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Abstract

Onsager theory is applied to determine the external field dependence of the isotropic-nematic coexistence
relations for binary mixtures of thick and thin hard dipolar colloidal rods with a diameter ratio of 1/3.
The approximation in this thesis neglects dipole-dipole interactions. Starting from a non-ideal gas virial
expansion, we develop Onsager theory and apply it to colloidal rods. We use numerical integration
techniques to solve the associated non-linear differential equation for monodisperse systems in order to
find the angular distribution. A Newton-Raphson procedure is employed to determine the coexistence
relations. From this limiting monodisperse case, the theory for bidisperse systems is derived. Finally
the results obtained for the above mentioned system are analysed.



Preface

This thesis has been written with third year Bachelor students in mind, therefore some of the introductory
material may seem redundant to more experienced readers and it can be easily skipped. We have assumed
some basic thermodynamic knowledge, see [1] and [2] for instance, and aim not to get bogged down in
the mathematical details of the preliminaries to the results. Mathematics is seen as a tool, not as a
means to an end.

This text can be divided into three parts. Intending to describe bidisperse systems of colloidal rods and
their field dependence, we start by developing Onsager theory in the first. To that end non-ideal gas
theory is considered and a semi-grand canonical approach is used to obtain a virial theory for suspensions
and solutions. The main focus of the second part will be the analysis of the results for monodisperse
systems, as monodisperse systems are a limiting case for bidisperse ones. We start by applying Onsager
theory to colloidal rods. Pausing briefly to examine the mathematical properties of such systems and
discuss the numerical approximation schemes used to solve the equations, before moving on to the
analysis of the results. Here we focus mainly on the limitations of the model and their implications for
possible experimental verification. In the third part the monodisperse relations are extended to a set of
equations governing the behaviour of bidisperse systems. After a minimum of mathematical analysis, the
adaptations needed to make the numerical approximation schemes suitable are treated. We then arrive
at the crux of this thesis, the description and analysis of the results for bidisperse systems obtained using
these techniques. Finally an outlook is presented on further study in this particular segment of colloidal
science.
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Chapter 1

Introduction

Thermodynamics is the cumulation of centuries of experimental and theoretical work, resulting in the
combination of both the statistical and the mechanical disciplines. From a strong empirical base, founded
by the work of Kelvin, Joule and many others, a mathematical framework was developed by men such
as Boltzmann and Gibbs. Today Thermodynamics is one of the best established classical theories. It is
of such elegance and applicability that A. Einstein remarked: “It is the only physical theory of universal
content which I am convinced will never be overthrown, within the framework of applicability of its basic
concepts.” A remarkable feature of macroscopic systems, consisting of say 1023 atomic coordinates, is
that they can be described using only a few macroscopic coordinates, i.e. pressure, temperature etc.
Thermodynamics is the study of the 1023 hidden coordinates. Using statistical methods this theory
allows us to derive the relatively simple relations governing the behaviour of macroscopic systems, with
which we are familiar form Mechanics and Chemistry. Such a simplification is a recurring element in
Thermodynamics and it can be used to great advantage in describing a multitude of physical properties,
in this case those of colloidal rod suspensions.

Colloids are mesoscopic particles in the nm-µm size range, which makes them larger than most molecules,
but still small enough to exhibit significant Brownian motion. These particles are ‘soft’ condensed1

matter, a term which refers to the ease with which such systems are compressed and deformed compared
to traditional condensed matter. Non-spherical colloids form liquid crystal phases. Liquid crystals have
many applications in modern technology, i.e. LCDs, LC-thermometers. These substances have properties
which differ from atomic matter. They can flow as a liquid and scatter light as a crystal, hence their
name. In addition, colloids allow for real time tracking of inter particle interactions via microscopy, which
is much more difficult if not impossible in molecular systems. Their crystalline phase can be used to
create so-called photonic bandgap materials, which are the photon equivalent of semiconductors. These
properties and applications have sparked interest in colloidal systems and describing their behaviour is
of utmost importance to scientists, developers and manufacturers.

Colloids come in many different shapes and sizes, some of which have an orientation, such as rods and
platelets. We know that for orientation independent interactions there are at least three phases a system
can exhibit: gas, liquid and crystalline2. Directional interactions introduce extra phases however. In
this thesis we will focus on colloidal rods, such as the rod-like Tobacco Mosaic Virus. Because of their
orientability, rods display a whole range of additional phases such as isotropic, nematic and smectic,
see figure 1.1. We are most interested in the nematic phase. The system does not have any broken
translational symmetries in this phase, but the rods are pointing on average in one direction, the so-
called nematic director. In the smectic phase the system forms a kind of layer cake, having broken
translational symmetry in one dimension and it is homogeneous in each layer. There are many kinds of

1Condensed matter is matter in which the number of constituents is extremely large and the interactions between the
constituents are strong, i.e. fluids and solids.

2Other phases we could consider are the metastable and amorphous phase, both which occur only in certain substances,
such as steel and glass respectively.
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Isotropic Phase Nematic Phase Smectic Phase Crystalline Phase

Figure 1.1: Some of the phases a suspension of colloidal rods can exhibit. From left to right in
ascending order of concentration. Reproduced from [2] with the author’s permission.

smectics, of which smectic-A and smectic-B phase are the most familiar. At first glance the introduction
of such a directional dependence seems to complicate theoretical modeling severely. However a relatively
simple technique, namely that of Onsager, can be applied to achieve realistic approximations.
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Chapter 2

Statistical Mechanics of Interacting
Particles

2.1 The Non-Ideal Gas

This section is intended as a refresher into non-ideal gas theory, in particular virial expansions. We
aim to be as concise as possible, only touching the mathematics required to rigorously derive the virial
expansion. For those who are interested in a more in-depth analysis we recommend [3] and [4]. It should
be possible to determine the virial coefficients from the derivation given in this thesis, although this will
require significant effort on the part of the reader.

A non-ideal gas is a system of N particles enclosed in a volume V . These particles experience particle-
particle interactions, which sets non-ideal gasses apart from ideal ones. The Hamiltonian describing a
non-ideal gas consists of a kinetic energy term, an interaction term and possibly an external field term.
It can be written as

H(~r, ~p) =
N∑

i=1

( |~pi|2
2m

+ V (~ri, ~pi)
)

+
∑

1≤i<j≤N

Φ(|~rij |), (2.1)

where ~r = (~r1, . . . , ~rN ), ~p = (~p1, . . . , ~pN ), ~rij = ~ri−~rj and Φ is the particle-particle interaction potential.
Note that we have tacitly assumed that all particles are the same, the interaction is only distance and not
orientation or momentum dependent, and there are only particle-particle interactions. The contribution
of complex interactions involving multiple particles is neglected. These assumptions form a substantial
simplification, but it will do for our purposes. If there is no external field, we may use equation (2.1) to
write the canonical partition function as

Z(N,V, β) =
1

N !Λ3N

∫

V

dτ1 · · ·
∫

V

dτN

∏

1≤i<j≤N

exp(−βΦ(|~rij |)),

with the inverse temperature β = 1/kBT , the thermal wavelength Λ =
√

2π~2β/m and with dτi a
volume element, i.e. dτi = dxidyidzi in Cartesian coordinates. Now introduce the so-called Mayer
functions fij ≡ f(|~rij |) = exp(−βΦ(|~rij |))− 1 and the configurational integral

Q(N, V, β) =
∫

V

dτ1 · · ·
∫

V

dτN

∏

1≤i<j≤N

exp(−βΦ(|~rij |)). (2.2)
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Expand the integrand of Q(N,V, β) as
∏

1≤i<j≤N

exp(−βΦ(|~rij |)) =
∏

1≤i<j≤N

(fij + 1)

= 1 +
∑

∀(i,j)∈ξ

fij +
N(N−1)/2∑

l=2

∑

∀(i1,j1)<···<(il,jl)

fi1j1 · · · filjl

= 1 +
∑

1≤i<j≤N

fij +
∑

1≤i,j,n,m≤N
j<n; i=m
i<j, i<m, m<n

fijfmn + · · · , (2.3)

where (i, j) ∈ ξ ≡ {(a, b) ∈ N × N | 1 ≤ a < b ≤ N} and ξ is a lexicographically ordered set with the
order (i, j) < (m,n) ⇔ (i < m) ∨ ((i = m) ∧ (j < n)). The term ∀(i1, j1) < · · · < (il, jl) indicates
that we have to sum over all possible combinations of indices satisfying this condition. This result is
intuitively clear and quite easily derived when one considers this product of (fij + 1)-terms, written in
a lexicographically ordered tree structure

1

1

1

1

. . .

1 f(N−1,N)

f14

. . .

1 f(N−1,N)

f13

1

. . .

f14

. . .

f12

1

1

. . .

f14

. . .

f13

1

. . .

f14

. . .

with fij ∈ {f12, f13, . . . , f(1,N), f23, . . . , f(2,N), . . . , f(N−1,N)}. Note that all possible fij are taken into
account, each branch terminates in either 1 or f(N−1,N), and the tree is indeed ordered. Furthermore
N(N − 1)/2 is the maximum number of fij terms, which can be seen by examining the rightmost
branch. The above expansion is given by the sum of the path products for all possible downward paths
through the tree. The path product is the product of all terms encountered along a path, for instance
1 · f12 · 1 · . . . · f89 · . . . · 1. This path approach to the expansion explains the sum in line two of equation
(2.3). By pulling the integration through this equation1, we arrive at an expression for Q(N, V, β) and
hence Z(N,V, β) can be written as

Z(N,V, β) =
V N

N !Λ3N
· (1 + s)

s ≡ s1

V
+

s2

V 2
+ · · · , (2.4)

with si related to integrals over Mayer functions. When s ∈] − 1, 1[ we may use the Taylor expansion
of the logarithm and a Stirling approximation to obtain an expression for F (N, V, β) in terms of the
density ρ = N/V . Here we also use the fact that in integration over the whole space many terms are the
same, giving us factors N . Then

f(ρ, β) ≡ βF (N,V, β)
V

= ρ log(ρΛ3)− ρ + B2(β)ρ2 +
B3(β)

2
ρ3 + · · · , (2.5)

for s sufficiently small. Here the Bis are virial coefficients, we will come back to these later. Determining
the conditions for which |s| < 1 is quite tricky, because one needs to consider equation (2.4) in its

1This is a legal operation, because the integrand is a finite sum consisting of products of Mayer functions.
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entirety, which is a rather horrendous affair. There are a couple of things that help us though. The
Mayer functions fij → −1 for low temperatures and in areas of high potential/interaction strength,
usually when the distance between particles is small. Furthermore fij → 0 for areas of low potential
(large distance between particles i and j) and for high temperatures. A general rule of thumb is that
|s| < 1 if Φ drops off sufficiently fast compared to the volume in which the gas is enclosed and the
concentration is not too high. In fact it is easily proven that this is the case for physical interaction
potential types in a macroscopic volume, which fall off faster than 1/r3, and screened potentials. Now
the expression for F (N,V, β), equation (2.5), can be used to derive the pressure

β(P (N, V, β)− PID) = B2(β)ρ2 + B3(β)ρ3 + · · · , (2.6)

where βPID = ρ is the ideal-gas pressure. The first few Bi can be found by taking the first terms of s
and substituting them in the above equations. Fortunately this has already been done and there even
exist formal expressions which generate virial coefficients [5]. The first few are given by:

B2(β) = − 1
2V

∫

V

dτ1

∫

V

dτ2 f(r12)

= − 1
2V

∫
dτ1dτ2

B3(β) = − 1
3V

∫

V

dτ1

∫

V

dτ2

∫

V

dτ3 f(r12)f(r13)f(r23)

= − 1
3V

∫
dτ1dτ2dτ3

B4(β) = − 1
8V

∫
dτ1dτ2dτ3dτ4

(
3 + 6 +

)
.

