
Stealth-Based Path Planning using Corridor Maps

Roland Geraerts and Erik Schager
Institute of Information and Computing Sciences, Utrecht University

3508 TA Utrecht, the Netherlands
roland@cs.uu.nl; schager.erik@gmail.com

Abstract
A relatively new area within the field of path
planning deals with computing a stealthy path
for a character moving in a virtual environment.
Besides efficiently obtaining a path that is
collision-free, short and smooth, the added diffi-
culty is that the path must have little or no expo-
sure to observers. We propose a new algorithm
for computing such a path in the plane, and show
that real-time performance can be achieved.

Keywords: path planning, stealthy path,
2D-visibility

1 Introduction

Virtual environments are commonly used in
computer games, simulations and training ap-
plications. In such environments, characters of-
ten have to find a collision-free path between a
start and goal position. The general path plan-
ning problem has been studied extensively in the
fields of robotics [7] and games [4, 10]. A rela-
tively new problem is finding such a path while
avoiding being detected by an observer. The ob-
server can be stationary, such as a surveillance
camera which sweeps the environment for de-
tecting unwanted persons, or movable, such as
a hostile person. An entity such as a human,
robot or vehicle, needs to minimize its expo-
sure to the observer, e.g. during a military op-
eration [1, 8, 11, 15]. Also in games, non-player
characters may need to stay hidden from the en-
emy, minimize exposure to enemy fire, or take
cover and shoot from covered positions to create
believable game-play [3, 12, 14]. These applica-
tion areas can be categorized as covert naviga-
tion or stealth-based path planning and they will
be the focus of this paper.

Stealth-based path planning techniques usu-
ally employ a three-step approach to create a
path with little or no exposure. In virtual en-
vironment applications, there is only little CPU
time available for executing these steps, es-

Fig. 1: A smooth, stealthy path for a character who
tries to minimize its exposure to the (red) observers.

pecially when many (dynamic) observers are
present. Hence, they must be carried out ef-
ficiently. To allow real-time computations, we
limit ourselves to path planning in the plane.

In the first step, a collision map of the en-
vironment is created. The map is a two-
dimensional grid of cells where each cell is la-
beled either occupied with an obstacle or free.
We assume that the (polygonal) environment is
known [5, 12], and, hence, the map can be cre-
ated easily, e.g. by using GPU-accelerated ras-
terization techniques [13].

In the second step, a visibility map is com-
puted where each free cell is associated with a
visibility value. This value describes how many
observers can see (the center point of) this cell,
and how well they can see it.

In the third step, a stealthy path is computed
from the map. Such a path usually has minimum
exposure (i.e. the sum of visibility values along
the path is minimized), minimum length, or is
reasonably short and has little exposure.

Our new algorithm uses the Corridor Map
data structure [9], which represents a planar sub-
division of the environment, and, hence, implic-
itly encodes the collision map. We show how
this structure can be used to compute visibility
polygons. Next, we extend this structure such
that stealthy paths can be computed efficiently.

mailto:roland@cs.uu.nl
mailto:schager.erik@gmail.com


The paper is organized as follows. In Sections
2 and 3 we discuss the visibility and planning
method. Then, we conduct experiments in Sec-
tion 4 and conclude in Section 5 that our method
computes high-quality stealthy paths without
compromising real-time performance.

2 Visibility algorithm

Much research has already been done on com-
puting 2D- and 3D-visibility. An excellent sur-
vey can be found here [2]. In our paper, we limit
ourselves to computing visibility of a point in
the plane to enable real-time computations.

We use the Corridor Map-data structure [9]
to compute visibility polygons. An example of
this structure is visualized in Fig. 4(a). It forms
a planar subdivision of the free space in an envi-
ronment and is created as follows. First, the gen-
eralized Voronoi diagram (red curves) is com-
puted using graphics hardware. The diagram
consists of nodes (large black disks) and edges
(red curves) between pairs of nodes. These
edges are sampled, and with each sample (black
disks), its left and right closest point (black
lines) on the obstacles is stored. Given this rep-
resentation, the visibility polygon is computed,
as follows. First the closest sample s to the
observer is found by querying a KD-tree that
indexes the Corridor Map. Next, two visibil-
ity cones are constructed. Each cone originates
from the observer’s location and its sides corre-
spond to the closest points of s. Next, we walk
along both directions of the corresponding edge
while updating each cone based on the closest
points’ positions. When a node is visited we re-
cursively walk along its incident edges. The pro-
cess stops when the visibility cone is empty. The
visibility polygon’s vertices are then given by
the visited closest points. Pseudo-code on this
procedure can be found in reference [13]. Fig.
2 shows such a polygon, together with the vis-
ited closest points (disks) on the obstacles. We
expect this algorithm to be efficient, since it is
output sensitive.

