
Creating Small Roadmaps for Solving Motion Planning Problems∗

Roland Geraerts and Mark H. Overmars
Institute of Information and Computing Sciences

Utrecht University, 3508 TB Utrecht, the Netherlands
{roland,markov}@cs.uu.nl

Abstract— In robot motion planning, many algorithms have
been proposed that create a roadmap from which a path for a
moving object can be extracted. These algorithms generally do
not give guarantees on the quality of the roadmap, i.e. they do
not promise that a path will always be found in the roadmap
if one exists in the world. Furthermore, such roadmaps often
become very large which can cause memory problems and high
query times.

We present a new efficient algorithm that creates small
roadmaps for two- and three-dimensional problems. The algo-
rithm ensures that a path is always found (if one exists) at a
given resolution. These claims are verified on a broad range of
environments. The results also give insight in the structure of
covering roadmaps.

Keywords—motion planning, small roadmaps, PRM

I. INTRODUCTION

A central problem in robotics is planning a collision-free
path for a moving object in a rigid environment. In the last
two decades, efficient algorithms have been devised to tackle
this problem. They are successfully applied in fields such as
mobile robots, manipulation planning, CAD systems, virtual
environments, protein folding and human robot planning. See
e.g. the books of Latombe [1] and Lavalle [2] for many
interesting results.

In these application areas, it is often desirable that a path
between a start and goal configuration (which is a placement
of the moving object) is quickly found. For example, mainte-
nance studies in industrial installations [3] can be performed
more efficiently if an engineer does not have to wait long for
a solution. In other fields, e.g. in games, only a fixed small
amount of calculation time is available to compute the path.
If this calculation takes too long, the game may halt.

Single shot methods, such as RRT [4], aim at quickly
connecting a start configuration to a goal configuration.
Although good performance is achieved (compared to the
traditional methods described in [1]), they may still be too
slow as the calculations are performed on-line. In contrast,
the Probabilistic Roadmap Method (PRM) enables the con-
struction of a path in real-time [5]–[8]. The PRM consists
of two phases: a construction phase (off-line) and a query
phase (on-line). In the construction phase, a roadmap (graph)

∗This research was supported by the Dutch Organization for Scientific
Research (N.W.O.). This research was also supported by the IST Programme
of the EU as a Shared-cost RTD (FET Open) Project under Contract No
IST-2001-39250 (MOVIE - Motion Planning in Virtual Environments).

is built, representing the motions that can be made in the
environment. Nodes in the roadmap correspond to randomly
chosen collision-free configurations. When a node is added, a
simple local planner is employed to connect the configuration
to some useful neighbors in the roadmap. A neighbor is
useful if its distance to the new configuration is less than
a predetermined constant. Configurations and connections are
added to the roadmap until the roadmap is dense enough.
In the query phase, the start and goal configurations are
connected to the roadmap. Then, the path can be obtained
by a Dijkstra’s shortest path query.

A drawback of the PRM is that a resulting roadmap often
contains many redundant nodes and edges, in particular when
the environment contains one or more narrow passages. Over
the years, many improvements have been suggested to tackle
the narrow passage problem [9]–[11] but those solutions often
lead to large roadmaps. Such large roadmaps increase the time
needed to extract a path and can require a vast amount of
memory which may not always be available. Furthermore, the
roadmap may contain many short edges which complicates the
smoothing phase that often follows a query phase [8]. Another
drawback is that a path may not always be found in practice
while one exists. This occurs for example when the roadmap
is not dense enough.

A variant of the PRM that aims at keeping the roadmap
small is the visibility based roadmap [12]. This technique
only connects configurations to useful nodes. Usefulness is
determined as follows: when a new node cannot be connected
to other nodes it forms a new connected component and is
labeled useful. If it connects two or more components it is also
labeled useful. If it can be connected to just one component
it is not labeled useful. Although this approach prunes the
roadmap a lot, it is often slower than other variants of the
PRM as the approach is too strict in rejecting nodes [6].

We propose a new efficient method that creates a small
roadmap for two- and three-dimensional problems. Our
method will ensure that a valid query can always be connected
to the roadmap and that a path is always found (if one
exists) at a given resolution. Because the roadmap is small,
smoothing can easily be applied in the preprocessing phase,
leading to instant query answers. We will elaborate on the
properties of the approach in section II. In section III we show
the outline of the method and we work out its details in section
IV. In section V we show some experiments on different

scenes and in section VI we conclude that our algorithm
successfully creates small roadmaps for a large diversity of
environments.