The graph notation introduced above is a shorthand developed to write down higher virial coefficients.
This notation follows naturally for the lexicographical order imposed on the fij earlier. It can also be
proven that all the diagrams appearing in the virial coefficients are doubly connected. This means that
they do not fall apart into disjoined graphs when a single vertex is deleted. Some textbooks do not
mention the lexicographical order on the Mayer functions and work completely from a graph-theoretical
outset, the two approaches are however equivalent. The above method utilises a canonical approach to
the virial expansion, a grand canonical path can also be followed, which leads to the same results. In the
grand canonical case the configurational integral Q(N,V, β), equation (2.2), are used extensively; this is
why they have been introduced here. In both cases the expansion is obtained via the Mayer functions
and the Taylor series of the logarithm.

The mathematical derivation of the virial expansion as presented above, was first given by Mayer and
Mayer in the 1940’s. The fijs were named in their honour. Virial expansions, in the form of equation
(2.6), were originally conceived by Kamerlingh Onnes around 1901, when he considered an improvement
to the ideal gas law. He sought to provide better correspondence between theory and experiment at
high densities, in much the same way as Van der Waals did in 1873. Since the 1940’s the mathematical
derivation of virial expansions has become more streamlined and the use of this method is nowadays
widely spread. There are some drawbacks to this technique though. Foremost among these is the
temperature dependence of the Bis. It entails that for all but the most simple of interactions one needs
to recalculate the Bis whenever the the temperature changes. In addition, depending on the system being
considered, we may require more than 7 coefficients to achieve a reasonable approximation. Especially in
the case of extremely dense gasses, or liquids, with an atomic packing fraction over 0.5. This is less then
desirable as the number of cluster integrals2 increases exponentially for higher coefficients. Clearly virial
expansions are a useful tool and can be a powerful technique, but a technique with severe limitations.

2Integrals over graphs, obtained from the Mayer function integrals.
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2.2 Non-Ideal Solutions and Suspensions

For a solution or suspension there is an additional complexity one does not experience with gasses or
liquids. One has to deal with at least two types of particles, those of the solvent and those of the solute.
The methods used here closely follow those of Ref. [6]. For non-ideal gas mixtures of s different species,
we may write the partition function as

Z( ~N, V, β) =
∫

V

(
s∏

i=1

dτNi
i

Ni!Λ3Ni
i

)
exp(−βΦ(~rN1

1 , . . . , ~rNs
s )),

with ~N = (N1, . . . , Ns), ~rNi
i = (~r1, . . . , ~rNi

) and Φ(~rN1
1 , . . . , ~rNs

s ) the interaction part of the Hamiltonian,
which consists of sums over particle-particle interaction terms. For low densities ρi = Ni/V the virial
expansion is easily seen to be

f(~ρ, β) ≡ βF ( ~N, V, β)
V

=
s∑

i=1

ρi(log(ρiΛ3
i )− 1) +

s∑

i,j=1

Bij
2 (β)ρiρj +

1
2

s∑

i,j,k=1

Bijk
3 (β)ρiρjρk + · · · , (2.7)

where the Bi are the analogue of the monodisperse virial coefficients. There is however a problem when
one tries to apply this result directly to solutions or suspensions, namely that the density of the solvent is
generally much higher than that of the solutes. This would require the use of far more virial coefficients
than desirable to describe the behaviour of the solutes accurately. The solvent would always contribute
the dominant part of the virial coefficients, even though it is not particularly relevant to us. It is possible
to derive a virial expression, which works around this problem, using a semi-grand canonical approach.
We treat the solutes canonically and the solvent grand canonically, hence the name semi-grand canonical.
Suppose that species s is the solvent. One may then write the partition sum as

exp(−βΩ) =
∞∑

Ns=0

exp(βµsNs)Z( ~N, V, β)

=
∫ (

s−1∏

i=1

dτNi
i

Ni!Λ3Ni
i

) ∞∑

Ns=0

exp(βµsNs)
Ns!Λ3Ns

s

∫
dτNs

s exp(−βΦ(~rN1
1 , . . . , ~rNs

s ))

≡
∫ (

s−1∏

i=1

dτNi
i

Ni!Λ3Ni
i

)
exp(−βΦeff(~rN1

1 , . . . , ~r
Ns−1
s−1 ); µs; β), (2.8)

where we have introduced Φeff as the effective interaction between the solute species at given µs and
β, the chemical potential of the solvent and the inverse temperature respectively. Φeff is a combination
of the interactions the solutes would experience in vacuum and the interaction of the solutes with the
solvent. Van Roij proposes the following method to simplify the calculation of the Φeff. When one
considers only the solvent with no solutes, we know that the Ω = Ω0 ≡ −p0(µs, β)V , where p0 is the
pressure of that system. Now successively consider the cases where there is only one particle present
Ω = Ω0 + ωi(µs, β), where there are two particles present, etc. Here ωi is the potential excess due to
the addition of a single particle of species i. For two particles of species i and j the grand potential
Ω = Ω0 + ωi + ωj + ωij(rij ; µs;β), where ωij is the effective pair interaction between species i and j.
Continuing in this way we find

Φeff = Ω0 + Ω1 + Ω2 + · · ·

= −p0(µs, β)V +
s∑

i=1

Niωi(µs, β) +
s∑

i,j=1




Ni∑

ki=1

Nj∑

kj 6=ki

kj=1

ωij(rkikj ; µs; β)


 + · · · . (2.9)
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Ω0 and Ω1 are independent of the position of the solute particles. By pulling these position independent
factors of equation (2.9) through the integral in equation (2.8), we obtain

Ω(N1, . . . , Ns1 , µs, V, β) = −p0(µs, β)V + Ω1(N1, . . . , Ns−1, µs, V, β)
+A(N1, . . . , Ns−1, µs, V, β) (2.10)

exp(−βA) =
∫

V

(
s−1∏

i=1

dτNi
i

Ni!Λ3Ni
i

)
exp(−βΩ2(~r) + · · · ), (2.11)

where A is the Helmholtz free energy of the effective canonical (s−1)-component system with interaction
Hamiltonian Ω2 + · · · , as defined by equations (2.10) and (2.11). We may now determine the pressure
of the system and the chemical potentials for the solute particles via

p = −
(

∂Ω
∂V

)

µs, β, ~N

= p0(µs, β)−
(

∂A

∂V

)

µs, β, ~N

= p0(µs, β) + Π(ρ1, . . . , ρs−1; µs; β)

µi = −
(

∂Ω
∂Ni

)

µs, β, ~N−{Ni}

= ωi(µs, β) +
(

∂A

∂Ni

)

µs, β, ~N−{Ni}
= ωi(µs, β) + µ′i(ρ1, . . . , ρs−1; µs;β),

where Π is the osmotic pressure, the excess pressure caused by the presence of the solutes, and µ′i is the
i-th solute’s excess chemical potential.

What was the point of this calculation? The formulae are not particularly beautiful and determining
ωi and ωij can be quite tricky. Actually this formalism has a tremendous advantage. When ωi and ωij

are known, one can treat the solution/suspention as if it the solutes are a gas in vacuum, where the
interactions are described by the effective pair potentials. This follows from equation (2.11), in which
the canonical partition sum exp(−βA) for the solutes is given. All we have done here is to rewrite the
semi-grand canonical function to show that the solutes behave canonically via effective pair interactions.
Which enables us to use the multi-component virial expansion on this exp(−βA) term. The presence of
the solvent only reveals itself in the µs dependence of the free energy, to which the term βµs must be
added3. This term is ignored in the rest of this thesis though, because it is a constant and it does not
appear in physical quantities such as the pressure and potential differences. The semi-grand canonical
approach allows us to write down a multi-component non-ideal gas virial expansion, substituting pair
interactions by effective pair interactions. For most situations one can safely ignore Ω3 and higher terms.
The ability to treat a solution as an effective interaction gas works around the density problem. For
low densities this theory yields Van ‘t Hoff’s law: βΠ = ρ1 + · · ·+ ρs−1. Now that we have determined
the behaviour of virial expansions for suspensions we proceed to use these to derive Onsager theory for
colloidal rods in the next chapter.

3fsusp = fgas(ωi, ωij) + βµs.
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Chapter 3

Onsager Theory for Monodisperse
Rod Systems

3.1 General Derivation without an External Field Interaction

All the theoretical machinery in the previous chapter has been developed under the assumption that the
interaction term in the Hamiltonian is independent of the orientation of the particles in space. This is
obviously not true in general and it poses a problem if we intend to describe colloidal rods. In the 1940’s
Lars Onsager introduced a revolutionary approximation technique, which employs orientation indepen-
dent results to arrive at an expression for orientation dependent systems. He applied this expression
to analyse the behaviour of a monodisperse system of hard colloidal rods. In this section we follow
Onsager’s derivation [7].