We have implicitly assumed that an observer
has non-decreasing vision over an infinite range
with a 360 degree field of view (FOV). We obtain
a more realistic vision model by limiting these
aspects. This model can be realized efficiently
by using graphics hardware.

We model the observer’s FOV as a partial disk,
approximated by a triangle fan. The larger the
number of triangles, the more accurate the ap-
proximation becomes. To limit the observer’s

Fig. 2: The visibility polygon computed by our algo-
rithm. The red disk denotes the observer’s location
and the white area denotes its visible area.

A

B

C

D

Fig. 3: A more realistic vision model, integrated in a
visibility map: (A) limited range, (B) limited field of
view, (C) decreasing visibility, (D) additive blending.

vision, we specify a visibility value at its loca-
tion and one at the far end of its FOV. Then we
let the visibility change linearly from the first to
the second value. Such a (partial) disk can be
created efficiently by using graphics hardware.
We refer the reader to Fig. 3 which displays the
more realistic vision model. Note that different
visibility polygons can be blended into a single
visibility map, again by using the GPU.

3 Planning algorithm

The visibility map forms the input for our
stealthy path planning method. We could di-
rectly use this map to plan a stealthy path,
e.g. by running the A*-algorithm [16] on this
map. We expect this method to be fast, except
for large environments or for environments that
have a maze-like structure. In addition, the run-
ning times of this method would heavily depend
on the resolution of the map. Also, narrow pas-
sages or small obstacles might not be noticed in
a low-resolution map.

We designed a new method, based on the Cor-
ridor Map (CM) data structure, to approach these
shortcomings. The CM is a sparse graph so an
A*-search on this graph will be fast compared
to running an A*-search on the visibility map.



However, paths extracted from the CM might
be longer than necessary and might not provide
enough cover since its Voronoi edges have a
maximum clearance. To facilitate high-quality
stealthy paths, we add ‘useful’ edges to the CM
and refer to this structure as the CMPlus graph.
Fig. 4(b) shows such a graph. In the graph, we
add an edge between two adjacent left closest
points and an edge between two adjacent right
closest points. These edges run close to obsta-
cles, providing cover of the entity. Next, we add
diagonal connections between a sample and the
two closest points of its adjacent samples if they
cover at least a certain minimum distance, and,
therefore, add significantly to the possible routes
that can be taken. However, to keep the graph
small, we do not add edges at samples having a
small clearance. A stealthy path, such as the one
displayed in Fig. 1, is now retrieved as follows.
Our method uses the A*-algorithm to find the
shortest path in the CMPlus graph. The costs of
an edge is its length multiplied with its average
visibility, which is obtained by densely sampling
the edge with visibility values from the map.
Next, the Indicative Route Method [6] is used
to smooth the path, to cut unnecessary corners,
and to introduce a variable amount of minimum
clearance to the path. Note that these proper-
ties are hard to obtain if we would directly apply
the A*-algorithm on the visibility map. While
a minimum-clearance path is more natural and
avoids collisions with obstacles when the char-
acter is animated, it might be longer than a short-
est path produced by running A* on the map.

4 Experiments

We have conducted experiments with the visibil-
ity and planning algorithms. All the experiments
were tested on one environment and were run on
a PC with an NVIDIA GeForce 7600 GT graphics
card and an Intel Core2 Duo E6300 processor
(1.86 GHz) with 1 GB memory. Only one core
was used. The application was implemented in
Visual C++ under Windows XP.

We have conducted experiments with the Mil-
itary environment depicted in Fig. 5. This
environment measured 200x200 meter and its
footprint comprised 23 polygons. It had some
buildings in the center which could provide
cover. They were surrounded by open space in
which the sight-lines were long. The prepro-
cessing phase took 69ms for building the Corri-
dor map (using 1000x1000 pixels) and the CM-
plus graph. This graph comprised 56 vertices,
70 edges and 838 samples on the edges.

(a) Corridor Map (b) CMPlus graph

Fig. 4: The Corridor Map and its derived CMPlus
graph for the Military environment.

(a) Military environment (b) Military footprint

Fig. 5: The Military environment and its footprint.

In all the experiments we used observers with
360 degrees field of view (FOV). Note however
that a smaller FOV might have led to faster run-
ning times. We used a high visibility value (i.e.
128) at the observer’s location, and a low value
(i.e. 0) at the end of its range. We represented
the FOV with a triangle fan of at least 16 parts,
which gave an accurate representation of a disk.

We selected 100 uniform random queries con-
sisting of one random location and a random vis-
ibility range, which we set between zero and the
length of the environment’s diagonal. We ran
each query at various resolutions, ranging from
200x200 to 1000x1000 pixels, while recording
the average running times of the visibility algo-
rithm. The experiments revealed running times
ranging from 0.47ms at 200x200 to 4.65ms at
1000x1000. Consequently, the method is able
to compute many visibility areas without sacri-
ficing real-time performance at all resolutions.

