
Space-time Group Motion Planning

Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

Abstract We present a novel approach for planning and directing heterogeneous

groups of virtual agents based on techniques from linear programming. Our method

efficiently identifies the most promising paths in both time and space and provides

an optimal distribution of the groups’ members over these paths such that their av-

erage traveling time is minimized. The computed space-time plan is combined with

an agent-based steering method to handle collisions and generate the final motions

of the agents. Our overall solution is applicable to a variety of virtual environment

applications, such as computer games and crowd simulators. We highlight its po-

tential on different scenarios and evaluate the results from our simulations using a

number of quantitative quality metrics. In practice, our system runs at interactive

rates and can solve complex planning problems involving one or multiple groups.

1 Introduction

In this work, we address the problem of planning the paths and directing the mo-

tions of agents in an environment containing static obstacles. The agents are orga-

nized into groups having similar characteristics and intentions, such as an army of

soldiers in a real-time strategy game or virtual pedestrians that cross paths at an in-

tersection. Each group has its own start and goal position (or area), and each group

member will traverse its own path. Our formulation is designed for large groups and

the main objective is to steer the group agents towards their destinations as quickly

as possible and without collisions with obstacles or other agents in the environment.

This task would have been simple, if the paths of the agents were independent of

each other. However, due to space restrictions, congestions may appear and waiting

or finding alternative paths may be more efficient for some agents. Furthermore, the

time dimension introduces additional complexity into the planning process; conges-

Utrecht University, The Netherlands. E-mail:{ioannis, roland, frankst}@cs.uu.nl

1

2 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

tions only appear at certain moments in time, while at other moments the same area

may be completely empty allowing the agents to navigate through it without delay.

To resolve the aforementioned problems, we present a novel algorithm for plan-

ning and directing group motions that is based on linear programming. Our solution

translates the group planning problem into a network flow problem on a graph that

represents the free space of the environment. It plans in both space and time and

uses the column generation technique [3] from the operations research theory to ef-

ficiently identify the most promising paths in the graph. The planner computes an

optimal distribution of the agents over these paths such that their average traversal

time is minimized. The computed space-time plan is then given as an input to an

underlying agent-based method in order to handle collisions between the agents and

generate their final motions.

As compared to prior solutions, our method offers the following characteristics:

• Space-time planning of multiple groups of heterogeneous agents based on a lin-

ear programming approach;

• Optimal distribution of the agents over alternative paths to resolve congestions;

• Coordination of the movements of the agents to prevent deadlocks that typically

occur near bottlenecks (e.g. narrow passages) in the environment;

• Explicit waiting behavior that leads to convincing simulations of high-density

crowds with no observed oscillatory behavior;

• Seamless integration of global path planning with existing schemes for local col-

lision avoidance;

• Real-time performance in complex and challenging scenarios.

2 Related Work

The most common approach to simulate groups of autonomous agents is the flocking

technique of Reynolds [19]. Although flocking leads to natural behavior, the group

members act based only on local information and thus, they can get stuck in cluttered

environments. To remedy this, Bayazit et al. [1] combined flocking techniques with

probabilistic roadmaps, whereas Kamphuis and Overmars [8] used the concept of

path planning inside corridors so that the group members can stay coherent.

In general, two-level planning approaches have been widely used in the graph-

ics and animation community for multi-agent navigation and crowd simulation. In

these approaches, a high-quality roadmap governs the global motion of each agent

[5, 31], whereas a local planner allows the agent to avoid collisions with other agents

and obstacles. Over the past few years, numerous models have been proposed for

local collision avoidance including force-based approaches [7, 11] and variants of

velocity-based methods [28, 27]. These approaches are known to exhibit emergent

behaviors. Nevertheless, since they are separated from the global planner, they are

susceptible to local-minima problems. In highly dynamic and densely packed envi-

ronments, this normally leads to deadlock situations (see, e.g., Fig. 1(b)) that can

only be resolved by rather unnatural motions. In such environments, even replan-

Space-time Group Motion Planning 3

(a) (b) (c)

Fig. 1 (a) Two opposing groups, of 56 members each, need to pass through a narrow bottleneck.

(b) Agent-based methods lead to congestion and deadlocks. (c) Our technique can successfully

handle such challenging scenarios by planning in both space and time.

ning is often insufficient to generate a feasible trajectory. Note that, similar to our

technique, the recent work of Singh et al. [23] resolves deadlocks by planning on a

space-time graph. However, their formulation provides a localized space-time plan

for each agent and cannot give any guarantees on the overall behavior of the agents.

Multi-agent path planning has also been extensively studied in robotics. Central-

ized planners, such as [15, 20], compute the motions of all agents simultaneously,

whereas decoupled techniques [17, 22] plan a path for each agent independently

and try to coordinate the resulting motions. However, both solutions are too com-

putationally expensive for real-time interactive applications. Prioritized approaches

have also been proposed that plan paths sequentially according to a certain priority

scheme [29, 24]. This reduces the multi-agent planning problem to the problem of

computing a collision-free trajectory for a single agent in a known dynamic envi-

ronment, which can be addressed by roadmap-based space-time planners [30]. Even

though prioritized techniques guarantee inter-agent collision avoidance, the growing

complexity of the planning space limits the number of agents that they can simulate.

