.4 1.1
wrench 0.9 0.5 0.5 1.1

Table 1: Running times for different collision checking methods

object (table) is small compared to the house. Because walls are thin, the collision checker
must make rather small steps along the paths, resulting in much higher collision checking
times. Because of the many different parts in the scene the planner can be lucky or unlucky in
finding the relevant part of the roadmap. So we expect a large difference in the running times
of different runs.

rooms In this scene there are three rooms with lots of space and with narrow doors be-
tween them. So the density of obstacles is rather non-uniform. The table must move through
the two narrow doors to the other room.

wrench This environment features a large moving obstacle (156 triangles) in a small
workspace (48 triangles). There are many different solutions. At the start and goal the object
is rather constrained.

Even though we concentrate on sampling in this paper, other aspects of the PRM ap-
proach have a big influence on the overall running time. As indicated in [13], the most time-
consuming step in PRM is checking whether the motion produced by the local planner is
collision free. There are different approaches for this. One can use an incremental approach
that takes small steps along the path, or a binary approach that first checks the middle posi-
tion of the path and then recurses on the two halves [27]. Also one can combine this with a
line check to first see whether the origin of the moving object is collision free [11]. Finally,
there is the rotate-at-s approach suggested in [2] that translates from start to an intermediary
configuration s halfway, then rotates, and finally translates to the endpoint. Table 1 summa-
rizes the results (using deterministic Halton points for sampling and a simple nearest-k node
adding strategy; see below):

The table shows that in all scenes the binary approach was faster than the incremental
approach although the improvement varied over the type of scene. The line check only had
a marginal effect, contrary to the claim in [11]. Also the rotate-at-s technique did not give
the improvement suggested in [2]. It should though be noticed that this can depend on the
underlying collision checking package used. For the rest of the paper we will use the binary
approach.

A second important choice to be made in PRM is how to select the set of neighbors to
which we try to make connections. As each test for a connection is expensive we should try to
avoid these as much as possible. On the other hand, if we try too few connections we will fail
to connect the graph. It is not useful (from a complexity point of view) to make connections
to nodes that are already in the same connected component, because a new connection will
not help solving motion planning queries. Also, it is not useful to try to connect to nodes that
lie too far away. The chance of success for such a connection is minimal while the collision
checks required for testing the path are expensive.

We performed a large number of experiments to determine for each scene the optimal



node adding strategy
nearest-k comp comp-k visibility

cage 1.9 3.4 1.6 3.0
clutter 1.3 1.3 1.4 2.3
hole 409.5 7428.2 7554.4 102.5
house 4.9 3.0 13.0 45.5
rooms 0.4 0.2 0.2 6.3
wrench 0.5 0.4 0.4 1.6

Table 2: Comparison between 4 node adding strategies

values for the maximal distance d and for the maximum number of connections k. It turned
out that for most test scenes a value of k between 20 and 25 was best. Only for the clutter
scene a much smaller value of around 10 was required. The reason is that many connections
are invalid due to the large number of obstacles. So even when there are many connected
components it does not help to try to connect to them. For the maximal distance a similar
argument holds. For large open scenes, like the cage and the wrench, a large value is best.
For more constrained scenes, a smaller value is required. For the hole scene an even smaller
value works best. The reason is that in the difficult part of the scene only short connections
have a chance of success. We used the optimal values in the rest of this paper. In general, one
would like to have a technique that determines the best values based on (local) properties of
the scene. Such a technique is currently lacking.

As connected components play an important role, different techniques have been sug-
gested to favor connections to components. While the standard nearest-k method tries to
connect to the nearest k nodes, the component method tries to connect the new configuration
to the nearest node in each connected component that lies close enough. The component-k
method is a combination and tries to connect to at most k nodes in each connected component.
The visibility sampling technique described in [25] is also a kind of connection technique. It
tries to connect the new configuration to useful nodes. Usefulness is determined as follows:
When a new node can be connected to no other nodes it forms a new connected component
and is labeled useful. If it connects two or more components, it is also labeled useful. If it can
be connected to just one component it is not labeled useful and removed.

Table 2 summarizes the results and confirms our earlier results in [13]. Although the
visibility approach pruned the graph a lot, it still performed worse on most scenes. We feel
that the reason is that the approach is too strict in rejecting nodes. Even though the component
based techniques were often faster we used the nearest-k approach in the rest of the paper to
avoid problems with the hole scene.