Next, we recorded the average running times
of the planning algorithm at the mentioned res-
olutions. For each resolution, the algorithm was
run 1000 times with three random observers.
We kept only diagonal edges that were at least
8m in length and we used only closest points
if there was at least 2m clearance, and, hence,
they would make a significant difference for the
possible routes. We sampled the edges with vis-
ibility values such that there was at least 1 sam-



ple per meter and at least 1 sample per edge.
Preliminary experiments had shown that such
sampling density was sufficient to detect sig-
nificant changes in visibility. The experiments
took, on average, 1.92ms at resolution 200x200
and 2.14ms at resolution 1000x1000, making
our graph-based method marginally dependent
on the resolution. In contrast, running A* on the
visibility map at low resolutions would have ig-
nored many narrow passages, and the clearance
would have been low at some places, leading
to possible collisions when the character would
have been animated. The results showed that the
path length and path’s visibility did not differ
much across different resolutions, and, hence, a
low resolution can be used for planning stealthy
paths. Also, the method produced smooth paths
having a desired amount of minimum clearance
to the obstacles. Based on the low running
times, we believe that our method is applicable
to plan a path for a stealthy entity with many dy-
namic observers in real-time.

5 Conclusion

We have introduced an algorithm for comput-
ing a stealthy path in the plane for a character
moving in a virtual environment. Such a path
had little or no exposure to one or more ob-
servers. Using the GPU and the Corridor Map
data structure, we computed visibility polygons
which were rendered into a visibility map. Each
cell of the map described how many observers
could see the cell and how well they could see it.
Then, we computed a stealthy path through the
visibility map by using a graph derived from the
Corridor Map. The algorithm planned smooth,
stealthy paths having a certain amount of min-
imum clearance to the obstacles and achieved
real-time performance.

In future work, we will compare our algo-
rithm with existing algorithms that compute vis-
ibility areas and stealthy paths. In addition, we
will concentrate on the dynamic nature of the
problem. That is, we will include experiments
with many dynamic observers. Also, by be-
ing able to dynamically update our graph when
(large) obstacles move, the system allows for a
fully dynamic solution that runs in real-time.

Acknowledgments

This work was partially supported by the
ITEA2 Metaverse1 (www.metaverse1.org)
Project.

References
[1] E. Birgersson, A. Howard, and G. Sukhatme.

Towards stealthy behaviors. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems, pages 1703–1708, 2003.

[2] D. Cohen-Or, Y. Chrysanthou, C. Silva, and
F. Durand. A survey of visibility for walk-
through applications. IEEE Transactions on
Visualization and Computer Graphics, 9:412–
431, 2003.

[3] C. Darken. Visibility and concealment algo-
rithms for 3d simulations. In Proceedings of
Behavior Representation in Modeling and Sim-
ulation, 2004.

[4] M. DeLoura. Game programming gems.
Charles River Media, 2000.

[5] R. Jarvis. Distance transform based visibility
measures for covert path planning in known
but dynamic environments. In International
Conference on Autonomous Robots and Agents,
pages 396–400, 2004.

[6] I. Karamouzas, R. Geraerts, and M. Overmars.
Indicative routes for path planning and crowd
simulation. In The Fourth International Con-
ference on the Foundations of Digital Games,
pages 113–120, 2009.

[7] S. LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[8] M. Marzouqi and R. Jarvis. New visibility-
based path-planning approach for covert
robotic navigation. Robotica, 24:759–773,
2006.

[9] M. Overmars, I. Karamouzas, and R. Geraerts.
Flexible path planning using corridor maps.
In Algorithms – ESA, volume 5193 of Lec-
ture Notes in Computer Science, pages 1–12.
Springer, 2008.

[10] S. Rabin. AI Game Programming Wisdom.
Charles River Media, 2002.

[11] S. Ravela, R. Weiss, B. Draper, B. Pinette,
A. Hanson, and E. Riseman. Stealth navi-
gation: Planning and behaviors. In Proceed-
ings of ARPA Image Understanding Workshop,
pages 1093–1100, 1994.

[12] M. Rook and A. Kamphuis. Path finding using
tactical information. In Poster proceedings of
Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, pages 18–19, 2005.

[13] E. Schager. Stealth-based path planning in vir-
tual environments. Master’s thesis, Utrecht
University, 2009.

[14] R. Straatman, W. van der Sterren, and A. Beij.
Killzone’s AI: dynamic procedural combat tac-
tics. Gamasutra.com, 2005.

[15] A. Tews, M. Matarić, and G. Sukhatme. Avoid-
ing detection in a dynamic environment. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 134–138,
2004.

[16] K. Trovato. A* Planning in Discrete Config-
uration Spaces of Autonomous Systems. PhD
thesis, Universiteit van Amsterdam, 1996.

www.metaverse1.org