Instead of trying to find a completely new approach to the problem of orientation, Onsager used existing
virial expansions. He considered every orientation as a separate species, each with its own concentra-
tion. For simplicity we will only consider a monodisperse system here, but this result can be easily
extended to the more general multi-component case. In three dimensions the orientation of a par-
ticle can be described by two angles φ and θ in spherical coordinates or an orientation unit vector
ω̂ = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) in Cartesian coordinates. Onsager began by partitioning the
unit sphere into small areas dωi centred around s unit vectors ω̂i, i ∈ {1, . . . , s}. In doing so he ob-
tained s ‘different’ species of particle each with orientation ω̂i and concentration ρi. He then applied the
multi-component virial expansion, equation (2.7), to this system and obtained

f(~ρ, β) =
s∑

i=1

ρi(log(ρiV)− 1) +
s∑

i,j=1

Bij
2 (β)ρiρj +

1
2

s∑

i,j,k=1

Bijk
3 (β)ρiρjρk + · · · , (3.1)

where V is the equivalent of Λ3. Note that V is the same for all i, because the system is monodisperse
even though we see it as consisting of multiple species. Next, Onsager decided to consider only the terms
up to the second virial coefficient in equation (3.1). This may seem to be a rather rough approximation,
but it actually works quite well for low concentrations. We will come back to this in the next section.
Finally he took the limit s →∞ and derived the following for the free energy

f(ρ(ω̂), β) =
∫

dω̂ρ(ω̂)(log(ρ(ω̂)V)− 1) +
∫

dω̂

∫
dω̂′ρ(ω̂)B2(ω̂, ω̂′, β)ρ(ω̂′), (3.2)

with the second virial coefficient given by

B2(ω̂, ω̂′, β) = −1
2

∫
d~r (exp(−βφ(~r, ω̂, ω̂′))− 1) , (3.3)
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where φ is the interaction potential1. Equation (3.2) stands at the foundation of Onsager’s theory and
from it many real systems can be approximated to a high degree of accuracy. We now proceed to use free
energy minimisation to find the most probable distribution ρ(ω̂). To that end functional differentiation
is employed and the Lagrange multiplier λ is introduced. For the total density ρ, the condition

∫
dω̂ρ(ω̂) = ρ, (3.4)

gives us a Lagrange constraint, such that

δ

δρ(ω̂)

(
f − λ

∫
dω̂ρ(ω̂)

)
= 0 ⇒

log(ρ(ω̂)V) + 2
∫

dω̂′B2(ω̂, ω̂′, β)ρ(ω̂′)− λ = 0 . (3.5)

To those unfamiliar with functional differentiation, also known as Fréchet differentiation, we recommend
[8]. Alternatively these expressions can be derived using equation (3.1), taking the limit s → ∞ after-
wards. The normalisation of equation (3.4) is used to obtain the following expression for the equilibrium
distribution

ρ(ω̂) =
ρ exp

(− 2
∫

dω̂′B2(ω̂, ω̂′, β)ρ(ω̂′)
)

∫
dω̂′′ exp

(− 2
∫

dω̂′B2(ω̂′′, ω̂′, β)ρ(ω̂′)
) .

This is a self-consistent non-linear integral equation, because ρ(ω̂) is expressed in terms of itself via an
integral form. Note that ρ(ω̂) depends on all orientations, as it should. It is perhaps not immediately
obvious, but ρ(ω̂) = ρ/4π is an ω̂ independent solution for any ρ and β. This solution is the distribution
in the isotropic phase of the system. This phase is characterised by a completely random distribution of
the particles, each direction is equally probable. The isotropic phase has the following free energy

fiso(ρ, β) = ρ

(
log

(
ρV
4π

)
− 1

)
+

ρ2

(4π)2

∫
dω̂

∫
dω̂′B2(ω̂, ω̂′, β).

It turns out that for low ρ or high temperatures, the isotropic state is the only state the system can
occupy. At higher ρ and/or lower temperatures, we have other solutions. The nature of these depends
on the precise form of the B2(ω̂, ω̂′, β), however the distribution ρ(ω̂) of these phases can usually not be
found analytically and requires a numerical approximation technique.

3.2 Colloidal Rods

At this point we have yet to make assumptions about the nature of the orientation dependence of the
B2(ω̂, ω̂′, β). We choose the specific example of hard colloidal rods. Consider a monodisperse system
of colloidal rods suspended in a solvent with volume V . The rods have length L and diameter D.
Sometimes spherocylinders (capped rods) are used, but this distinction will not prove relevant in our
approximation. Furthermore assume that the pair potential is that of hard body interactions, where

βφHB(~r, ω̂, ω̂′) =
{ ∞ if overlap

0 otherwise.

Insertion into equation (3.3) shows that B2(ω̂, ω̂′, β) becomes independent of β. For hard body inter-
actions B2 is related to the so-called excluded volume. The Mayer function fij = −1 if the particles
overlap and it is 0 otherwise. This leads an excluded volume, because the B2 gives the volume one
particle excludes for the others. The orientation-dependent excluded volume then becomes

B2(ω̂, ω̂′, β) = B2(ω̂, ω̂′) = πLD2 + L2D| sin(γ(ω̂, ω̂′))|+O(D3) ≈ L2D| sin(γ(ω̂, ω̂′))|,
1Or the effective interaction potential, depending on the system being considered.
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where γ(ω̂, ω̂′) is the angle between ω̂ and ω̂′ and the approximation L À D has been used. At this point
we come back to the remark in section 3.1 concerning the higher virial coefficients in Onsager theory.
Onsager showed that in the limit D/L → 0 his second virial coefficient approximation is exact. However
experiments have shown that a ratio L/D = 15/1 is already sufficient to obtain accurate results. From
here on assume that we are in this long-rod regime. In addition any boundary problems at γ = 0 and
γ = π one might expect from our L À D approximation can be disregarded, since these are points of
measure 0.

Write n̂ for the nematic director; recall that this is the direction in which the rods are oriented on
average. Since the free energy is not influenced by global rotations, we may align the z-axis with the
nematic director, thus taking ω̂ relative to n̂. Since ρ(ω̂) has rotational symmetry around n̂ as well as
reflection symmetry in the xy-plane, one can introduce ρ(ω̂) = ρψ(θ). Here θ is the polar angle measured
from the n̂-axis. Equation (3.4) requires

∫
dω̂ψ(θ) =

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)ψ(θ) = 1 .

It is possible to rewrite | sin(γ(ω̂, ω̂′))| for our new choice of coordinates as

| sin(γ(ω̂, ω̂′))| =
√

1− cos2(γ(ω̂, ω̂′))

=
√

1− 〈ω̂, ω̂′〉2
=

√
1− (cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ′ − φ))2 .

Introducing the integral kernel

K(θ, θ′) =
∫ 2π

0

dφ′| sin(γ(ω̂, ω̂′))|

=
∫ 2π

0

dφ′
√

1− (cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ′ − φ))2 , (3.6)

we can write for the free energy

f(ρ) = ρ

∫
dω̂ψ(θ)(log(ρψ(θ)V)− 1) +

ρ2

2

∫
dω̂

∫
dω̂′ψ(θ)B2(ω̂, ω̂′)ψ(θ′) ⇒

f(ρ)
ρ

= log(ρV)− 1 +
∫

dω̂ψ(θ) log(ψ(θ)) +
ρ

2

∫
dω̂

∫
dω̂′ψ(θ)B2(ω̂, ω̂′)ψ(θ′)

= log(ρV)− 1 + 2π

∫
dθ sin(θ)ψ(θ) log(ψ(θ))

+2π
ρ

2
2L2D

∫
dθ sin(θ)

∫
dθ′ sin(θ′)ψ(θ)K(θ, θ′)ψ(θ′),

where the θ integrals are from 0 to π. Henceforth we will omit the boundaries for all the θ integrals.
Now choose V = πL2D/4 and c = Vρ. This choice of V may seem a bit arbitrary, but it will enable
us to write down the formulae in a very clean way. In addition we know that V does not occur in
the expression for ρ(ω̂), nor does it in physical quantities such as the pressure and chemical potential
differences. Therefore it is safe to make this choice. When we write f(c) ≡ f(ρ)/ρ, substitution of the
above mentioned formulae gives

f(c) = log(c)− 1 + 2π

∫
dθ sin(θ)ψ(θ) log(ψ(θ))

+8c

∫
dθ sin(θ)

∫
dθ′ sin(θ′)ψ(θ)K(θ, θ′)ψ(θ′)

ψ(θ) =
1
Z

exp
(
−8c

π

∫
dθ′ sin(θ′)K(θ, θ′)ψ(θ′)

)
(3.7)

Z = 2π

∫
dθ′′ sin(θ′′) exp

(
−8c

π

∫
dθ′ sin(θ′)K(θ′′, θ′)ψ(θ′)

)
.
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Thus rewriting the free energy F (N,V, β) to f(c), a dimensionless free energy dependent on the dimen-
sionless concentration parameter c. Moreover we have found a non-linear integral equation for ψ(θ).
The next section will describe how to solve this type of problem, but first let us derive some additional
properties, namely the dimensionless pressure and dimensionless chemical potential.

f(c) =
βF

N

P = −
(

∂F

∂V

)

N,β

= −
(

∂F

∂c

)(
∂c

∂V

)

=
(

NV
V 2

) (
∂F

∂c

)

=
(

NV
V 2

N

β

)(
∂f

∂c

)

=
(

c2

βV
)(

∂f

∂c

)
⇒

p(c) ≡ VβP

= c2

(
∂f

∂c

)

µ(c) ≡ βµ

= f(c) +
p(c)
c

,

where the derivation of µ(c) is analogous. Note the following: we have used the derivative to c of f(c)
to obtain expressions for p(c) and µ(c). However, f(c) depends on ψ(θ) which in turn also depends on
c, one could express this as f(c, ψ(c)), thus

(
df

dc

)
=

(
∂f

∂c

)
+

∫
dω̂

(
δf

δψ(ω̂)

)(
dψ(ω̂)

dc

)
.

Fortunately we need to calculate p(c) and µ(c) for the ψ which minimises f(c). Therefore δf/δψ = λ,
with λ the lagrange multiplier, which implies

∫
dω̂

(
δf

δψ(ω̂)

)(
dψ(ω̂)

dc

)
=

∫
dω̂λ

(
dψ(ω̂)

dc

)
=

d
dc

(
λ

∫
dω̂ψ(ω̂)

)
=

d
dc

(λ · 1) = 0 ,

and one can write ∂f/∂c immediately. Remarkably, for hard-rod systems the distribution and all di-
mensionless physical quantities depend only on one variable, namely the dimensionless concentration
c. The temperature only comes into play when the transition from the dimensionless to the normal
characterisations of the pressure and chemical potential is made. Evaluating the expression for p(c)
yields

p(c) = c + 8c2

∫
dθ sin(θ)

∫
dθ′ sin(θ′)ψ(θ)K(θ, θ′)ψ(θ′).

Finally we introduce the nematic order parameter,

S ≡ 〈(3 cos2(θ)− 1)/2〉 = 2π

∫
dθ sin(θ)ψ(θ)

3 cos2(θ)− 1
2

.