3 Uniform Sampling

The first papers on PRM used uniform random sampling of the configuration space to select
the nodes that are added to the graph. In recent years, other uniform sampling approaches
have been suggested to remedy certain disadvantages of the random behavior. In particular
we will study the following techniques:

random In the random approach a sample is created by choosing random values for all
its degrees of freedom. The sample is added when it is collision-free.

grid In this approach we choose samples on a grid. Because the grid resolution is un-
known in advance, we start with a coarse grid and refine this grid in the process, halving the



basic sampling strategy
random grid halton halton* rnd halton cell-based

cage 2.3 3.2 1.9 2.0 1.5 2.8
clutter 1.2 3.4 1.3 1.5 1.5 1.4
hole 433.9 370.4 422.3 201.4 435.5 279.5
house 78.7 3.2 4.9 10.4 17.9 10.0
rooms 0.7 0.8 0.4 0.7 0.6 0.7
wrench 0.7 0.4 0.5 0.4 0.7 0.4

Table 3: Comparison of average running times of 6 basic sampling strategies

cell size. Grid points on the same level of the hierarchy are added in random order.
halton In [8] it has been suggested to use so-called Halton point sets as samples. Halton

point sets have been used in discrepancy theory to obtain a coverage of a region that is better
than using a grid (see e.g. [9]). It has been suggested in [8] that this deterministic method is
well suited for PRM.

halton* In this variant of halton we choose a random initial seed instead of setting the
seed to zero [34]. The claims in [8] should still hold because they are independent of the seed.

random halton In this approach we use again halton points. But when adding the nth
sample point we choose an area around this point (in configuration space) and choose a
random configuration in this area. As size of the area we choose kA/n where A is the area of
(the relevant part of) the configuration space and k is a small constant. So the area becomes
smaller when more and more points are added. This added randomness should solve cases in
which halton is unlucky.

cell-based In this approach we take random configurations within cells of decreasing size
in the workspace. The first sample is generated randomly in the whole space. Next we split
the workspace in 23 equally sized cells. In a random order we generate a configuration in each
cell. Next we split each cell into sub-cells and repeat this for each sub-cell. This should lead
to a much better spread of the samples over the configuration space.

An important question is how to choose random values. Random values were obtained by
the Mersenne Twister [24]. Sampling for the rotational degrees of freedom (SO3) was per-
formed by chosing random quaternions [29], except for halton based sampling techniques: we
converted the (three Euler angle) halton values to a quaternion. See [35] for a more extensive
elaboration on sampling methods for SO3.

Table 3 summarizes the results. It can be seen that the results were rather varying. In
general the differences were rather small, that is, the slowest method took about twice the
time of the fastest method. But for each scene another technique was the fastest. There was
just one exception. The random approach performed reasonable well except in the house
scene. For this particular scene there was a huge variation in running times between different
runs. More that a third of the runs took 6 seconds or less, while another third took more than
100 seconds (one run even took 650 seconds). As a result, conclusions based on average times
are difficult to make. Also the other approaches had a high variation in running time. Figure
2 shows a boxplot of the different running times for the rooms scene for the methods. The
cell-based approach seemed to have the lowest variance.

It is interesting to compare halton and halton*. In some sense halton is simply one par-
ticular run of halton*. We saw that e.g. for the house scene it was a lucky run while for the
hole scene it was an unlucky run. Adding a bit of randomness did not seem to remedy this
problem, although our earlier results [13] seemed to suggest this.
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Figure 2: Box plot for the rooms scene, showing the variation in running time for 30 runs

In general we must conclude that there is little to win when using different kinds of
uniform sampling in terms of average running time. There can though be other arguments to
use a particular technique. For example, the halton approach is deterministic. Even though it
might be unlucky on a particular scene this still is a favorable property.

4 Advanced Sampling

Rather than using uniform sampling, it has been suggested to add more samples in difficult
regions of the environment. In this section we study a number of these techniques:

gaussian Gaussian sampling is meant to add more samples near obstacles. The idea is to
take two random samples, where the distance between the samples is chosen according to a
Gaussian distribution. Only if one of the samples lies in Cfree and the other lies in Cforb do we
add the free sample. This leads to a favorable sample distribution [7].

obstacle based This technique, based on [1], has a similar goal. We pick a random sample.
If it lies in Cfree we add it to the graph. Otherwise, we pick a random direction and move the
sample in that direction with increasing steps until it becomes free and add the free sample.

obstacle based* This is a variation of the previous technique where we throw away a
sample if it initially lies in Cfree. This will avoid many samples in large open regions.

bridge test The bridge test [15] is a hybrid technique that aims at better coverage of the
free space. The idea is to take two random samples, where the distance between the samples
is chosen according to a Gaussian distribution. Only if both samples lie in Cforb and the point
in the middle of them lies in Cfree the free sample is added. (To also get points in open space,
every sixth sample is simply chosen random.)