II. REACHABILITY

An important question is how to determine when the
roadmap is dense enough, i.e. when should the algorithm ter-
minate? Many motion planning techniques such as the PRM
and RRT are probabilistically complete [5], i.e. whenever a
path exists, the probability that it will be found converges
to one as the computation time goes to infinity. As there
is no guaranteed upper bound, the running time is not a
practical termination criterion. Many authors terminate the
method when a path between a specified start and goal is
found. However, this does not guarantee that this roadmap
can solve every query.

In [13], we used the reachability criterion to determine
when a problem has been solved, i.e. a problem has been
solved if a roadmap G = (V, E) covers the free configuration
space (Cfree) and captures its connectivity. We define coverage
and maximal connectivity as follows:

Definition 1 (coverage). G covers Cfree when each configu-
ration c ∈ Cfree can be connected using the local planner to
at least one vertex v ∈ V .

Definition 2 (maximal connectivity). G is maximally con-
nected when for all vertices v′, v′′ ∈ V , if there exists a path
in Cfree between v′ and v′′, then there exists a path in G
between v′ and v′′.

Coverage ensures that every query (which consists of a
start and goal configuration) can be directly connected to the
roadmap, as is required to solve the problem. If there exists
a path (in Cfree) between the start and goal configuration,
then maximal connectivity ensures that a path between them
can be found in the roadmap. We will use this criterion as a
termination criterion in the remainder of this paper.

Figure 1 shows an environment whose free space is covered
by two (white) vertices and is connected via one extra (black)
vertex. The reachability region for the upper left vertex
has been drawn. Each configuration in this region can be
connected with a straight line to the vertex, so a three-node
graph suffices to solve this problem. In section IV we will
explain how such a reachability region can be computed.

III. REACHABILITY ROADMAP

In this section we show how to create a small roadmap that
satisfies both the coverage and maximal connectivity criteria.
The idea is to compute a small number of guards that ’see’
the complete free space (coverage). These guards are then
connected via connectors to fulfill the maximal connectivity
criterion. The resulting roadmap is then pruned to obtain an
even smaller roadmap.

Computing the minimum number of guards corresponds to
the well known art gallery problem which is NP-hard [14]. As

Fig. 1. The coverage and maximal connectivity criteria have been met:
the reachability regions of the white vertices cover the free space and are
connected via the black vertex.

we want to create a roadmap for a possibly large environment
with many obstacles, exact algorithms are infeasible. There-
fore, we will use a heuristic to create and place these guards
(which are added as nodes to the roadmap).

Globally speaking, the method works as follows. To get the
free space covered as fast as possible, we place the guards
on locations where they may see a large part of the space.
Locations on the medial axis are good candidates as they
have a large clearance from the obstacles and thus have an
increased probability of having a large reachability region. To
prune the number of candidate guards, a new guard is only
accepted if it cannot be seen by guards that have already been
placed. It can occur that all points on the medial axis are seen
by the guards while the free space has not been fully covered
yet. In such a case we choose a point in a location which
initially cannot be seen by other guards. Then we retract this
point to the medial axis to increase the expected size of its
reachability region. (Note that this guard will be seen by other
guards.) An advantage of placing all guards on the medial axis
is that ’good’ roadmaps are produced [11]. We keep adding
new guards until the free space has been completely covered.

We connect the guards by placing connectors in the over-
lapping reachability regions of the guards. We consider all
pairs of guards whose regions overlap. For each pair, we add
the connections and connector to the roadmap.

Finally, we prune this roadmap by transforming it to a
Steiner Tree. Such a tree is a shortest network that does not
throw away guards (but is allowed to remove connectors) and
keeps the connected components connected. Then we add all
remaining connections and create a minimal spanning tree to
reduce the length.

Theorem 1 (Coverage of Cfree). The above methods lead to
a complete coverage of Cfree.

