
[Faculty of Science
Information and Computing Sciences]

1

Type Error Diagnosis for Embedded DSLs
by Two-Stage Specialized Type Rules

Alejandro Serrano and Jurriaan Hage
Universiteit Utrecht

A.SerranoMena@uu.nl

NL FP Dag 2016
Utrecht, 8 January 2016

[Faculty of Science
Information and Computing Sciences]

2

DSLs are the best!

Domain-specific languages are a widely used tool

▶ Focus on a particular problem

▶ Embody expert knowledge

▶ More likely to be used without prior experience

Two approaches to their development

▶ External: custom compiler and tool chain
▶ Internal: integrated in a host language

▶ Common in the functional programming community

[Faculty of Science
Information and Computing Sciences]

3

One example: Persistent

persistent is a Haskell library for database access

▶ Support for both relational and non-relational databases

▶ Type-safe approach: each entity is assigned a Haskell type
▶ Strict separation between:

1. Values which are kept in the database, e
2. Primary keys to a certain value, Key e
3. Combinations of key and value, Entity e

get :: Key v → m (Maybe v)
insert :: v → m (Key v)
delete :: Key v → m ()
replace :: Key v → v → m ()
update :: Key v → [Update v] → m ()
select :: [Filter v] → [SelectOpt v] → m [Entity v]

[Faculty of Science
Information and Computing Sciences]

4

But if you ever write ill-typed code...

replace 1 alejandro

No instance for (Num (Key Person))

arising from the literal ’1’

replace (key banana) alejandro

Cannot unify ’Fruit’ with ’Person’

▶ The DSL is not transparent when an error occurs
▶ Implementation details leak in error messages

▶ It gets worse as the host language becomes more complex

[Faculty of Science
Information and Computing Sciences]

5

Introducing DOMSTED

DOMain Specific Type Error Diagnosis

▶ Enable embedded DSL developers to control the error
messages produced by the compiler

▶ Focus on those errors coming from ill-typed expressions
▶ Target a full-blown type system

▶ Not simply-typed λ-calculus with maybe small extensions
▶ Haskell 2010 + type classes, functional dependencies, type

families, GADTs, kind polymorphism. . .
▶ In the works: higher-rank and impredicative instantiation

▶ Constraint-based approach to typing

[Faculty of Science
Information and Computing Sciences]

6

Our solution: specialized type rules

rule replace key

case ((replace ·#key) ·#value)#e {
join {constraints#key , constraints#value },
#key ∼ Key v

error { #key : expr "should be a Key."

"Did you forget a wrapper?"},
v ∼ #value

error {"Key type" v : ty "and value type"

#value : ty "do not coincide"},
#e ∼ m ()

}

▶ Custom error messages

▶ Ordering for constraint solving

[Faculty of Science
Information and Computing Sciences]

7

Why does ordering matter?

Suppose you have the following constraints:

α ∼ Int α ∼ Bool α ∼ Char

The error you get depends on the order of solving:

▶ Cannot unify Int with Bool

▶ Cannot unify Int with Char

▶ Cannot unify Bool with Char

▶ Cannot unify Int, Bool and Char

[Faculty of Science
Information and Computing Sciences]

8

Sometimes you want to suggest reparations

(≡) :: Eq a ⇒ a → a → Bool
(≡ .) :: PersistField t ⇒ EntityField v t → t → Filter v

select [PersonName ≡ ."Alejandro"] []

rule wrong eq filter

case (≡) ·#field ·#value

when#field ∼ EntityField #value t {
repair {"Database field"#field : expr

"is being compared using (==)."

"Did you intend to use (==.) instead?"}
}

[Faculty of Science
Information and Computing Sciences]

8

Sometimes you want to suggest reparations

(≡) :: Eq a ⇒ a → a → Bool
(≡ .) :: PersistField t ⇒ EntityField v t → t → Filter v

select [PersonName ≡ ."Alejandro"] []

rule wrong eq filter

case (≡) ·#field ·#value

when#field ∼ EntityField #value t {
repair {"Database field"#field : expr

"is being compared using (==)."

"Did you intend to use (==.) instead?"}
}

[Faculty of Science
Information and Computing Sciences]

9

Sometimes you want to get back old messages

Why map instead of fmap?