Prior work in the graphics community has also focused on the synthesis of real-

istic group motions mainly for offline simulations of crowds [14, 13]. Recently, a

number of algorithms have been proposed to simulate the local behavior of pedes-

trian groups [18, 12], but they do not address the issue of path planning. An alterna-

tive approach has been proposed in [25] that guides large homogeneous groups using

continuous density fields. This approach unifies global planning and local collision

avoidance into a single framework and can become expensive when simulating a

large number of groups. More recently, Patil et al. [16] proposed a novel technique

to steer and interactively control groups of agents using smooth, goal-directed navi-

gation fields. Although their approach can effectively handle challenging scenarios,

it requires user input to guide the agent flows and successfully resolve congestion, as

compared to our model that automatically accounts for time-consuming situations.

Finally, a different solution to the group path finding problem has emerged from

the operations research community. Van den Akker et al. [26] formulated this prob-

lem as a dynamic multi-commodity flow problem. Their approach takes as input a

graph resembling the free space of the environment and several groups of units, each

having its own start and goal position. A capacity is associated with each arc on the

graph representing the maximum number of units that can traverse this arc per unit

time. The objective is to find paths that minimize the average arrival times of all

4 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

units. Since this problem is known to be NP-hard, they proposed a new heuristic

based on techniques from linear programming.

Our model is inspired by the work of van den Akker et al., since we use a similar

linear program to coordinate the global motions of the groups (Sect. 4). However, we

extend their formulation to allow the simulation of heterogeneous groups. We also

take into account capacity constraints on the nodes of the graph, which provides

a more accurate solution to the problem and inhibits the oscillations we observed

in [26] when multiple agents have to wait on a certain node. Moreover, van den

Akker’s model uses a directed graph to capture the free workspace. This signifi-

cantly restricts the movements of the agents; in real life, for example, pedestrians

can walk in either direction along a sidewalk or simultaneously enter/exit a building

through the same door. To resolve this, our method uses undirected edges and thus,

additional constraints are considered. Finally, van den Akker et al. only present a

theoretical framework for global planning and do not discuss simulation. We ad-

dress this with a simple, yet effective, steering algorithm that guides the agents

towards their goals without collisions (Sect. 5).

3 Problem Formulation and Overall Solution

In our problem setting, we are given a geometric description of a virtual environment

in which k groups of agents must move. Each group Ci, i ∈ [1,k] has its own start si

and goal position ti and consists of di agents that need to navigate from a specified

start to a specified goal area defined around the group’s origin and destination point

respectively. Furthermore, each group Ci is assigned a desired speed Udes
i indicating

the speed at which its members prefer to move. Given a group Ci, we denote an agent

belonging to Ci as Ai j, where j ∈ [1,di]. For simplicity, we assume that each agent

Ai j is modeled as a disc having radius ri j and is subject to a maximum speed υmax
i j .

We further assume that Ai j keeps a certain psychophysical [7] distance ρi j ≥ ri j from

other agents and static obstacles in order to feel comfortable. This distance defines

the personal space of Ai j modeled as a disc centered at the agent. The task is then

to steer the group members Ai j toward their corresponding goal areas as quickly as

possible and without collisions with the environment and with each other.

We propose a two-level framework to solve the aforementioned planning prob-

lem. In the first phase, we formulate the group planning problem as a dynamic

multi-commodity flow problem and employ an Integer Linear Programming (ILP)

approach to solve it. The ILP plans in both time and space by taking into account

capacity constraints on the edges and the nodes of a graph that is based on the medial

axis of the environment. The variables in the ILP represent the number of agents us-

ing a certain path. Such a path is described by the graph nodes that the agent should

visit along with the times at which these nodes should be reached. Furthermore,

waiting behavior can be encoded in the path.

In the second phase of our framework, the paths computed by the ILP are given

as input to an agent-based steering algorithm in order to generate the final motions

Space-time Group Motion Planning 5

Fig. 2 (a) A medial axis

graph MG enhanced with

proximity information to

nearest obstacles. (b) Its

corresponding capacitated

graph G.

(a)

c=5.4c=5.4

c=3.2l=7.1

c=5.4l=6.9c=5.4l=6.9

c=5.4l=6.9c=5.4l=6.9

l=6.9 l=6.9

c=5.4c=5.4

l=6.9 l=6.9

c=3.2l=7.1

c=3.2c=3.2

l=7.1 l=7.1

c=6.3 c=6.3

c=6.3 c=6.3

c=5.9

c=5.9

c=5.9 c=5.9

c=4.5

(b)

of the agents. The algorithm creates a number of lanes across the medial axis edges

and computes for each agent a trajectory along these lanes that respects the space-

time plan provided by the ILP. At every step of the simulation, a local collision

avoidance method is also used to guarantee collision-free navigation for the agents.

In the following sections, we elaborate on our method. For a more detailed ex-

planation, including theorems, proofs and additional experiments, we refer to [9].

4 Path Planning for Groups

This section outlines the first phase of our framework that formulates the multi-

group path planning problem as a dynamic multi-commodity flow problem.