This parameter represents the extent to which the rods are oriented along the nematic director. In the
isotropic phase there is no ordering and S = 0, in the nematic phase S can be as high as 0.99 for almost
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totally ordered systems. For the isotropic regime the equations derived in this section simplify to

ψiso(θ) =
1
4π

fiso(c) = log
( c

4π

)
− 1 + c (3.8)

piso(c) = c2 + c (3.9)

µiso(c) = log
( c

4π

)
+ 2c (3.10)

Siso = 0 .

In the next section we proceed to analyse the nematic phase mathematically and develop techniques to
tackle the non-linear integral equation for ψ(θ).

3.3 Mathematical and Numerical Analysis

We begin this section by examining some of the properties of the non-linear integral equation for the
ψ(θ) distribution

log(4πψ(θ)) = λ− 8c

π

∫
dθ sin(θ)| sin(γ(ω̂, ω̂′))|ψ(θ′), (3.11)

where λ is a Lagrange multiplier. The origin of this formula should be obvious as it is merely a refor-
mulation of equation (3.5) for hard colloidal rods. There are basically two methods for approximating a
solution to this equation. The first is algebraic in nature, the second is purely numerical.

The distribution ψ(θ) is invariant under rotations of the reference frame and invariant under azimuthal
rotations. Legendre polynomials in cos(θ) form a set of eigenfunctions of these operations, the even
Legendre polynomials obey the symmetry of the ψ(θ) distribution, namely ψ(θ) = ψ(π − θ). The idea
behind the mathematical analysis of equation (3.11) is to expand the functions in terms of even Legendre
polynomials. This approach was followed by Kayser and Raveché in 1978 [9]. They gave the following
expressions:

K(θ, θ′) = 2π

∞∑
n=0

c2nP2n(cos(θ))P2n(cos(θ′));

f(θ) =
∞∑

n=0

a2nP2n(cos(θ));

log(f(θ)) =
∞∑

n=0

α2nP2n(cos(θ)),

where the unknown expansion coefficients a2n and α2n are related via a rather complicated relations,
and were the c2n are known. Solving the system obtained by substituting these equations into equation
(3.11) however, is far beyond the scope of this text. There are no closed forms for the coefficients a2n as
a function of the c2n. Usually an iterative method is employed to approximate these coefficients. Kayser
and Raveché used this technique to perform a bifurcation analysis on equation (3.11). There exists at
least one solution, namely the isotropic distribution. A bifurcation analysis determines if and where2 a
nematic type solution can branch from the isotropic phase. It is clear that near the branch point we
may introduce ψ(θ) = (1+εh(θ))/4π, where ε is an infinitesimally small value, and h(θ) is some function
orthogonal to 1/4π, by the condition that 〈ψ〉 = 1. Substituting this equation into (3.11), linearising in

2For what value of the dimensionless concentration c.
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ε and using a Legendre polynomial expansion yields

h(θ) = −4c

π

∞∑
n=0

c2nP2n(cos(θ))〈P2n〉

〈P2n〉 =
∫ π

0

dθ sin(θ)P2n(cos(θ))h(θ). (3.12)

Kayser and Raveché used even Legendre polynomials as a trial solution for h(θ), note that equation
(3.12) is a self-consistent problem. However these polynomials satisfy this equation only for a specific
value of c, say c∗. The lowest of these values taken over all even Legendre polynomials proves to be the
location of the bifurcation point. Kayser and Raveché obtained the minimum value c∗ = 4. We will
come back to the physical importance of this concentration when we discuss the monodisperse results
in section 3.4.

The second method is purely numerical [10]. This method uses an iterative procedure to obtain ψ(θ)
from an initial guess. The self-consistency requirement is used to improve the initial guess step by step,
until equation (3.7) is satisfied. This equation is self-consistent as it expresses ψ(θ) in terms of itself.
Consider a discrete equidistant grid in θ. Let Nθ be the number of θ-values in this grid then for k = 0,
1, . . . , Nθ we have

θk = π
k

Nθ
.

The ψ(θ) = ψ(π − θ) symmetry implies that one could suffice with only half the interval in θ, namely
θ ∈ [0, π/2]. Requiring only half the number of grid points to obtain the same result would obviously be
faster in a computer calculation. However, we plan on introducing a field which breaks this symmetry,
thus the full interval length of [0, π] is used. A trapezoidal integration scheme allows us to approximate
integrals. Let q(θ) be some function, then

∫ π

0

dθ sin(θ)q(θ) ≈
Nθ∑

k=0

∆kq(θk),

where upon using dθ sin(θ) = −d cos(θ) we find

∆k =





1− (cos(θ0) + cos(θ1))
2

k = 0

(cos(θk−1)− cos(θk+1))
2

k = 1, . . . , Nθ − 1

1 +
(cos(θNθ−1) + cos(θNθ

))
2

k = Nθ .

This form for ∆k guarantees that the
∑

k ∆k = 2. A similar expression is employed to perform the φ
integration in the integral kernel, equation (3.6), K(θ, θ′) → Kkl. Note that the kernel does not change
during the procedure outlined in the following sections. This means that the two dimensional array need
only be calculated once and stored, or it could be fetched from memory if it has been precalculated.
This yields

Kkl =
2π

Nφ


1

2
gkl(φ0) +

Nφ−1∑

j=1

gkl(φj) +
1
2
gkl(φNφ

)


 ;

gkl(φ) =
√

1− (cos(θk) cos(θl) + sin(θk) sin(θl) cos(φ))2 ;

φk =
2π

Nφ
k for k = 0, . . . , Nφ .

Now introduce an initial guess, a starting point for the iteration. There are two types of initial guess
used in this thesis.
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1. Isotropic, τk = 1/4π for k = 1, . . . , Nθ. This provides excellent convergence for nearly isotropic
distributions, within 1 to 2 iterations. It has slow convergence for strongly nematic phases though.
Depending on the concentration as many as 50 iterations might be required.

2. Gaussian3, τk = (c/π)2 exp(−2c2θ2
k/π) for k = 1, . . . , Nθ/2 and τNθ−k = τk, which works well

for nematic phases. Usually around 10 iterations are required. The Gaussian initial guess can be
found by accommodating the function γ exp(αθ2) to the free energy, by minimising the discrepancy
with the real ψ(θ) with respect to α and γ. Onsager used the form α cosh(α cos(θ))/(4π sinh(α)),
with α suitably chosen [11].

We now have all the ingredients to solve the problem iteratively. Start by calculating the following

Ak =
8c

π

Nθ∑

l=0

∆lKklτl (3.13)

Z = 2π

Nθ∑

k=0

∆k exp(−Ak) (3.14)

ψk =
exp(−Ak)

Z
, (3.15)

where ψk is our new estimate for the distribution function. This procedure constitutes a single iteration.
Take ψk → τk and re-evaluate the expressions (3.13), (3.14) and (3.15). One can continue this way
indefinitely. To exit this loop we need a condition, in this case check for self-consistency. Self-consistency
is obtained when max |ψk − τk| < δ, with δ a small value. If this condition is satisfied, the ψk can be
used to calculate f(c), p(c), etc, for which discretised forms of f , p, µ and S are required. Experience
teaches us that Nθ = Nφ ≈ 40 ∼ 80 gives reasonable results which show good qualitative behaviour, and
Nθ = Nφ ≈ 200 ∼ 400 gives accurate quantitative results, around 3 ∼ 4 digit precision.

In addition to this iterative scheme we use another numerical technique, namely Newton-Raphson (NR).
NR is employed to find points where there is isotropic-nematic coexistence. For coexistence determination
one needs to solve the two dimensional system, depending on two variables, ciso and cnem

p(ciso)− p(cnem) = 0
µ(ciso)− µ(cnem) = 0 .

We apply a two dimensional NR-routine to find the ciso and cnem, for which there is coexistence. The
implementation of this algorithm is fairly straightforward [12]. It is quite important to have good initial
guesses for ciso and cnem though, because the 2D NR-routine has poor convergence. Now that we
have discussed the numerical techniques used to derive results, we can describe the results and their
implications in the next section. There the additional complexity of an external dipolar field interacting
with a moment is also introduced to the problem.

3.4 Numerical Results without an External Field Interaction

The results derived here were obtained using Nθ = Nφ = 500 and δ = 10−5. In figure 3.1 the ψ(θ)
dependence on c is given, the distribution becomes increasingly peaked for higher values of c. Values
between c = 0.001 and c = 4 have been omitted, because the phases in this range are mostly isotropic
and would coincide with the red line. Although not clearly visible, the red line has ψ(θ) = 1/4π within
numerical uncertainty everywhere. For high c values ψ(θ) behaves like two δ-function peaks, one in θ = 0
and the other in θ = π, as can be expected. To get a better idea of what happens we examine figure 3.2.
The isotropic phase persists to c = 4.002 ≈ 4.0 and that the nematic phase appears at c = 3.486 ≈ 3.5.
Recall that Kayser and Raveché had determined the branching value c∗ = 4 analytically, which agrees

3We may assume Nθ to be even.
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with our terminal value for the isotropic phase within the uncertainty. We can now describe the physical
significance of this bifurcation point c∗. The nematic phase branches from the isotropic in this point,
which means there is another curve joining the point c = 4.002 to c = 3.486. For the nematic begin
point this occurs in a smooth way and at the bifurcation point in a continuous, non differentiable way.
Calculation of this curve is quite involved, requiring the methods of Kayser and Raveché, and therefore
not performed here. However, an indication of the shape of this curve is given in figure 3.2 (right) using
blue points. We can see that the begin point of the nematic phase is not a starting point at all, but a
bending point. For values of c exceeding 4.0 the dimensionless concentration is too high to allow a stable
isotropic phase to exist.
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Figure 3.1: The orientation distribution ψ(θ) for several values of the dimensionless concentration c,
from red to blue: c = 0.001, 4, 5, 6, 8, 10 (left). Detail (right).
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Figure 3.2: The nematic order parameter S as a function of the dimensionless concentration c, the
isotropic branch is red and the nematic black (left). Close-up of the graph restricted to
the domain [3.4, 4.2] (right). The blue dots give an indication of the shape of the curve
connecting the isotropic-nematic branching point (c = 4) with the nematic bending point
(c ≈ 3.5). These points only give an indication of this curve, they do not give the exact
curve as calculated by Kayser and Raveché, Ref. [9]. The isotropic curve extends slightly
beyond the branching point, because this plot was generated using a data set with 2
decimal precision.