Proof: The medial axis is a connected structure if the free
space in which a robot operates is also connected [15].
Hence, the medial axis is a complete representation for motion
planning purposes. We start with selecting points on the
medial axis and add them as nodes to the roadmap. If all
points on the medial axis are covered by the guards but there
are still points in Cfree that have not been covered yet, we
select such a point which we retract to the medial axis. As

this retraction can be performed in a straight line [11], the
original point will be covered by the retracted point. Because
we keep adding new guards until the free space is completely
covered, the coverage criterion will be met. This criterion
will remain satisfied when the roadmap is pruned as these
heuristics never remove guards.

Theorem 2 (Maximal connectivity of Cfree). The above
method satisfies the maximal connectivity criterion.

Proof: Consider a path Π from node v′ to node v′′ that
lies in Cfree. As Cfree is completely covered, there exists for
each configuration π ∈ Π a node vi ∈ V that sees π. Now
consider the sequence of different nodes vi ∈ V that sees the
configurations on Π. (If multiple nodes in V see a particular
configuration π, we consider the node vi having the smallest
index i.) If adjacent configurations πj and πj+1 are seen by
node vi, vi represents the path between these configurations.
If they are seen by different nodes vi and vi+1, there exists
a path between these two nodes (possibly via a connector) in
the graph as these configurations lie in the overlapping regions
of vi and vi+1. (A degenerate case is when the regions of vi

and vi+1 touch and do not overlap. This case can be handled
by placing an extra connector on the boundary of these two
regions.) Because a path between v′ and v′′ (in the graph)
can be mapped to a path in Cfree, this roadmap will obey
the maximal connectivity criterion. The maximal connectivity
criterion will remain satisfied when the roadmap is pruned as
the heuristics only remove edges that are part of cycles.

IV. ALGORITHMIC DETAILS

The main operation in our technique is the computation
of the reachability regions. An exact computation of these
regions would involve intricate and practically infeasible
calculations in the configuration space C. To make the calcula-
tions feasible, we approximate the C-space by discretizing it.
As a consequence, this approach is limited to low-dimensional
C-spaces. We performed experiments with both two- and three
dimensional C-spaces.

We discretize a d-dimensional C-space as follows. First,
we create a d-dimensional grid. For each cell in this grid we
check whether the corresponding configuration collides with
the obstacles and update the cells appropriately, i.e. we put
the value 0 in the cell if it collides and 1 otherwise. We will
use this grid in the remainder of the algorithm, see Figure
2(a).

In section IV-A, we show for a given resolution how to
get the free space covered and in section IV-B we show how
to get this space maximally connected. Finally, we show in
section IV-C how the roadmap can be pruned.

A. Coverage

We need a set of cells that reside on the medial axis. This
set can be efficiently computed by the medial axis transform

(a) C-space (b) MAT (c) DT

(d) Overlay (e) Guards

Fig. 2. The creation of candidate guards. Figure (a) shows the free (white)
cells of the discretized C-space of Figure 1. Figure (b) shows the cells of
medial axis transform and (c) the distance transform. Dark cells correspond
to a large distance to the closest obstacle while light cells correspond to a
small distance. In (d), the overlay of the MAT and DT is shown. Finally, (e)
shows the four guards having the largest distance in the overlay.

(MAT) which is a well known technique in mathematical
morphology. We use the algorithm presented in [16]. This
algorithm is a two-pass dynamic program that computes the
MAT in O(n) time where n is the number of cells in the grid.
See Figure 2(b) for an example.

As guards having a larger distance to the obstacles should
be handled earlier than guards having a small distance, we
need to compute their distances to the obstacles. These can be
efficiently computed by the distance transform (DT) in O(n)
time, see Figure 2(c). Like the MAT, the DT is also computed
by a two-pass dynamic program, see e.g. [16]. We determine
the clearance for each medial axis cell by overlaying the MAT
with the DT, see Figure 2(d). These cells are then sorted by
decreasing distance using bucket sort in linear time. We store
these cells, which are candidates for guards, in a list M , see
Figure 2(e).

We keep adding guards from this list to the roadmap until
the free space has been fully covered (or when all points
of M have been handled). As we have already mentioned,
we first only add guards that cannot be seen by guards that
have already been added. If the space is not covered when all
medial axis points have been handled, we consider uncovered
points from the distance transform (in decreasing order) and
add their retraction on the medial axis, see e.g. [11].

There are now two problems we have to solve, i.e. how to
determine the cells that are covered by a guard and how to
determine which cells have not been covered yet.