4.1 Creating a Capacitated Graph

To solve the problem, we first need a graph that resembles the free space of the en-

vironment. We base this graph on the edges and vertices of the medial axis (MA),

as it provides maximum clearance from the obstacles and includes all cycles present

in the environment. In particular, we precompute a MA graph MG = (V,E) by sam-

pling event points (nodes of degree 2 or more) along the MA based on the approach

proposed in [4]. The resulting structure fully covers the free space of the environ-

ment using a minimum amount of sample points. Also, for each sample point, its

minimum clearance is stored along with its corresponding nearest obstacle points.

Figure 2(a) shows an example of such a graph. Note that the graph is undirected.

Based on MG, we compute a capacitated graph G = (N,E) as follows. We first

copy all vertices and edges from MG to G. We then determine all nodes of degree

1 in the graph. Such nodes denote dead-ends in the environment and are removed

from the set N in G. Their corresponding edges are also removed from the edge set

E of G. For each remaining edge e ∈ E, we define its traversal time le as the time

that an agent requires to traverse this edge and compute it as the edge length divided

by the maximum speed Umax among all groups’ desired speeds. A capacity ce is also

assigned to each edge denoting the maximum number of agents that can traverse the

6 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

s t

w

l=1

l=2

l=2

(a)

s w t
τ = 0

τ = 1

τ = 2

τ = 3

(b)

Fig. 3 (a) A simple capacitated graph with integral traversal times. (b) Its corresponding time-

expanded graph with time horizon T = 4 and time step ∆t = 1s. Note that for clarity, we omit the

capacity information from both graphs.

edge at the same time while walking next to each other. The edge capacity is com-

puted as the minimum clearance along the edge divided by the maximum personal

space ρmax among all agents. Similarly, a capacity cn is associated with each node n

in the graph indicating the maximum number of agents that can simultaneously be

on the node. We refer the reader to Fig. 2(b) for the capacitated graph corresponding

to the MA graph depicted in Fig. 2(a).1

The generated graph captures different paths that the agents can follow in order

to reach their destinations. Nevertheless, to properly avoid congestions, we must not

only know which nodes are visited but also at which times these nodes should be

reached. In addition, waiting at certain nodes may be more efficient for some of the

agents. For that reason a condensed time-expanded graph is defined as proposed in

[2] that adds the time dimension to the graph G. The basic idea here is to round up

the traversal time le of each edge e in G to the nearest multiple of an appropriately

chosen time step ∆t, i.e. l∗e = ⌈le/∆t⌉. The capacity of the edge is also multiplied by

∆t in order to define the maximum number of agents that can traverse the edge in

one time unit, i.e. c∗e = ⌊ce ·∆t⌋. In a similar manner, the discrete capacity of each

node n is expressed as c∗n = ⌊cn ·∆t⌋.

Let GT = (NT ,AT) denote the time-expanded graph of G, where T defines the

time horizon, that is the total number of discrete time steps. GT is directed and is

constructed from the static graph G based on its discrete capacities and traversal

times. The set NT contains a copy of each node n of the static graph G for each

time step τ = 0...T −1. Such a copy is denoted as n(τ). In addition, for every edge

e = {n,m} in the graph G, two arcs will be created in GT , one from n(τ) to m(τ+ l∗e)
and one from m(τ) to n(τ+ l∗e). Finally, waiting arcs are also added to AT from each

node n(τ) to the same node one time-step later n(τ+ 1), for all τ < T . Such an arc

allows an agent to stay at node n for one time-step period, i.e. l∗ = 1. Its capacity is

defined as the number of agents that can simultaneously wait at the node and is the

same as the discrete capacity c∗n of the static node n.

An illustration of a time-expanded graph is given in Fig. 3. Such a graph is not

explicitly constructed. Instead, time-expanded nodes and arcs are created on-the-fly

1 If the start si or goal ti position of a group Ci is not included in the graph G, it is added to the set

N as an extra node. The new node is also connected to G introducing additional edges in the set E.

Space-time Group Motion Planning 7

as further discussed in Sect. 4.3. In addition, an upper bound on the time horizon T

is set as explained in [9].

4.2 ILP Formulation

In our problem formulation, we are given the origin si, destination ti and the size di

of each group Ci. For now, let us assume that we know all valid paths in the time-

expanded graph GT corresponding to each origin-destination pair. A path is valid, if

it starts at a node si(0) ∈ NT for some i ∈ [1,k] and ends at node ti(τ) for the same i.

Let P denote the set of all these valid paths in GT . For every path p∈P we introduce

a decision variable fp which denotes the number of agents using the path p. Then,

we can model our path planning problem as an Integer Linear Programming (ILP)

problem as follows.

Our goal is to minimize the average arrival time of all agents, or, equivalently,

the sum of the travel times of all agents. We use lp to denote the cost (length) of path

p, which equals to the arrival time of p at its destination. This leads to the objective

function shown in (1). We also formulate demand constraints to guarantee that all

agents will reach their targets as expressed in (2), where Pi is the set of paths in GT

starting at si and ending at ti given a group Ci.

Restrictions are also needed to ensure that the arc capacity constraints are obeyed.

In our problem setting, these constraints are much harder to model than in a normal

multi-commodity flow problem, since the static capacitated graph G is undirected.

Consequently, an edge can be traversed in both directions at the same point in time.