For the dimensionless free energy, scaled free energy, pressure and chemical potential the results are given
by figures 5.1, 5.2, 5.3 and 5.4 respectively, see Appendix A. In all graphs should be a curve connecting the
isotropic and nematic branches. The logarithmic properties of f(c) and µ(c) and the quadratic behaviour
of p(c) for the isotropic branch, predicted by equations (3.8) through (3.10), are quite pronounced. In fact
the isotropic results agree with these expressions within the numerical uncertainty, five digit precision,
for c ∈]0, 15]. The nematic phase p(c) behaves linearly in c for high concentrations. It can be shown
analytically that in the limit c → ∞ this becomes p(c) = 3c. Alternatively one can use the Gaussian
initial guess, which corresponds closely to the ψ(θ) distribution at very high c, c À 100, and determine
the pressure dependence numerically, this yields p(c) = 3.0c as well.
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Finally we consider the coexistence of an isotropic and a nematic phase. A Maxwell common tangent
construction is employed to find coexistence conditions [2]. For coexistence the pressures and the chemical
potentials of the phases are equal. We know that µ = (∂F/∂N)V,β = (∂f/∂ρ)β and p(ρ) = ρµ(ρ)−f(ρ).
Thus a tangent to the f(ρ) graph will obey

∂f

∂ρ

∣∣∣∣
ρ1

=
∂f

∂ρ

∣∣∣∣
ρ2

=
f(ρ2)− f(ρ1)

ρ2 − ρ1
,

which can be rewritten using the above relations as

(ρ2 − ρ1)µ0 = (f(ρ2)− f(ρ1)) + (p0 − p0), (3.16)

where µ0 is the coexistence chemical potential and p0 the coexistence pressure. An adaptation of
equation (3.16) yields the following formula cf(c) − cµ∗0 + p∗0, with µ∗0 the dimensionless coexistence
chemical potential and p∗0 the dimensionless coexistence pressure. One now expects this function to have
two minima, one for the isotropic and one for the nematic coexistence concentration, both of which lie
on the c-axis. The c-axis acts as the tangent in this modified form of the original free energy graph.

3 3.5 4 4.5
c

0.1

0.2

0.3
c×fHcL-c×Μ0

*
+p0
*

Figure 3.3: A modified dimensionless free energy graph, to which a Maxwell common tangent con-
struction has been applied. The tangent being the c-axis, the dimensionless concentration
axis, µ∗0 is the dimensionless chemical potential at coexistence and p∗0 the dimensionless
pressure at coexistence. Note that the isotropic coexistence value is given by c∗iso ≈ 3.3
and the nematic coexistence value by c∗nem ≈ 4.2, indicated by the blue dots.

Figure 3.3 indicates that coexistence occurs at c∗iso ≈ 3.3 and c∗nem ≈ 4.2. Admittedly, using the
coexistence values in the plot is not really possible without prior knowledge, but it does dramatically
improve the readability of the graph. Figure 5.2 (left) gives a standard Maxwell common tangent and
figure 5.2 (right) an indication of the small isotropic-nematic tangent differences near the coexistence
points. Using the NR-technique the following values given in the 5 digit precision are obtained, see the
table below.

parameter value
c∗iso 3.2903
c∗nem 4.1911
f∗iso .95032
f∗nem 1.8724
p∗iso = p∗nem 14.117
µ∗iso = µ∗nem 5.2407
S∗iso .00000
S∗nem .79222
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3.5 Numerical Results with an External Field Interaction

We now consider a monodisperse system of hard dipolar colloidal rods, with the dipole moment along
the long axis of the rods. The rods can interact with an external field, but do not exhibit dipole-dipole
interactions. The following dipolar interaction potential Φext(θ) = −W cos(θ) is used. Here W = mE,
with m the dipole moment and E the field strength. The field is homogeneous and points in the same
direction as the nematic director. A simple calculation now gives us the extended forms for ψ, f , µ and
p by incorporating this field

ψ(θ) =
1
Z

exp
(
−8c

π

∫
dθ′ sin(θ′)K(θ, θ′)ψ(θ′) + βW cos(θ)

)

f(c) = log(c)− 1 + 2π

∫
dθ sin(θ)ψ(θ) log(ψ(θ))

+8c
∫

dθ sin(θ)
∫

dθ′ sin(θ′)ψ(θ)K(θ, θ′)ψ(θ′)

−2πβW

∫
dθ sin(θ) cos(θ)ψ(θ)

p(c) = c + 8c2

∫
dθ sin(θ)

∫
dθ′ sin(θ′)ψ(θ)K(θ, θ′)ψ(θ′)

µ(c) = f(c) +
p(c)
c

,

with Z the normalisation constant. Note that introducing this external field gives rise to a temperature
dependence, which was not present for the hard-rod interactions. All calculations for these systems have
been performed using Nθ = Nφ = 500 and δ = 10−5. Figure 3.4 gives the dependence of a nematic
ψ(θ) at c = 4.5 on the field strength. The field causes an asymmetry in the distribution by breaking
the up-down symmetry. The rods possess a dipole moment giving them a preferential direction for the
θ dependence of ψ, namely θ = 0. The nematic director is pointed parallel to the field, as the dipole
moments tend to align themselves along the field lines.
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Figure 3.4: The orientation distribution ψ(θ) for the nematic phase with dimensionless concentration
c = 4.5 at several dipolar field strengths (left). This field strength is represented by the
dimensionless parameter βW , with the inverse temperature β and the interaction energy
W = mE, where m is the (fixed) dipole moment and E the field strength. From red to
blue: βW = 0.0, 0.5, 1.0, 5.0, 10.0, 50.0. Note the symmetry breaking, the red curve is
completely symmetric, whilst the blue curve is completely asymmetric. Detail (right).

We can now determine the phase diagram for the field strength - concentration relation, figure 3.5
(left). There is a smooth transition from a state in which there is isotropic-nematic separation to a
state in which the isotropic and nematic phases are indistinguishable. The critical point is located at
(c, βW ) = (3.20, 0.742). This result indicates that smooth isotropic-nematic phase transition, via a
field-concentration line clearing the coexistence curve. We refer to Appendix B for more results.
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In figure 3.5 (right) the βW dependence of the isotropic and nematic S-value has been calculated for
several concentrations. Note the almost linear behaviour of the nematic order parameter as a function
of βW in the nematic phase. The isotropic phase responds more strongly to the introduction of an
external field, exponentially instead of linearly. Nematic and isotropic branches exist simultaneously for
c-values between c = 3.5 and c = 4.0, see figure 3.2 (right). However the isotropic branch for c = 4.0
is too small to be found by our approximation technique. Between these two c-values there is a linear
drop-off in the βW for which the isotropic branch merges with the nematic one. The alignment of the
rods with respect to the nematic director is a balance between the field, which tends to create order,
and the entropy, which tends to maximise disorder. The isotropic phase interacts more strongly with
the field because the entropy is not as as high as in the nematic phase. Yet it is the nematic phase
which has the greatest c-variation in figure 3.5 (left). This seems a bit counter intuitive. We know the
coexistence values of µ and p without an external field. By turning on the field, these values will increase
in a similar way as S for a given concentration; exponentially and linearly. In practice it implies that
both the isotropic and nematic phase need to have a lower concentration to obtain coexistence. Because
the isotropic phase is more strongly influenced than the nematic phase, it does not need to decrease
its c-value as much as the nematic to achieve coexistence. Only for quite high field strengths does the
isotropic phase begin to experience entropic resistance to the field alignment, which in turn causes it to
require higher concentrations for coexistence. This can be seen by the backward bending of the isotropic
branch near the critical point.
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Figure 3.5: The field-concentration (βW, c)-phase diagram (left). The isotropic phase is represented
in red and the nematic in black. There is a critical point at (c, βW ) = (3.20, 0.742). The
nematic order parameter S as a function of βW for several c values (right). From red to
blue c = 3.25, 3.50, 3.625, 3.75, 4.00. There is no colour distinction between the isotropic
(leftmost) and nematic (rightmost) phases. The gaps in the yellow, green and light blue
graph are caused by the almost horizontal tangent to the isotropic branch, causing the
free energy minimisation routine to jump from the isotropic to a nematic phase in a single
step. Note that the two phases occur simultaneously between c = 3.5 and c = 4.0, as we
would expect form figure 3.2. For c = 4.0 only a nematic curve is visible, however there is
an isotropic branch for βW ≈ 0. It is too small to be found using the techniques employed
in this thesis though. For the red curve a smooth isotropic-nematic phase transition can
be observed.

The interplay between the field and the entropy is characterised by a steady decrease in S for the
nematic coexistence c and a slightly more rapid increase in S for the isotropic coexistence c, see figure
5.6 (right) in Appendix B. Form this figure we obtain that Scrit = 0.446 at the critical point. The
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system is not completely aligned (S = 1) for this critical value though. This is because βW = 0.742 < 1,
which implies that the field interaction energy is less than kBT and therefore it cannot be the dominant
term in the nematic order parameter. In a rough estimate the field, causing ordering, and the ambient
temperature, causing randomisation, contribute equally to S at the critical point, which yields Scrit ≈
0.742/(0.742 + 1.000) = 0.43. This indication of this S-value is quite reasonable considering that the
actual value is given by Scrit = 0.446.

3.6 Limitations of this Model

We have examined the properties of monodisperse systems of dipolar hard colloidal rods. A graphical
representation of the results has been given in the areas where the behaviour of the system is most
interesting. Let us now investigate the limitations of this model. Obviously L/D > 15/1 is required
for the second virial coefficient approximation to hold. However dipolar properties of the rods are of
greater concern. The rods need to interact with a field in such a way that the dipole-dipole interactions
contribute negligibly to the B2(θ, θ′, β) and yet the field strength is not prohibitively high. If the dipole-
dipole interactions are not negligible with respect to the hard-rod interactions, completely new phase
types can occur. The tendency of the dipoles to form chainlike ‘molecules’ [13] results in one of these.
Obviously the addition of dipolar moments will become increasingly noticeable for higher concentrations.
Assume that the hard rods are mathematical dipoles with dipolar moment ~m, then the dipole-dipole
interaction potential is given by

I(~r, ~m1, ~m2) = ζ
~m1 · ~m2 − 3(~m1 · r̂)(~m2 · r̂)

r3
, (3.17)

with ζ the interaction strength parameter. Consider the potential energy minima for dipole-dipole
interactions, which give the configurations the system is most likely to assume if it is energy dominated.
The first is a head to tail alignment of dipoles and the second is an antiparallel alignment, when the
rods are side by side. Using equation (3.17), we find that these have interaction energy,

IHT = −2m2ζ

r3
(3.18)

IAP = −m2ζ

r3
. (3.19)

For hard-rod systems there are three distances: r = L, for the head to tail configuration, r = D for the
antiparallel configuration and finally r = ρ−1/3, which gives the average distance between the particles
for a given number density ρ = c/V. Substituting these distances in equations (3.18) and (3.19) results
in four interaction energies

IHT = −2m2ζ

L3
(3.20)

IAP = −m2ζ

D3
(3.21)

IHT, av = −2m2ζc

V (3.22)

IAP, av = −m2ζc

V . (3.23)

We use the condition |Idip-dip| ¿ |Ifield| = mE to indicate when the the dipole-dipole interactions become
negligible compared to the field interaction. Using equations (3.20) through (3.23), ignoring equation
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(3.22), one arrives at three estimates,

2ζm

L3
¿ E

ζm

D3
¿ E

ζmc

V ¿ E.