We determine the cells that are covered by a guard placed
in cell mi ∈ M as follows. For each free cell we check if
a straight-line connection between the free cell and cell mi

can be made. By using the Bresenham line-drawing algorithm
[17], this line can be computed in linear time in the number

(a) A star-shaped 2D
reachability region

(b) A 3D reachability region for the manipu-
lator arm depicted in Figure 5(c)

Fig. 3. Complicated two- and three dimensional discretized reachability
regions

of cells covered by the line. Let |mi| be the number of cells
reachable from region mi and s be the number of cells along
the largest side of the grid. Then covering a region using this
approach takes O(|mi|∗s) time. However, using a more clever
approach we can improve this to O(|mi|) time. (Details will
be given in the full paper.) The shape of such a region can
be complicated, see Figure 3.

To determine which cells have not been covered yet, we
store in each cell of the grid the set of guards that cover
the cell, i.e. when guard mi is added to the roadmap, for
all cells that are covered by this guard index i is inserted to
the corresponding sets in the grid. A set is a data structure
that allows insertions in O(log k) time [18], where k is the
number of guards that cover this cell. Checking whether the
cell has been covered by a guard is performed in O(log k)
time. (Storing all covering guards might seem an overkill but
we need this information in the next phase.)

B. Maximal connectivity

As a guard cannot usually see any other guards, we need
to calculate a set of connectors to which the guards can
be connected such that the maximal connectivity criterion is
satisfied. These connectors will be placed in the overlapping
reachability regions of the guards. For each pair of guards
that share cells in the grid, we place one connector in a cell
that lies on the medial axis. (If more than one cell satisfies
this condition, we choose the one that has the largest value
in the DT.) If such a cell does not exist, we choose a cell
that has the largest distance in the DT. (If more than one cell
satisfies this condition, we choose the one that minimizes the
connection distance of the connector to the two guards.) It is
possible that different connectors share the same cell in the
grid. In such a case these connectors are merged. This part of
the algorithm can be computed in linear time in the number
of elements of the sets in the grid. We obtain a roadmap
that satisfies the maximal connectivity criterion by adding all
collision-free connections between the guards and connectors.

C. Roadmap pruning

If we allow all collision-free connections between guards
and connectors, the number of connections can become quad-

(a) Initial roadmap (b) Steiner tree

(c) All connections (d) MST

Fig. 4. Roadmap pruning. Figure (a) shows (among other roadmap elements)
the connectors (small spheres) that lie in the overlapping regions. From this
roadmap, an approximated shortest roadmap is calculated in (b). In (c), all
collision-free connections are added. Finally, (d) shows the minimal spanning
tree (MST) of the roadmap in (c).

ratic in the number of nodes in the roadmap. Figure 4(a)
shows such a fully connected roadmap. As our objective is
to create a small roadmap, we want to solve the following
problem. Given a roadmap G that consists of a set of guards,
a set of connectors, and all feasible connections between the
joint set of guards and connectors, create a shortest roadmap
G′ (in terms of total edge length) that spans the guards, see
Figure 4(a). This problem is known as the discrete Euclidean
Steiner problem which is NP-complete [19]. Consequently,
no polynomial time algorithm for this problem is likely to
exist. We handle this problem by using the shortest path
heuristic [19], which is based on Prim’s minimum spanning
tree algorithm [18]. See Figure 4(b) for an example.

The total edge length of G′ can be further decreased by
the following approach. First, all collision-free connections
between the nodes in G′ are added to G′, see Figure 4(c).
Then, its minimal spanning tree (MST) is calculated by
Kruskal’s algorithm [18], see Figure 4(d).

V. EXPERIMENTAL RESULTS

The techniques were implemented in our motion planning
system SAMPLE (System for Advanced Motion PLanning
Experiments) in Visual C++ under Windows XP. All exper-
iments were run on a 2.66GHz Pentium 4 processor with 1
GB internal memory. SAMPLE used Solid as basic collision
checking package [20].

We performed experiments on ten different environments.
Due to space limitations, we selected four typical environ-
ments for this paper, see Figure 5. (See our website for the
results of the remaining experiments [21].) They have the
following properties:

(a) Grid (b) Rotated grid

(c) Manipulator

(d) Toy village

Fig. 5. The four test environments

Grid This is a simple 2D environment that contains 49
squares. The optimal solution is a roadmap containing seven
guards, six connectors and twelve edges. We want to know
whether our algorithm can be competitive compared to the
optimal solution.