To avoid having to add an enormous number of constraints, we introduce a non-

negative decision variable ue for every edge e in the graph G. We call one direction

on the edge forward and the other one backward. Let F(e)⊂ AT be the forward arcs

in the time-expanded graph GT emerging from e, and B(e) ⊂ AT the correspond-

ing backward arcs. Then, the capacity c∗e of the edge is divided between the two

directions. We do not fix the capacity distribution beforehand, but we make it time-

independent by putting the capacity of the forward arcs equal to ue and the capacity

of the backward arcs equal to c∗e − ue. This adds (3) and (4) to the ILP, where Pa

denotes the subset of paths using arc a ∈ AT .

Finally, to account for the throughput limitation of each node v of the time-

expanded graph, (5) is added to the ILP constraints, where Pv denotes the subset

of paths in the time-expanded graph using the expanded node v. The above consid-

erations result in the following ILP problem:

min ∑
p∈P

lp fp (1)

s.t. ∑
p∈Pi

fp ≥ di ∀i = 1...k (2)

∑
p∈Pa

fp −ue ≤ 0 ∀e ∈ E,a ∈ F(e) (3)

8 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

∑
p∈Pa

fp +ue ≤ c∗e ∀e ∈ E,a ∈ B(e) (4)

∑
p∈Pv

fp ≤ c∗v ∀v ∈V T (5)

fp ≥ 0 and integral ∀p ∈ P (6)

ue ≥ 0 and integral ∀e ∈ E (7)

Obviously, we do not know the entire set of paths P and enumerating it would

be impractical, since there are infinite paths in the time-expanded graph. Therefore,

we will make a selection of paths that we consider ‘possibly useful’, that is, paths

that might improve the value of our objective function, and we will solve the ILP

for this small subset. We determine these paths by considering the LP-relaxation of

the ILP, which is obtained by removing the integrality constraints from the decision

variables fp and ue. We solve the LP-relaxation through the technique of column

generation, which was first described by Ford and Fulkerson [3].

4.3 Column Generation and Path Finding

The basic idea of column generation is to solve the LP problem for a restricted

set of variables (the set of valid paths in GT in our case) and then add variables

that may improve the objective value until no additional variables can be found

anymore. In case of a minimization problem, it is well known from the theory of

column generation that the addition of a variable will only improve the solution if

its reduced cost is negative. The reduced cost of a path p ∈Pi for a group Ci is equal

to
lp + ∑

a∈α(p)

µa + ∑
v∈λ (p)

φv −ψi, (8)

where α(p), λ (p) denote the arcs and nodes respectively in GT used by path p,

and ψi, µa, φv ≥ 0 are the dual variables for the demand, arc and node constraints

respectively that derive from the dual of the current LP 2,3. Consequently, for each

group Ci we need to find a path p ∈ Pi such that

lp + ∑
a∈α(p)

µa + ∑
v∈λ (p)

φv −ψi < 0. (9)

2 Every linear programming problem, referred to as a primal problem, can be converted into a dual

problem. For a primal problem expressed in its symmetric form {min cT x : Ax ≥ b,x ≥ 0,}, the

corresponding symmetric dual problem is given by {max bT y : AT y ≤ c,y ≥ 0}, where A ∈ R
m×n,

c, x ∈ R
n, b ∈ R

m and y ∈ R
m.

3 Given a linear program in its symmetric form, the reduced cost can be computed as c−AT y,

where y denotes the variables of the dual of the linear program. In our case, our LP formulation

results in a dual variable ψi for the demand constraint (2) corresponding to the group Ci, a dual

variable µa for the constraints (3)-(4) corresponding to the arc a and a dual variable φv for the

constraint (5) corresponding to the node v.

Space-time Group Motion Planning 9

This inequality can actually be rewritten to gain more insight into its meaning.

The cost lp of a path p is equal to the sum of the length of the arcs contained in p,

that is lp = ∑a∈α(p) l∗a , where l∗a denotes the discrete length (traversal time) of arc

a ∈ AT (see Sect. 4.1). Note, though, that the traversal time l∗a is computed based on

the maximum desired speed Umax among all groups. However, since each group Ci

has its own desired speed Udes
i , we define the correct length of the arc a for pi ∈ P

as l
′∗
a = ⌈l∗a ·U

max/Udes
i ⌉. Regarding the ∑v∈λ (p) φv term of (9), it is clear that if a

node v ∈ NT is contained in the path p, the path also contains precisely one arc that

terminates at this node (with the exception of the origin node). Consequently, the ef-

fective contribution of the path’s nodes to the reduced cost of p becomes ∑a∈α(p) φm,

given that a = (n,m). Finally, reorganizing (9) we obtain:

∑
a∈α(p)

(l
′∗
a +µa +φm)< ψi. (10)

Deciding whether (10) holds defines the pricing problem and can be efficiently

solved for each group Ci as follows. We compute the shortest path for Ci in the time-

expanded graph GT , where each arc a ∈ AT has a modified length l
′∗
a +µa +φm. We

use an A* search to efficiently find such a path from the origin si(0) of the group

to some copy of its destination ti(τ). In A*, explored nodes of the time-expanded

graph are created and added to an open set based on a function f (v) = g(v)+ h(v)
that determines how promising each node v is. The cost g(v) of reaching the current

node v from the origin si(0) is based on the modified arc lengths. Regarding the

heuristic h(v), we use the shortest path length (expressed in discrete time units)

from v to ti in the static graph G. This heuristic is clearly admissible, since the

path length in a time-expanded graph may be enlarged due to the modified lengths

of its arcs and the possible presence of waiting arcs. As our proposed heuristic is

also consistent, our search algorithm retains the optimality of an A* search and can

efficiently compute the shortest path for the group Ci. If the length of this path is

shorter than ψi, we can add it to the LP and iterate. Otherwise the optimum has been

found, since adding the path will not decrease the objective value of the LP.