Let us examine the experimental feasibility of this type of system by estimating the E for which the
dipole-dipole interactions are dominated by the field interaction; using known values for the dimensions
and dipole moments of colloids. The typical dimensions of a colloidal rod, for instance those of the
Tobacco Mosaic Virus, are D ≈ 20 nm and L ≈ 300 nm. For the value of the dimensionless concentration
we use c = π, which is near the coexistence values and gives 4ζm/L2D ¿ E. The ζs for the magnetic and
the electric dipole-dipole interactions are µ/4π (Tm/A) and 1/4πε (Vm/C) respectively. The magnetic
dipole moments of certain types of bacteria are in the order of 10−15 Am2, [14] and [15]. We take this
value as an estimate for the magnetic dipole moment of a colloidal rod. The electric dipole moment of
the colloids in Ref. [16] is 25 − 50 Debye, which is equivalent to ≈ 10−28 Cm. A slightly larger value,
namely 10−27 Cm, is used in the estimate given here. We can determine the field strength required by
substituting the above mentioned quantities into our estimate. The three possibilities give an electric
field of approximately 7 ·102, 1 ·106 and 2 ·104 V/m respectively, whereas the magnetic fields are given by
8 · 10−3, 10 and 0.2 T respectively. Except for head to tail interactions, this is really considerable. Field
strengths of 10 Tesla are not readily obtained in an average laboratory, and 106 V/m is quite close to
the ionisation field strength of dry air, 3 · 106 V/m. This raises doubt on the feasibility of experimental
verification. In addition the temperatures at which these experiments are performed needs to be taken
into account. Consider an experiment at room temperature, 300 K, and colloidal rods with an electric
dipole moment of 10−27 Cm. The range 0 ≤ βmE ≤ 1 corresponds to an electric field of 0 ≤ E ≤ 4 · 106

V/m, which would be problematic if we require E À 106 V/m to overcome dipole-dipole dominance.

At first glance these estimates are troubling. However a more detailed analysis is required before we can
definitively rule out the possibility of an experiment. Not all effects have been taken into account by
this approximation, dipole screening by the solvent for instance. The estimate is quite rough and it is
certainly possible that the dipole-dipole interactions do not have as strong an influence on the behaviour
of the phases as determined here. Note that we have taken the inter-dipole distances to be close to the
value for which the dipoles touch, if these distances are larger it would greatly reduce the field strengths
required. The head to tail and the concentration distance estimates are more encouraging, but these
might not be strong enough to be applicable to these systems.
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Chapter 4

Onsager Theory for Bidisperse
Suspensions of Rods

4.1 Theoretical Development

As before we may use the techniques employed by Onsager for bidisperse orientable systems, using a
multi-species virial expansion. Take the external field to be directed along the n̂-axis. Then the field
interaction energies are −W1〈ω̂, n̂〉 and −W2〈ω̂, n̂〉 respectively, in inner product bracket notation. This
results in the following expression in ρ1(ω̂) and ρ2(ω̂), were the ρi represent the density of component i,

f(ρ1, ρ2) = fid(ρ1, ρ2) + fsep(ρ1, ρ2) + fmix(ρ1, ρ2) + fext(ρ1, ρ2)

fid(ρ1, ρ2) =
∫

dω̂ρ1(ω̂)(log(ρ1(ω̂)V1)− 1) +
∫

dω̂ρ2(ω̂)(log(ρ2(ω̂)V2)− 1)

fsep(ρ1, ρ2) =
∫

dω̂

∫
dω̂′ρ1(ω̂)B(11)

2 (ω̂, ω̂′, β)ρ1(ω̂′) +
∫

dω̂

∫
dω̂′ρ2(ω̂)B(22)

2 (ω̂, ω̂′, β)ρ2(ω̂′)

fmix(ρ1, ρ2) = 2
∫

dω̂

∫
dω̂′ρ1(ω̂)B(12)

2 (ω̂, ω̂′, β)ρ2(ω̂′)

fext(ρ1, ρ2) = −βW1

∫
dω̂ρ1(ω̂)〈ω̂, n̂〉 − βW2

∫
dω̂ρ2(ω̂)〈ω̂, n̂〉

B
(xy)
2 (ω̂, ω̂′, β) = −1

2

∫
d~r(exp(−βφ(~r(xy), ω̂, ω̂′)− 1).

Now introduce the following notations make the formulae more appealing, with x the composition
parameter: ρ1 = (1− x)ρ, ρ2 = xρ, Li = λiL, Di = δiD, Vi = πL2

i Di/4, V = πL2D/4, ρiψi(θ) = ρi(ω̂)
and c = Vρ. For a system where particle species 1 has a field interaction strength W1 = m1E and species
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2 interaction parameter W2 = m2E, we write f(c, x) = βF/N as

f(c, x) = fid(c, x) + fsep(c, x) + fmix(c, x) + fext(c, x)

fid(c, x) = log(c)− 1 + (1− x) log(1− x) + x log(x) + log(λ2
1δ1) + x log

(
λ2

2δ2

λ2
1δ1

)

+2π(1− x)
∫

dθ sin(θ)ψ1(θ) log(ψ1(θ)) + 2πx

∫
dθ sin(θ)ψ2(θ) log(ψ2(θ))

fsep(c, x) = 8cλ2
1δ1(1− x)

∫
dθ sin(θ)

∫
dθ′ sin(θ′)ψ1(θ)K(θ, θ′)ψ1(θ′)

+8cλ2
2δ2x

∫
dθ sin(θ)

∫
dθ′ sin(θ′)ψ2(θ)K(θ, θ′)ψ2(θ′)

fmix(c, x) = 8cλ1λ2(δ1 + δ2)x(1− x)
∫

dθ sin(θ)
∫

dθ′ sin(θ′)ψ1(θ)K(θ, θ′)ψ2(θ′)

fext(c, x) = −2π(1− x)βW1

∫
dθ sin(θ)ψ1(θ) cos(θ)− 2πxβW2

∫
dθ sin(θ)ψ2(θ) cos(θ).

This yields the following conditions for the equilibrium distributions

ψ1(θ) =
1
Z1

exp
(
−8c

π
λ2

1δ1(1− x)
∫

dθ′ sin(θ′)ψ1(θ′)K(θ, θ′)
)

× exp
(
−4c

π
λ1λ2(δ1 + δ2)x

∫
dθ′ sin(θ′)ψ2(θ′)K(θ, θ′)

)

× exp (βW1 cos(θ))

ψ2(θ) =
1
Z2

exp
(
−8c

π
λ2

2δ2x

∫
dθ′ sin(θ′)ψ2(θ′)K(θ, θ′)

)

× exp
(
−4c

π
λ1λ2(δ1 + δ2)(1− x)

∫
dθ′ sin(θ′)ψ1(θ′)K(θ, θ′)

)

× exp (βW2 cos(θ))

p(c, x) = c2

(
∂f

∂c

)
(c, x)

µ1(c, x) = f(c, x) +
p(c, x)

c
− x

(
∂f

∂c

)
(c, x)

µ2(c, x) = f(c, x) +
p(c, x)

c
+ (1− x)

(
∂f

∂c

)
(c, x).

Here the Zi are normalisation constants. The definition of S is unchanged, but there are two S values
now, one for each component of the system. When ψ1(θ) = ψ2(θ) = 1/4π, we can re-write the equations
above as

f(c, x) = log(c/4π)− 1 + (1− x) log(1− x) + x log(x) + log(λ2
1δ1) + x log

(
λ2

2δ2

λ2
1δ1

)

+cλ2
1δ1(1− x)2 + cλ2

2δ2x
2 + cλ1λ2(δ1 + δ2)x(1− x) (4.1)

p(c, x) = c + c2λ2
1δ1(1− x)2 + c2λ2

2δ2x
2 + c2λ1λ2(δ1 + δ2)x(1− x). (4.2)

These equations are only relevant for W1 = W2 = 0. The functions µ1 and µ2 follow directly from
equations (4.1) and (4.2) and are omitted here. For the nematic fieldless case there also exist expansions
at high densities see Ref. [17]. Having obtained expressions for the physical parameters, we proceed to
discuss the numerical techniques used to approximate them in the next section.
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4.2 Numerical Results without an External Field Interaction

The iteration scheme can be readily generalised to include two functions, ψ1(θ) and ψ2(θ), for which
self-consistency is required. Modification of the Newton-Raphson procedure is more involved however.
Recall that for the monodisperse case a system of two unknown variables, on which two conditions are
imposed, needed to be solved. In a bidisperse system the unknowns are c∗1, c∗2, x∗1 and x∗2, with the
conditions p(c∗1, x

∗
1) = p(c∗2, x

∗
2), µ1(c∗1, x

∗
1) = µ1(c∗2, x

∗
2) and µ2(c∗1, x

∗
1) = µ2(c∗2, x

∗
2). This is a system of

3 equations with 4 variables, which implies some freedom of choice. To solve this problem, introduce the
dimensionless pressure p, and rewrite the system as p(c∗1, x

∗
1) = p, p(c∗2, x

∗
2) = p, µ1(c∗1, x

∗
1) = µ1(c∗2, x

∗
2)

and µ2(c∗1, x
∗
1) = µ2(c∗2, x

∗
2). A 4D NR-procedure can be applied to this system of four equations in four

variables. As we will see in the next sections, varying p and finding coexistence conditions will lead to
some interesting results.

Let us first examine the bidisperse system without involving field interactions. All the results here were
generated using the following parameters, Nθ = Nφ = 150 and δ = 10−6. The number of considered
pressures p per graph is 100 for the fieldless case, but can increase or decrease for the field strength
slices. At the endpoints of certain field slices Nθ = Nφ = 300 and δ = 10−7 was used. We have chosen
to consider the following system: λ1 = λ2 = δ1 = 1 and δ2 = 3, i.e. the rods have equal length and
a diameter ratio of 1/3. This choice may seem arbitrary, as any conceivable configuration is possible.
However, this thin-thick diameter ratio has already been investigated in Ref. [17] and [18], which is used
to verify our results before introducing a field dependence. This D1/D2 = 1/3 case has an interesting
phase diagram and nematic-nematic coexistence phenomena do not noticeably affect the nematic phase.
These phenomena do affect the higher ratio systems considerably [17]. In addition, it is quite difficult
to create pure systems, there is always some dispersion in man-made colloids. A factor of three gives
us a difference between the two types well outside this natural dispersion. For example, a system with
D1/D2 = 1/1.1 does not possess sufficient difference between the two components, to be readily created
in a laboratory. Furthermore NR experiences great difficulty in finding phase coexistence for these ratios.