Rotated grid We rotated the 49 squares which created
many narrow passages. We use this environment to study
the effect of the reduced local visibility on the size of the
roadmaps.

Manipulator This 3D environment features a robot arm
with three rotational degrees of freedom that can move
through a long passage. We selected this environment to show
that our algorithm can handle complex reachability regions in
C-space, see Figure 3(b) for an example of such a region.

Toy village This large 3D environment contains seven
buildings (>10,000 objects). In this environment there are
many scale differences, i.e. the environment has large open
spaces (outside) and small rooms (inside). We want to know
whether our algorithm can handle such large environments.

For each environment we created a roadmap with our
Reachability Roadmap (RR) technique. We compared this
technique with the PRM [7] (as this is a widely used motion
planning method) and the visibility based roadmap [12] (as
this method creates small roadmaps). For the latter two
techniques we took the average of 50 independent runs. Such a
run was solved if both the coverage and maximal connectivity
criteria were satisfied. When we report the construction time

for these two methods, we did not include the time needed to
check these two criteria.

We recorded the following statistical data: the construction
time of the roadmap, the number of nodes |N | and the
number of edges |E| in the roadmap. Furthermore, for each
environment and technique we measured the length of the
roadmap |G| which we calculated as the sum of the length of
each edge in the roadmap.

The results are stated in Table I and visualized in Figure 6.
Grid The Reachability Roadmap (RR) technique computed

a roadmap that has the minimum number of nodes. The
roadmap length is close to optimal. Hence, our algorithm is
competitive compared to the optimal solution. While the PRM
created much larger roadmaps, the visibility PRM produced
reasonable small ones but this took considerably more time
than the other two techniques. This is because the visibility
PRM sometimes creates artificial narrow passages which
complicates solving the problem [12].

Rotated grid As the reachability regions are much smaller
in this environment than the regions in the Grid environment,
more guards are needed to get the free space covered. The
RR technique needed far less nodes and edges than PRM
because the RR technique tries to minimize the amount of
double coverage. Also, the resulting roadmap length was
much smaller. The visibility PRM was not able to solve the
problem within one hour.

Manipulator The RR technique needed 313 nodes and 306
edges to cover and connect the three-dimensional configura-
tion space. Again, the PRM created much larger roadmaps.
This is because the C-space contains narrow passages which
complicates connecting the nodes. The visibility PRM was
not able to solve the problem within one hour.

Toy village As this environment has a rather non-uniform
distribution of the obstacles, the PRM had difficulties covering
and connecting the small areas. Also the visibility PRM was
not able to solve the problem within one hour. In contrast,
the RR technique solved the problem within 10 minutes. The
resulting roadmap concentrated the nodes at regions where
much detail was present in the environment while the open
spaces were only sparsely covered. This resulted in a small
roadmap.

While the RR technique outperforms the PRM and visibility
PRM for these specific two- and -three dimensional problems,
there are of course problems for which this does not hold.
In particular, when the number of dimensions increases, the
RR technique will be outperformed as the power of PRM
techniques is that they are not sensitive to the dimensionality
of the problem. Also, in many motion planning problems
full coverage of the C-space is not required as queries will
be ’reasonable’. In such situations the preprocessing times
for PRM and visibility PRM will be much lower. But the
roadmaps they produce will still be large, leading to increased
query times.

(a) Grid (b) Rotated grid

(c) Toy village

Fig. 6. The resulting roadmaps for the Grid, Rotated grid and Toy village
environments

TABLE I
STATISTICS FOR THE FOUR ENVIRONMENTS

Environment Grid resolution Technique Time (s) |N| |E| |G|

RR 0.33 13 12 88
Grid [80 × 80] PRM 0.74 158 157 638

vis-PRM 20.49 31 30 381
RR 6.78 249 248 388

Rotated grid [200 × 200] PRM 16.31 5889 5887 2328
vis-PRM >3600.00 n.a. n.a. n.a.
RR 10.81 313 306 380

Manipulator [60 × 60 × 60] PRM 86.24 11095 11091 2306
vis-PRM >3600.00 n.a. n.a. n.a.
RR 556.44 176 142 1268

Toy village [180 × 22 × 160] PRM >3600.00 n.a. n.a. n.a.
vis-PRM >3600.00 n.a. n.a. n.a.