Algorithm 1 summarizes our column generation algorithm. Note that, initially,

the LP has no columns and hence, we need to introduce an initial set of paths, one

for each group Ci. In general, we can start with any set, as long as it constitutes a

feasible solution [9].

Algorithm 1 Column Generation

1: Find initial paths and add them as columns to the LP

2: repeat

3: Solve LP-relaxation

4: for each group Ci do

5: Find a shortest (si(0)− ti(τ))-path in GT w.r.t. the modified arc lengths

6: if length of the path is less than ψi then

7: add the path as a new column to the LP

8: end if

9: end for

10: until no path has been added

10 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

4.4 Obtaining an Integral Solution

At the end of the column generation algorithm, we have an optimal solution for the

LP. Most likely, though, some of the variables fp in our solution will have a frac-

tional value and hence, we have to ensure that we end up with an integral solution,

since we cannot send fractions of agents along a path. We alleviate the problem as

follows. Since we have generated useful paths when we solved the LP, we include all

these paths in the ILP. We then round down their decision variables fp, which leads

to an integral solution that satisfies the capacity constraints. Because of the rounding

down, though, some of the agents will be left without paths. For these agents, we

construct additional paths using the Cooperative A* algorithm [21]. These paths are

added to the ILP, which then can be solved to optimality. Note that an alternative

approach would be to artificially increase the sizes di of the groups while solving the

LP-relaxation problem. Therefore, after rounding down the fp variables all agents

will be assigned a path.

5 Agent Motion Planning

In this section, we elaborate on the second phase of our framework. The goal here

is to generate the final motion of each agent Ai j based on its path pi j computed by

the ILP. Such a path is defined in the time-expanded graph GT and can be described

by the arcs that it uses. A time-expanded arc is either a waiting arc or a traversal

arc that corresponds to an edge in the MA graph MG. Therefore, a straightforward

approach for generating the final trajectory of the agent Ai j would be to let Ai j follow

the MA edges, while adjusting its speed in order to adhere to the time-constraints

of its ILP path. Note, though, that multiple agents may have the same path in GT

or share the same edge or node at the same time. Since all paths produced by the

ILP satisfy the capacity constraints, this means that there is enough clearance for

these agents to walk or stand next to each other. Based on this observation, we can

utilize the maximum capacity of each edge and discretize the Voronoi regions of the

environment into a number of lanes. The agents will use these lanes to spread over

the environment and reach their goals, respecting at the same time the space-time

constraints provided by the ILP paths.

5.1 Constructing Lanes

We construct the lanes by exploiting the properties of the MA graph MG = (V,E).
Let e = {n,m} denote an edge in the set E, where both n and m are not dead-end

vertices. Let us also define a pseudo-orientation for the edge, e.g. from n to m. As

described in Sect. 4.1, an edge consists of a number b of sample points Bi, 1 ≤ i ≤ b.

For each sample point its minimum clearance is also stored along with its closest

Space-time Group Motion Planning 11

Fig. 4 (a) An edge can be

expressed as a sequence of

portals. (b) Lanes are created

along the edge by placing

waypoints on the portals.

n

m

(a)

n

m

(b)

points to the obstacles’ boundaries. Given the orientation of the edge, let li and ri

denote the left and right closest obstacle points assigned to each sample Bi. Then

the edge e can be expressed as a sequence of portals where each portal is described

by the tuple (Bi,ri, li) (see Fig. 4(a)).

Lanes can be easily constructed along the edge by placing waypoints on the nav-

igation portals. Let c∗e be the integral capacity of the edge in the capacitated graph

G. This capacity defines the maximum number of agents that can simultaneously

traverse the edge and hence, c∗e lanes will be created. For each lane Lk,k ∈ [1,c∗e],
a waypoint is generated on each of the b portals of the edge based on a parameter

ωk = k/(c∗e +1),ωk ∈ (0,1). In case the waypoint is located at the right side of the

portal (ωk ≤ 0.5), its exact position wi is given by: wi = ri+2ωk(Bi−ri). If the way-

point is at the left side of the portal, its position between li and Bi linearly depends

on 2−2ωk. We refer the reader to Fig. 4(b) for the lanes corresponding to the edge

e, given that c∗e = 5. Since each edge can also be traversed in the opposite direction,

for each lane its reverse one L′
k is also added computed the same procedure as above.

5.2 Trajectory Synthesis for an Agent

Given the lanes as constructed above and the ILP path pi j corresponding to the agent

Ai j, we now describe how we can determine a trajectory for Ai j. Let pi j consists of

q arcs. We first express this path as a sequence of tuples (a1,T1)....(aq,Tq), where

for the θ th tuple, aθ = (n(τ),m(τ + l
′∗
aθ

)) denotes an arc in the time-expanded graph

and Tθ is the time instant at which the task of the arc (waiting or traversing a lane)

should be completed, that is, Tθ = (τ + l
′∗
aθ

)∆t.