medial axis This technique generates samples near the medial axis (MA) of the free
space [33]. All samples have 2-equidistant nearest points resulting in a large clearance from
obstacles. The method increases the number of samples in small volume corridors but is
relatively expensive to compute.

nearest contact This method generates samples on the boundary of the C-space and can
be seen as the opposite to the medial axis technique. First we choose a uniform random
sample c. If c lies in Cfree we discard it, else we calculate the penetration vector v between
c and the environment. Then we move c in the opposite direction of v and place c on the
boundary of the C-space. Care must be taken not to place c exactly on the boundary, because
then it would be difficult to make connections between the samples.

We expect these techniques to be useful only in scenes where there are large open areas
(in configuration space) and some narrow passages. Table 4 shows the results. (The halton*
approach is shown for comparison.)



sampling around obstacles
gaussian obstacle obstacle* bridge MA nearest cont. halton*

cage 7.3 3.1 5.3 3.3 215.9 5.4 2.0
clutter 2.8 2.0 2.6 3.3 620.4 7.1 1.5
hole 8.8 47.5 7.1 35.4 7.7 2.3 201.4
house 18.0 20.7 13.0 28.8 199.3 15.7 10.4
rooms 0.5 0.4 0.5 1.0 3.5 0.4 0.7
wrench 2.7 0.9 1.9 0.7 11.0 3.8 0.4

Table 4: Comparison of average running times of 7 advanced sampling strategies

As expected the techniques only performed considerably better for the hole scene. Also
for the rooms scene the methods worked well but the improvement was not significant. How-
ever, in other situations the methods were up to 10 times slower. The medial axis approach
was even worse, due to the expensive calculations. The method does though give samples that
are nicely located between the obstacles which leads to motions with a higher clearance.

We conclude that special non-uniform techniques should only be used in specific situation
with narrow corridors. Preferably they should also only be used in the parts of the workspace
where this is relevant.

5 Variation of running times

An advantage of random sampling techniques is that they are usually fast and can succesfully
deal with the diversity of problems. However, a price has to be paid: the running times needed
to find a solution will vary. We noticed that some of them were exorbitantly high, increasing
the average considerably. This phenomenon is undesirable because of two reasons. First, a
large variation complicates statistical analysis and can even make it unreliable. Second, it is
undesirable from a users point of view, e.g. in a virtual environment where real-time behavior
is required, only a particular amount of cpu time will be scheduled for the motion planner.

A first study of this problem has been reported in [18], where bidirectional A∗ search is
used, based on parameterized formulas for increasing the competence of the local planner.
We propose a new simple technique that can be used to decrease the maximum, average and
variance of running times:

restart prm We run PRM for a particular time t. If no solution is found within t seconds,
the PRM is restarted, throwing away the roadmap created so far. We repeat this process until
a solution is found. Clearly, t should be a reasonable guess for the time in which we expect
that the problem can be solved. If no such guess can be made we can also start with a small
value and double the time t in each step.

As an example we apply the approach to the wrench scene. To make sure our averages
make sense we ran the planner 2000 times. Figure 3 shows the percentage of runs that have
been solved in a particular amount of time. We only show the tail of the chart because the
heads of the two curves are indistinguishable.

Only 1% of the runs that were generated without restarting had a high running time (be-
tween 8.0 and 60.8 seconds). By restarting the PRM after 4 seconds this interval was dramati-
cally improved to [4.9; 8.2]. This improvement positively changed the average, maximum and
standard deviation of running times, which are stated in table 5. We conclude that restarting
the PRM makes random techniques more robust. We plan to investigate this approach further.
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Figure 3: Cumulative percentages of 2000 runs solved in t seconds for the wrench scene.

statistics for the variance problem
minimum average maximum st. deviation

without restart 0.03 1.01 60.81 2.32
with restart 0.05 0.88 8.20 1.00

Table 5: Average running times for the wrench scene with and without restarting the PRM

6 Conclusions

In this paper we presented the results of a comparative study of various sampling techniques
for the PRM approach to motion planning. The results showed that many claims on efficiency
of certain sampling approaches could not be verified. The study also showed the difficult of
evaluating the quality of the techniques. In particular the variance in the running time and the
influence of certain bad runs are surprisingly large. We presented a very simple variance killer
that seems to be effective. We are fairly though certain that better techniques exist. This is an
interesting topic for further study. This study does not provide a final answer as to the best
technique. Further research, in particular into adaptive sampling techniques, will be required
for this.
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