We consider only the coexistence phenomena for bidisperse systems in this thesis. The non-coexistence
forms for the pressure, chemical potentials etc. are interesting, but there are too many parameters to
give an accurate description of the entire system within the limitations of 2D representations. Using only
the coexistence values in our representation, the parameter space is conveniently reduced. Figure 4.1
shows the phase diagrams for D1/D2 = 1/3 without an external field. There are two phases coexisting
with each other, each with its own composition and concentration. For a given p we can take a horizontal
line and determine the intersection with both the red and the black curve in the graphs, giving us the
(x, c, p) for both phases.
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Figure 4.1: The pressure-composition (p, x)-phase diagram (left) and the pressure-concentration
(p, c)-phase diagram (right) for a bidisperse system of colloidal rods with a diameter
ratio D1/D2 = 1/3. The red curve represents the isotropic phase, the black curve the
nematic phase.

The endpoints for (x, p) are (0, 14.12) and (1, 4.506). For (c1, c2; p) the endpoints are (3.290, 4.191; 14.12)
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and (1.097, 1.397; 4.506). The values given here have numerical precision of ±0.004. Note that the latter
values are exactly (1/3) of the initial values, which follows from our chosen diameter ratio. In addition
there is exact correspondence with the monodisperse coexistence parameters. We estimate that for all
points there is a fractional uncertainty of less than 0.035%. This value is obtained by comparing the
pressure p for which NR is to find coexistence with the p values NR returns. Using figure 4.2 one can
conclude that the (red) phase is isotropic and the (black) nematic. There is a strong fractionation at
coexistence between the isotropic phase and the nematic phase. The nematic phase is relatively rich
in thick rods and the isotropic relatively rich in thin ones. The reason behind this fractionation is the
relatively large excluded volume in interactions of thick rods, which makes them more susceptible to
orientational ordering [19]. It can be shown that this fractionation is strongly dependent on the diameter
ratio [17]. See Appendix C for the coexistence data of the f , µ1 and µ2; the red and black curve overlap
for µ1 and µ2, within the numerical precision, which is one of the coexistence requirements.
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Figure 4.2: The nematic order parameters for a bidisperse system of colloidal rods with a diameter
ratio D1/D2 = 1/3. S1 for the orientation distribution ψ1(θ) of the thin particles (left)
and S2 for the orientation distribution ψ2(θ) of the thick rods (right) as function of the
dimensionless pressure p. The red curve represents the isotropic phase, the black curve
the nematic phase.

4.3 Numerical Results with an External Field Interaction

Before considering the field dependence of bidisperse systems of colloidal rods let us return to the
monodisperse case and regard the pressure dependence of the coexistence curve in figure 3.5 (left). As
this curve will form the boundary of the (p, c)-phase diagram for the top endpoints of figure 4.1 (right);
for the bottom, c and p values have to be divided by three. For the (p, x)-phase diagram, figure 5.5
(right) in Appendix B gives the boundary at x = 0 and x = 1, where for x = 1 again the p value has to
be divided by three. In a three dimensional representation the monodisperse coexistence curve is given
by figure 4.3.

Now we may describe the results for a bidisperse system, with W1/W2 = 1/1. The 1/1 ratio has been
chosen for technical reasons, i.e. the smallest gaps and no NR convergence issues in other parts of the
graph. We refer to Appendix D for some additional results with W1/W2 = 1/2 and W1/W2 = 1/3.
Because the pictures are in fact three dimensional, slices parallel to the (p, x)-plane and (p, c)-plane
have been used. This results in a (p, x)- and a (p, c)-phase diagram respectively, with a 2D level set
representation structure. We have also taken (βW1, x)- and (βW1, x)-slices, resulting in the respective
(βW1, x)- and (βW1, c)-phase diagrams.

The choice of the slices may seem a bit arbitrary for the (p, x)- and (p, c)-representation. The steep
nature of the (p, c)-phase diagram, figure 3.5 (left) and the (βW1, c)-diagram figure 4.5 (right), as well
as that of the (βW1, x)-phase, figure 4.4 (right), forces us to use non-equidistant level sets. The number
of slices in the (βW1, x)- and (βW1, c)-representation has been kept to a minimum to prevent the phase-
diagrams from becoming too cluttered. We have also chosen not to include the boundaries of the

25



12

13

14p

3

3.5

4

4.5
c

0

0.2

0.4

0.6

0.8

1

Β×W

12

13

14p

3

3.5

4
c

Figure 4.3: The field-concentration (βW, c)-phase diagram for a monodisperse system of colloidal
rods. The dimensionless pressure p at which coexistence is achieved, for a given c and
βW , has been included to obtain a 3D shape. Again the red curve represents the isotropic
phase and the black curve the nematic phase.
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Figure 4.4: The pressure-composition (p, x)-phase diagram (left) and the field-composition (βW1, x)-
phase diagram (right) for a bidisperse system of colloidal rods with diameter ratio
D1/D2 = 1/3 and a dipole moment ratio given by W1/W2 = 1/1. From black to red
the dimensionless field strength parameter βW1 = 0.0, 0.2, 0.4, 0.6, 0.7, 0.8 and 0.9, in
the (p, x)-phase diagram. The isotropic phase is the bottom left and the nematic phase
the top right curve for each colour. There appears to be a critical value of βW ∗

1 ≤ 1
at (x, c, p) ≈ (0.15 ± 0.05, 2.5 ± 0.1, 8.5 ± 0.5), where the uncertainty is given in stan-
dard deviation notation. This point has been indicated using a blue dot. Note that this
maximum is about 35% higher than the critical value for monodisperse systems, namely
βW = 0.742; a phenomenon which is caused by fractionation. For the (βW1, x)-phase
diagram, red p = 6, green p = 8, light blue p = 10 and dark blue p = 12. The isotropic
phase is the left and the nematic phase the right line for each colour.
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Figure 4.5: The pressure-concentration (p, c)-phase diagram (left) and the field-concentration
(βW1, c)-phase diagram (right) for a bidisperse system of colloidal rods with diameter
ratio D1/D2 = 1/3 and a dipole moment ratio given by W1/W2 = 1/1. From black to
red the dimensionless field strength parameter βW1 = 0.0, 0.2, 0.4, 0.6, 0.7, 0.8 and 0.9,
in the (p, c)-phase diagram. The grey curve is the boundary imposed by the monodisperse
limit to the system. The isotropic phase is the top left and the nematic phase the bottom
right curve for each colour. A blue dot indicates the estimated position of the critical
point. For the (βW1, c)-phase diagram, red p = 6, green p = 8, light blue p = 10 and
dark blue p = 12. The isotropic phase is the left and the nematic phase the right line for
each colour.

monodisperse limit for the same reason. Closing the graphs is exceedingly difficult, if not impossible
using the techniques employed here, which explains the presence of the gaps in the phase slices. The
Jacobi matrix probably has a large inverse with respect to its Euclidean matrix norm at the top of the
separation zone. This makes the NR-procedure susceptible to computer precision inaccuracies and causes
its step-size to increase near the coexistence points, rather than decrease. As stated above these unclosed
slices are a compilation of several segments, where increasing precision was used for the segments close
to the endpoints.

The coexistence curves seem to deform smoothly. The separation zone in figure 4.4 appears to be
bounded by a value of βW ∗

1 ≤ 1, with its maximum at (x, c, p) ≈ (0.15± 0.05, 2.5± 0.1, 8.5± 0.5) where
the uncertainty is given in standard deviation notation. Note that this maximum is about 35% higher
than the value βW = 0.742. The increase of the critical field strength from its value in the monodisperse
system correlates with the width of the fractional gap between the curves. The presence of the small
fraction of thicker rods allows for an increase in the entropy effect. The critical value is a balance between
entropy, tending to make the system disordered, and field alignment. Because the presence of the thick
rods increases the entropy, a higher field strength is required to achieve the critical value, where the
isotropic phase is sufficiently aligned to be indistinguishable from the nematic phase for all c, x and
p. The isotropic (p, c)-curve is affected far less by the field than the nematic one, by the same reasons
as given for the monodisperse system in section 3.5. We may conclude that there is a critical line, the
crest of this 3D shape, below which there is nematic-isotropic phase separation for the corresponding
p-value. This means there can be a smooth isotropic-nematic phase transition, via a field-concentration
line which clears the separation zone at a given pressure.

In figure 4.4 and 4.5, no slices have been included from βW1 ∈]0.7, 0.8[, where the monodisperse system
has a critical point, namely at βW1 = βW2 = 0.742. Upon further examination of this range we find the
behaviour given by figure 4.6. Note that the curves have a tendency to close even below the critical value
of 0.742. The lines have not been continued beyond their terminal point, because the NR-routine does
not converge there or it produces dubious results. At βW1 = 0.73 there is an almost vertical tangent to
the nematic curve, a sign of the coexistence curve splitting into two parts. At βW1 = 0.72 there is still
a looping back tendency, the little hook on the end consists of 7 NR-points with a fractional uncertainty
of less then 0.01%. In addition, figures 5.11 (right) and 5.12 (right) in Appendix D show that the red
curve at p = 6 terminates around βW2 = 3βW1 = 0.63 ∼ 0.65, well below the monodisperse critical
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Figure 4.6: An enlargement of the pressure-composition (p, x)-phase shown in figure 4.4 (left). This
section gives the critical zone in which backward bending nematic phase lines indicate
the possibility of a saddle point. If this is indeed the case, the saddle point can be found
at (x, c, p) ≈ (0.58± 0.07, 1.4± 0.1, 5.25± 0.25), indicated using a blue dot. From black
to red the dimensionless field strength parameter βW1 = 0.70, 0.71, 0.72, 0.73, 0.74 and
0.75.

value of βW2 = 3βW1 = 0.742 for x = 1. This leads us to believe that there might be a saddle point
on the boundary of the separation zone. Note that this behaviour does not appear to occur in figures
5.9 (right) and 5.10 (right) for W1/W2 = 1/2, which could be attributed to the location of the slices.
An explanation for the presence of such a saddle point would require further theoretical analysis of this
system, but it is probably caused by some complicated interplay of entropy, fractionisation and field
strength.