Having determined the times T corresponding to each arc a, we can steer the

agent towards its goal as follows. Let xi j denote the current position of the agent, vi j

its current velocity, and v
pref
i j its preferred velocity. Let also (aθ ,Tθ) denote the next

tuple to be processed. If aθ is a waiting arc, we set the preferred velocity to zero

for the next Tθ − t seconds, where t is the current time of the simulation; note that

if Tθ ≤ t, we simply ignore the waiting arc and query the next tuple in the list. In

case aθ is a traversal arc, we determine its corresponding edge e in MG along with

the edge’s lanes L that have the same orientation as the arc aθ . The agent needs to

select one of these lanes and traverse it within Tθ .

12 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

Choosing a Lane: We first determine all lanes in L that are free. A lane Lk is con-

sidered as free, if no other agent has entered it at the current time t and if its reverse

lane L′
k is unoccupied. Among the free lanes, we select the one that is closest to

the agent. Given a lane Lk, the distance D(Lk,xi j) between the agent’s current posi-

tion xi j and Lk can be computed by projecting xi j into the segments defined by the

waypoints of the lane. In case no free lanes are available4, with each lane Lk, we

dynamically assign a cost that depends on the distance D(Lk,xi j) and the biome-

chanical energy E(Lk) that the agent needs to spend in order to traverse Lk. This

energy is approximated as in the work of Guy et al. [6] and is based on a series of

experimental studies regarding the relationship between the walking speed and the

energy expenditure of real humans. Given E(Lk), the total cost of the lane Lk can

now be defined as: cost(Lk) = cDD(Lk,xi j) + cEE(Lk), where cD,cE are weights

specifying the relative importance of each cost term. Based on the above function,

the agent Ai j retains the lane Ls ∈ L with the lowest cost.

Moving Along a Lane: The agent Ai j uses the selected lane Ls as an indicative

route in order to traverse its current arc. More precisely, an attraction point moves

along Ls and attracts the agent forward as defined in [10]. Given the attraction point

and the distance that Ai j still has to traverse within the time Tθ − t that has at its dis-

posal, the preferred velocity v
pref
i j of Ai j can then be estimated. For additional details

on the notion of indicative routes, we refer the reader to [9].

Local Collision Avoidance: At each simulation time-step, the preferred velocity

v
pref
i j of the agent Ai j is given as an input to a local collision avoidance method in

order to compute a collision-free velocity for the agent and update its position. Note

that simply using v
pref
i j may not be sufficient for a collision-free motion; the agent

may still need to resolve collisions with its neighboring agents and the static part

of the environment while advancing along its selected lane or waiting at a specific

location. In general, any local method that is based on collision prediction can be

used. In our implementation, we consider the model in [11] that tackles the collision

avoidance problem using social forces.

6 Experimental Results

We demonstrate the applicability of our approach in four challenging scenar-

ios as can be seen in Figs. 1 and 5. The resulting simulations can be found at

http://sites.google.com/site/ikaramouzas/ilp.

Quality Evaluation: Our approach identifies areas with low capacity and divides

the agents over different space-time paths allowing them to avoid congestions and

quickly reach their destinations. In the 4-blocks scenario, for example, the agents

4 An agent, due to interactions with other agents, may deviate from the time plan provided by the

ILP and arrive at its next arc later than the expected time Tθ . Thus, in practice, there may be no free

lanes to follow. However, a more relaxed time-plan can be provided for each agent by including

an additional time tadd to Tθ . This will give the agent more time to complete its task and resolve

challenging interactions.

Space-time Group Motion Planning 13

(a) 4-Blocks (b) Military (c) Office

Fig. 5 Example scenarios: (a) Four groups, of 25 agents each, in opposite corners of the environ-

ment exchange positions. (b) An army of 400 soldiers needs to move towards a designated goal

area in a village-like environment. (c) 700 agents organized into 7 groups have to evacuate an office

building through two narrow exits.

anticipate that a congestion will occur at the center of the environment and avoid

it by moving around the obstacles. Our method also prevents deadlocks from oc-

curring by regulating the starting times of the agents, incorporating explicit waiting

behavior and successfully dealing with opposing flows of agents through the use

of lanes, as can be seen in the narrow bottleneck scenario (Fig. 1). Furthermore,

by controlling the starting and waiting times of the agents, no oscillatory behavior

is observed when dense crowds of agents thread through narrow spaces, like the

doorways in the office scenario.

Our method is also able to generate well-known crowd phenomena which have

been noted in the pedestrian literature (see [7] for an overview), such as lane for-

mations (e.g. 4-blocks and military scenarios), queuing and following behaviors

(narrow bottleneck and office), as well as slowing down and waiting behaviors to

resolve challenging interactions (narrow bottleneck, military and office). Further-

more, in the narrow bottleneck scenario, arch-like blockings are formed at either

side of the passage when the two opposite flows meet (Fig. 1(c)). This phenomenon

is in accordance with real-life behavior [7].