VI. CONCLUSION

We presented a new efficient algorithm that creates small
roadmaps for two- and three-dimensional motion planning
problems. The algorithm ensures that every valid query can
be connected to the roadmap, as is required to solve the
problem. If there exists a path in the (discretized) free space
that connects the query, the algorithm ensures that a path can
be found in the roadmap.

We compared our algorithm with PRM and visibility PRM.
In our experiments, the Reachability Roadmap algorithm was
faster than the other two techniques and produced consider-
ably smaller roadmaps. While the PRM needed many nodes
and connections until it solved the problem, the visibility PRM
created small roadmaps but had great difficulties in getting the
free space covered and connected. It was surprising to see how
few nodes are actually required to build covering roadmaps.

We are currently investigating how to efficiently extend
the technique to higher dimensions. A roadmap that is built
for a lower dimensional subspace could be used to guide

the motions for an object operating in a high-dimensional
configuration space, see e.g. [22], [23]. We believe that this
approach will enhance the quality of motion planners, in
particular when query time is our major concern.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Kluwer, 1991.
[2] S. LaValle, Planning Algorithms. http://msl.cs.uiuc.edu/planning, 2005.
[3] T. Siméon, R. Chatila, and J.-P. Laumond, “Computer aided motion

for logistics in nuclear plants,” in International symposium on artifi-
cial intelligence, robotics and human centered technology for nuclear
applications, 2002, pp. 46–53.

[4] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in IEEE International Conference on
Robotics and Automation, 2000, pp. 995–1001.

[5] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani,
and P. Raghavan, “A random sampling scheme for path planning,”
International Journal of Robotics Research, vol. 16, pp. 759–744, 1997.

[6] R. Geraerts and M. Overmars, “Sampling techniques for probabilistic
roadmap planners,” in Conference on Intelligent Autonomous Systems,
2004, pp. 600–609.

[7] L. Kavraki, P. S̃vestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, pp. 566–580,
1996.

[8] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M. Overmars,
“Automatic construction of roadmaps for path planning in games,” in
International Conference on Computer Games: Artificial Intelligence,
Design and Education, 2004, pp. 285–292.

[9] V. Boor, M. Overmars, and A. van der Stappen, “The Gaussian sampling
strategy for probabilistic roadmap planners,” in IEEE International
Conference on Robotics and Automation, 1999, pp. 1018–1023.

[10] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in IEEE Interna-
tional Conference on Robotics and Automation, 2003, pp. 4420–4426.

[11] J.-M. Lien, S. Thomas, and N. Amato, “A general framework for
sampling on the medial axis of the free space,” in IEEE International
Conference on Robotics and Automation, 2003, pp. 4439–4444.

[12] C. Nissoux, T. Siméon, and J.-P. Laumond, “Visibility based probabilis-
tic roadmaps,” in IEEE International Conference on Intelligent Robots
and Systems, 1999, pp. 1316–1321.

[13] R. Geraerts and M. Overmars, “Reachability analysis of sampling
based planners,” in IEEE International Conference on Robotics and
Automation, 2005, pp. 406–412.

[14] J. O’Rourke, Art Gallery Theorems and Algorithms. New York: Oxford
University Press, 1987.

[15] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical
generalized Voronoi graph,” International Journal of Robotics Re-
search, vol. 19, no. 2, pp. 96–125, 2000.

[16] Y.-H. Lee, T.-W. Kao, and S.-S. Lee, “Optimal parallel algorithms
for computing the chessboard distance transform and the medial axis
transform on RAP,” in IEEE International Symposium on Parallel
Architectures, Algorithms and Networks, 1996, pp. 22–28.

[17] J. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[18] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press/ McGraw-Hill Book Company,
2001.

[19] F. Hwang, D. Richards, and P. Winter, The Steiner Tree Problem.
North-Holland, 1992.

[20] G. van den Bergen, Collision Detection in Interactive 3D Environments.
Morgan Kaufmann, 2003.

[21] R. Geraerts, “http://www.cs.uu.nl/people/roland,” 2005.
[22] J. van den Berg and M. Overmars, “Using workspace information as a

guide to non-uniform sampling in probabilistic roadmap planners,” in
IEEE International Conference on Robotics and Automation, 2004, pp.
453–460.

[23] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001, pp. 55–60.