Unfortunately a saddle point has one of the worst NR convergence properties of all curvatures, and
attempts to find it have so far been unsuccessful. If such a point does exist then it will have coordinates
(x, c, p) ≈ (0.58 ± 0.07, 1.4 ± 0.1, 5.25 ± 0.25). However it could also be the case, although we deem
this to be less likely, that the phase curve does not split into two disjoined parts for level sets between
βW1 ≈ 0.72 and βW1 ≈ 0.74. Then the thin point in which the phase diagram terminates for x near 1,
becomes thinner and thinner, eventually vanishing smoothly around βW1 ≈ 0.742. This does require us
to find some other explanation for the vertical tangent lines and the low critical value at W1/W2 = 1/3
for p = 6. Calculation of these phenomena are well outside the domain of numerical uncertainty.

The results described above lead us to believe that there are interesting qualities to the mathematics
of Onsager’s theory in the second virial approximation for bidisperse systems. We must however not
loose perspective, this approximation only works for high L/D ratio’s. By introducing a second species
of particle with a diameter three times as large as the first, the length of the first particle should be
least 45 times its diameter. Also note that the dipole-dipole interactions become more important as
one of the species interacts stronger with the field than the other, in case of W1/W2 = 1/3, the 1 − 2
coupling increases by a factor 3 and that of the 2 − 2 by a factor of 9. Therefore the approximation,
for W1/W2 6= 1/1, is going to loose accuracy and relevance quickly. Especially considering the remarks
made earlier concerning the feasibility of these negligible dipole-dipole interaction systems in section 3.6.
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Chapter 5

Summary and Discussion

We have given a theoretical development of Onsager theory in this thesis. Starting form a non-ideal gas
virial expansion, a semi-grand canonical formalism for solutions and suspensions was derived. Onsager’s
second virial coefficient approximation for systems of particles with a directional dependence followed
form these results. This theory was applied to a monodisperse system of colloidal rods, yielding a non-
linear integral equation for the directional distribution function. An analysis of the mathematics of
this equation was presented and numerical approximation schemes were used to find the solution. The
isotropic and nematic phase for monodisperse systems of colloidal rods have been rigorously investigated.
An exact correspondence between mathematical and numerical results was shown for the isotropic phase
and for the position of the isotropic-nematic branching point as calculated by Kayser and Raveché. Phase
coexistence properties were determined using a Newton-Raphson technique. The influence of an external
dipolar field on this coexistence has also been examined and a critical point was found at βW = 0.742.
Finally the methods applied to monodisperse systems were extended to allow the analysis of bidisperse
rod suspensions.

For these bidisperse suspensions we have chosen to restrict attention to thick and thin rods, i.e. rods
of equal length (L1/L2 = 1/1) and diameter ratio D1/D2 = 1/3. With the introduction of an external
field the dipole moment ratios W1/W2 = 1/1, W1/W2 = 1/2 and W1/W2 = 1/3 were considered.
The behaviour of these systems mirrors that of monodisperse ones, in the sense that there is phase
separation in both cases. This separation can be nullified in a continuous manner using an external field,
which makes the phases indistinguishable at sufficiently high βW values. For a dipole moment ratio
of W1/W2 = 1/1, the critical value above which there is no separation for all x, c and p is about 35%
higher than the critical value for monodisperse systems. This increase can be attributed to fractionation.
We speculate that there is one remarkable feature of the critical line/crest in W1/W2 = 1/1 systems.
Isotropic-nematic merging appears to occur at lower βW than expected from the results obtained for
monodisperse systems, hinting at the possibility of a saddle point on the boundary of the separation zone.
If this is indeed the case, the appearance of such a saddle point would require theoretical foundation
and mathematical derivation.

There is a lot of room for further research in this area. We have examined only a fraction of the choices
available. One can take any value for λ1, λ2, δ1, δ2, W1, W2 and take any form for the Φext. One
possibility, a second Legendre polynomial type field interaction, is being considered by M.G.A. van
Dorp using techniques similar to those employed here. For the specific case of a dipole field interaction,
investigating the existence or absence of a saddle point is a good starting point. One might also study
the behaviour of the phase coexistence relations when the ratio W1/W2 is changed smoothly from 1/1
to 1/3 for instance. The three phase diagrams produced in this thesis for W1/W2 = 1/1, 1/2 and
1/3 are not sufficient to make meaningful statements about the nature of this phase diagram - dipole
ratio relation. Producing three dimensional images of the results could prove informative, but with the
number of slices used here, the results we obtained were unsatisfactory. Of course other phases could be
considered, such as smectic, columnar and crystalline. This addition would lead to phase diagrams of
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even greater complexity. One should start this investigation for the W1 = W2 = 0 case; to our knowledge
this type of research has not been performed yet. For W1 = W2 = 0, the behaviour of isotropic-nematic
and nematic-nematic coexistence as a function of the diameter ratio is known. The influence of an
external field on these coexistence relations can be regarded as well.

Finally there is room for experimental verification of the results, although this would most definitely be
a qualitative analysis considering the nature of this model. The 35% increase in critical value for the
bidisperse maximum is an effect which could probably be measured. There are significant obstacles to be
overcome though. A D1/D2 = 1/3 system has been created under laboratory conditions, but ensuring
that both rod types have a dipole moment such that it satisfies the conditions from section 3.6 would
pose a challenge.
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Appendix A
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Figure 5.1: The dimensionless free energy f(c) as a function of the dimensionless concentration c for
a monodisperse system of colloidal rods (left). The red curve represents the isotropic
phase, the black curve the nematic phase. Detail (right).
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Figure 5.2: The dimensionless scaled free energy cf(c) as a function of the dimensionless concentra-
tion c for a monodisperse system of colloidal rods (left). A Maxwell common tangent
construction has been applied to this graph, given by the blue line. The vertical blue
lines are used to indicate the position of the coexistence points. Detail (right). Note the
insignificant variation in the tangent on this domain.
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Figure 5.3: The dimensionless pressure p(c) as a function of the dimensionless concentration c for a
monodisperse system of colloidal rods (left). The coexistence points have been indicated
in blue, the horizontal line indicates that the pressures in both phases are equal at
coexistence. Detail (right).
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Figure 5.4: The dimensionless chemical potential µ(c) as a function of the dimensionless concentration
c for a monodisperse system of colloidal rods (left). The coexistence points have been
indicated in blue. Detail (right).
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Appendix B
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Figure 5.5: The coexistence dimensionless free energy f (left) and the coexistence dimensionless
pressure p (right) for a monodisperse system of colloidal rods as a function of the dimen-
sionless field strength parameter βW . The red curve represents the isotropic phase, the
black curve the nematic phase. The red and black curve overlap for the pressure diagram,
a condition for phase coexistence.
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Figure 5.6: The the coexistence dimensionless chemical potential µ (left) and the coexistence nematic
order parameter S (right) for a monodisperse system of colloidal rods as a function of
the dimensionless field strength parameter βW . The red and black curve overlap for the
chemical potential, as is required for coexistence.
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Appendix C
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Figure 5.7: The dimensionless free energy f as function of the dimensionless pressure p for a bidisperse
system of colloidal rods with a diameter ratio D1/D2 = 1/3. The red curve represents
the isotropic phase, the black curve the nematic phase.
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Figure 5.8: The dimensionless chemical potentials for a bidisperse system of colloidal rods with a
diameter ratio D1/D2 = 1/3. The µ1 (left) for the thin rods and the µ2 (right) for the
thick rods as function of the dimensionless pressure p. Note that the black curve overlaps
the red curve completely, as is required for isotropic-nematic coexistence.
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Appendix D
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Figure 5.9: The pressure-composition (p, x)-phase diagram (left) and the field-composition (βW1, x)-
phase diagram (right) for a bidisperse system of colloidal rods with diameter ratio
D1/D2 = 1/3 and a dipole moment ratio given by W1/W2 = 1/2. From black to red the
dimensionless field strength parameter βW2 = 2βW1 = 0.0, 0.2, 0.4, 0.6, 0.7, 0.8, 1.0 and
1.2, in the (p, x)-phase diagram. The isotropic phase is the bottom left and the nematic
phase the top right curve for each colour. For the (βW1, x)-phase diagram, red p = 6,
green p = 8, light blue p = 10 and dark blue p = 12. The isotropic phase is the left and
the nematic phase the right line for each colour.
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Figure 5.10: The pressure-concentration (p, c)-phase diagram (left) and the field-concentration
(βW1, c)-phase diagram (right) for a bidisperse system of colloidal rods with diame-
ter ratio D1/D2 = 1/3 and a dipole moment ratio given by W1/W2 = 1/2. From black
to red the dimensionless field strength parameter βW2 = 2βW1 = 0.0, 0.2, 0.4, 0.6, 0.7,
0.8, 1.0 and 1.2, in the (p, c)-phase diagram. The grey curve is the boundary imposed
by the monodisperse limit to the system. The isotropic phase is the top left and the
nematic phase the bottom right curve for each colour. For the (βW1, c)-phase diagram,
red p = 6, green p = 8, light blue p = 10 and dark blue p = 12. The isotropic phase is
the left and the nematic phase the right line for each colour.
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Figure 5.11: The pressure-composition (p, x)-phase diagram (left) and the field-composition
(βW1, x)-phase diagram (right) for a bidisperse system of colloidal rods with diame-
ter ratio D1/D2 = 1/3 and a dipole moment ratio given by W1/W2 = 1/3. From black
to red the dimensionless field strength parameter βW2 = 3βW1 = 0.0, 0.2, 0.4, 0.6,
0.7, 0.9, 1.2 and 1.5, in the (p, x)-phase diagram. For the (βW1, x)-phase diagram, red
p = 6, green p = 8, light blue p = 10 and dark blue p = 12. Note the unexpectedly low
value for which the red curve terminates. Around 3βW1 = 0.63 ∼ 0.65, well below the
monodisperse critical value of βW2 = 3βW1 = 0.742.
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Figure 5.12: The pressure-concentration (p, c)-phase diagram (left) and the field-concentration
(βW1, c)-phase diagram (right) for a bidisperse system of colloidal rods with diame-
ter ratio D1/D2 = 1/3 and a dipole moment ratio given by W1/W2 = 1/3. From black
to red the dimensionless field strength parameter βW2 = 3βW1 = 0.0, 0.2, 0.4, 0.6, 0.7,
0.9, 1.2 and 1.5, in the (p, c)-phase diagram. For the (βW1, c)-phase diagram, red p = 6,
green p = 8, light blue p = 10 and dark blue p = 12. Again we have this unexpectedly
low red curve.
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