Besides the visual inspection of the simulations, we are also interested in a quan-

titative evaluation of our model. As shown in Table 1, by planning in both time and

space and exploiting the notion of lanes, interactions among agents are efficiently

solved resulting in smooth trajectories and faster traveling times as compared to ex-

isting agent-based systems. In the 4-blocks scenario, for example, using the RVO

method in combination with a global roadmap [31] led to an average traveling time

of 37.06s, whereas the latest arrival time was 52.59s. Similarly, in the narrow bot-

tleneck example, it took 219.4s for the last agent to arrive at its goal and the average

traverse time was 139.46s. Such high traveling times are expected, since the agents’

motions are not taken into account during the global planning and hence, conges-

tions and deadlock situations arise. In contrast, using our approach, such situations

are predicted and avoided. In the 4-blocks, even when we used a dynamic roadmap

to account for congestion as in [6] along with the ORCA method [27], the maximum

travel time was 45.79s, as the agents were still prone to local minima problems.

To adequately assess the quality of our approach, we also need to determine the

efficiency of the steering algorithm used in the second phase of our framework. For

that reason, we compared the actual time that an agent requires in order to reach

its destination with its expected arrival time. The latter is simply the length of the

14 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

Table 1 Results for the four scenarios. The optimality error is the average percentage error between

the actual and the estimated arrival times of the agents.

Scene Max. travel time (s) Avg. travel time (s) Optimality error (%)

4-Blocks 32.41 30.01 1.29

Bottleneck 186.90 129.75 6.36

Military 149.78 117.61 4.69

Office 189.10 123.59 8.63

agent’s time-expanded path computed by the ILP. The percentage error between the

actual and the expected arrival time can then be used as a measure of the optimality

of the agent’s trajectory. Clearly, since the agent needs to avoid collisions with other

agents and is also subject to dynamic constraints, its actual traveling time is higher

than the expected one. However, as can be seen in the last column of Table 1, in all

of our experiments, the optimality error is less than 10% indicating that our steering

algorithm generates near time-optimal trajectories.

Performance: Table 2 summarizes the performance of our approach on the four

benchmark scenarios. All computations were run on a 2.4 GHz Core 2 Duo CPU

(on a single thread). The eighth column of the table indicates the total running time

of the first phase of our approach. This time is split into the time used by the col-

umn generation part of our algorithm, that is the time for solving the LP-relaxation

problem (tLP) and for finding paths using A* in the time-expanded graph (tpath), the

time needed for finding additional paths due to the missing capacities (tadd) and the

time to solve the final ILP problem (tILP). The last column of the table indicates the

average computation time of the second phase of our approach, that is the average

time taken per simulation step to steer the agents and resolve collisions. As can be

inferred, our steering algorithm combined with the underlying collision avoidance

scheme is very efficient. This is expected, since most of the collisions are taken into

account during the ILP planning. Thus, only a limited number of interactions need

to be resolved at every step of the simulation.

Regarding the total planning time of the first phase, it is clear that the LP part

of the column generation dominates the overall runtime performance. As can be

observed, the difficulty of the problem seems to have a high impact on the computa-

tional cost of the LP. See, for example, the difference in the running times between

the 4-blocks and the narrow bottleneck scenarios. The difficulty of the problem is

directly related to the arc and node capacities of the time-expanded graph and can

be controlled by the size of the time step ∆t used for the discretization of the graph.

Shorter time steps improve the accuracy of the graph at the expense of higher com-

putational times. In contrast, large time steps result in faster running times; the ca-

pacities of the arcs and the nodes of the graph are scaled as well, reducing the num-

ber of potential bottlenecks in the environment and leading to simpler LP problems.

In general, the running time is inversely proportional to the size of the time step.

This is confirmed by a number of experiments we conducted in different scenarios

and for different values of ∆t. In our example scenarios, the time step ∆t was set to

1s with the exception of the office scenario. Here, to obtain running times that are

sufficiently low, we sacrificed the optimality of the LP solution and set ∆t = 2s.

Space-time Group Motion Planning 15

Table 2 The performance of our approach on the four example scenarios. Reported times are in

msec. The average simulation time is expressed in msec/frame. The third column indicates the

number of nodes and edges of the underlying capacitated graph.

Scene #Agents Graph tLP tpath tadd tILP Total planning Avg. sim.

time time

4-Blocks 100 (9, 12) 0 15.6 0 0 15.6 0.28

Bottleneck 112 (4, 3) 109.2 46.8 78 124.8 358.8 0.29

Military 400 (42, 56) 343.3 140.4 0 31.2 514.8 0.37

Office 700 (218, 235) 561.6 205.2 62.4 327 1156.2 0.72

7 Conclusion and Future Work

We presented a novel approach for planning and directing groups of virtual charac-

ters by combining techniques from Integer Linear Programming with an agent-based

steering framework. We have demonstrated the applicability of our method through

a wide range of challenging scenarios. Despite the computational complexity raised

by the ILP formulation, our system runs at interactive rates by using the column

generation algorithm and choosing an appropriate discretization of time.

Our approach makes some simplifying assumptions. Most notably, we assume

that the characters choose paths so as to minimize their average traveling time. How-

ever, in real-life, other parameters can also affect the path choices that people make,

such as the safety of the area that the path crosses, its attractiveness, etc. We should

also point out that our system is specifically designed to model large groups. While

in-group members can have different behavior characteristics, during the ILP plan-

ning, we assume that they prefer to move with the same desired speed. This enables

our method to account for dynamic congestion and other time-consuming situations.

Our current work focuses on crowds of virtual characters, but it can be easily

generalized to address multi-robot planning and coordination problems. Other vir-

tual environment applications can benefit from it as well. An interesting extension,

for example, would be to use our formulation for traffic simulation. In the future, we

would also like to address dynamic and interactive environments, since currently we

assume that the virtual world remains static and its dynamics are perfectly known a

priori. Note, though, that in dynamically changing environments, the agents may not

have the time to plan and replan optimal paths across the time-expanded graphs. To

this end, we can trade-off optimality for performance by quitting the column gener-

ation algorithm before we have solved the LP-relaxation problem to optimality.

References

1. Bayazit, O.B., Lien, J.M., Amato, N.M.: Better group behaviors in complex environments

using global roadmaps. In: Artificial life, pp. 362–370 (2003)

2. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. on Computing 36(6), 1600–

1630 (2007)

3. Ford Jr, L.R., Fulkerson, D.R.: A suggested computation for maximal multi-commodity net-

work flows. Management Science pp. 97–101 (1958)

16 Ioannis Karamouzas, Roland Geraerts, A. Frank van der Stappen

4. Geraerts, R.: Planning short paths with clearance using explicit corridors. In: IEEE Int. Conf.

on Robotics and Automation, pp. 1997–2004 (2010)
5. Geraerts, R., Overmars, M.H.: The corridor map method: Real-time high-quality path plan-

ning. In: IEEE Int. Conf. on Robotics and Automation, pp. 1023–1028 (2007)
6. Guy, S.J., Chhugani, J., Curtis, S., Pradeep, D., Lin, M., Manocha, D.: PLEdestrians: A least-

effort approach to crowd simulation. In: Symp. on Computer Animation, pp. 119–128 (2010)
7. Helbing, D., Buzna, L., Werner, T.: Self-organized pedestrian crowd dynamics and design

solutions. Traffic Forum 12 (2003)
8. Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups using clearance. In: Symp.

on Computer Animation, pp. 19–28 (2004)
9. Karamouzas, I.: Motion planning for human crowds: from individuals to groups of virtual

characters. Ph.D. thesis, Utrecht University, the Netherlands (2012)
10. Karamouzas, I., Geraerts, R., Overmars, M.: Indicative routes for path planning and crowd

simulation. In: Foundations of Digital Games, pp. 113–120 (2009)
11. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.: A predictive collision avoidance model

for pedestrian simulation. In: Motion in Games, LNCS, vol. 5884, pp. 41–52. Springer (2009)
12. Karamouzas, I., Overmars, M.: Simulating and evaluating the local behavior of small pedes-

trian groups. IEEE Trans. Vis. Comput. Graph. 18(3), 394–406 (2012)
13. Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. ACM Trans. on Graphics

27(3), 1–8 (2008)
14. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach

to crowd simulation. In: Symp. on Computer Animation, pp. 109–118 (2007)
15. Li, T.Y., Chou, H.C.: Motion planning for a crowd of robots. In: IEEE Int. Conf. on Robotics

and Automation, pp. 4215–4221 (2003)
16. Patil, S., van den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations

using navigation fields. IEEE Trans. Vis. Comput. Graph. 17, 244–254 (2011)
17. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along speci-

fied paths. Int. J. of Robotics Research 24, 295–310 (2005)
18. Peters, C., Ennis, C.: Modeling groups of plausible virtual pedestrians. IEEE Computer Graph-

ics and Applications 29(4), 54–63 (2009)
19. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graph-

ics 21(4), 24–34 (1987)
20. Sánchez, G., Latombe, J.C.: Using a PRM planner to compare centralized and decoupled

planning for multi-robot systems. In: IEEE Int. Conf. Robot. Autom., pp. 2112–2119 (2002)
21. Silver, D.: Cooperative pathfinding. In: Artificial Intelligence and Interactive Digital Enter-

tainment, pp. 117–122 (2005)
22. Simeon, T., Leroy, S., Laumond, J.P.: Path coordination for multiple mobile robots: A

resolution-complete algorithm. IEEE Trans. on Robotics and Automation 18(1), 42–49 (2002)
23. Singh, S., Kapadia, M., Hewlett, B., Reinman, G., Faloutsos, P.: A modular framework for

adaptive agent-based steering. In: ACM Symp. on I3D, pp. 141–150 (2011)
24. Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed motion synthesis for

crowds. In: Symp. on Computer Animation, pp. 291–300 (2005)
25. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. on Graphics 25(3),

1160–1168 (2006)
26. van den Akker, M., Geraerts, R., Hoogeveen, H., Prins, C.: Path planning for groups using

column generation. In: Motion in Games, LNCS, vol. 6459, pp. 94–105. Springer (2010)
27. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance.

In: Int. Symp. on Robotics Research, pp. 3–19 (2009)
28. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent

navigation. In: IEEE Int. Conf. on Robotics and Automation, pp. 1928–1935 (2008)
29. van den Berg, J., Overmars, M.H.: Prioritized motion planning for multiple robots. In:

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2217–2222 (2005)
30. van den Berg, J., Overmars, M.H.: Roadmap-based motion planning in dynamic environments.

IEEE Trans. on Robotics and Automation 21, 885–897 (2005)
31. van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.C.: Interactive navigation of mul-

tiple agents in crowded environments. In: ACM Symp. on I3D, pp. 139–147 (2008)