▶ One reason, better error messages for beginners

rule fmap on lists

case ((fmap ·#fn) ·#lst)#e

when#lst ∼ [a] {
constraints#fn,
#fn ∼ s → r error { #fn : expr "is not a function"},
constraints#lst,
#lst ∼ [b],
s ∼ b error {"Domain type" s : ty

"and list type" b : ty
"do not coincide"},

#e ∼ [r]
}

[Faculty of Science
Information and Computing Sciences]

9

Sometimes you want to get back old messages

Why map instead of fmap?

▶ One reason, better error messages for beginners

rule fmap on lists

case ((fmap ·#fn) ·#lst)#e

when#lst ∼ [a] {
constraints#fn,
#fn ∼ s → r error { #fn : expr "is not a function"},
constraints#lst,
#lst ∼ [b],
s ∼ b error {"Domain type" s : ty

"and list type" b : ty
"do not coincide"},

#e ∼ [r]
}

[Faculty of Science
Information and Computing Sciences]

10

How to approach type-sensitive rules?

1. Interleave constraint gathering and solving
▶ It is not clear how to proceed if the solver finds an

inconsistency while gathering
▶ The decision to apply a type rule is biased by the order of

gathering, bottom-up or top-down
▶ A bidirectional solution seems overly complex

2. Perform two stages of gathering and solving

[Faculty of Science
Information and Computing Sciences]

11

Two-stage specialized type rules, of course!

Errors

TraversalAST
Constraint
Script Solver

Axioms

OK

Checker

Domain Specific
Type Rules

Pruner

Satisfiable Set of Constraints

[Faculty of Science
Information and Computing Sciences]

12

Two stages for one example

(PersonName β ≡α "Alejandro" γ) δ

[Faculty of Science
Information and Computing Sciences]

13

Two stages for one example

((≡) α PersonName β "Alejandro" γ) δ

No specialized type rule is applied
α ∼ ρ → ρ → Bool α ∼ β → γ → δ

α ∼ EntityField Person String β ∼ String

⇓
Inconsistent!

Prune the constraint set until satisfiability
α ∼ β → γ → δ α ∼ EntityField Person String β ∼ String

⇓
Now the specialized type rule kicks in

⊥Database field PersonName is being compared using (==).

⇓
The desired error message is shown to the user

[Faculty of Science
Information and Computing Sciences]

13

Two stages for one example

((≡) α PersonName β "Alejandro" γ) δ

No specialized type rule is applied
α ∼ ρ → ρ → Bool α ∼ β → γ → δ

α ∼ EntityField Person String β ∼ String
⇓

Inconsistent!

Prune the constraint set until satisfiability
α ∼ β → γ → δ α ∼ EntityField Person String β ∼ String

⇓
Now the specialized type rule kicks in

⊥Database field PersonName is being compared using (==).

⇓
The desired error message is shown to the user

[Faculty of Science
Information and Computing Sciences]

13

Two stages for one example

((≡) α PersonName β "Alejandro" γ) δ

No specialized type rule is applied
α ∼ ρ → ρ → Bool α ∼ β → γ → δ

α ∼ EntityField Person String β ∼ String
⇓

Inconsistent!
Prune the constraint set until satisfiability

α ∼ β → γ → δ α ∼ EntityField Person String β ∼ String

⇓
Now the specialized type rule kicks in

⊥Database field PersonName is being compared using (==).

⇓
The desired error message is shown to the user

[Faculty of Science
Information and Computing Sciences]

13

Two stages for one example

((≡) α PersonName β "Alejandro" γ) δ

No specialized type rule is applied
α ∼ ρ → ρ → Bool α ∼ β → γ → δ

α ∼ EntityField Person String β ∼ String
⇓

Inconsistent!
Prune the constraint set until satisfiability

α ∼ β → γ → δ α ∼ EntityField Person String β ∼ String
⇓

Now the specialized type rule kicks in
⊥Database field PersonName is being compared using (==).

⇓
The desired error message is shown to the user

[Faculty of Science
Information and Computing Sciences]

13

Two stages for one example

((≡) α PersonName β "Alejandro" γ) δ

No specialized type rule is applied
α ∼ ρ → ρ → Bool α ∼ β → γ → δ

α ∼ EntityField Person String β ∼ String
⇓

Inconsistent!
Prune the constraint set until satisfiability

α ∼ β → γ → δ α ∼ EntityField Person String β ∼ String
⇓

Now the specialized type rule kicks in
⊥Database field PersonName is being compared using (==).

⇓
The desired error message is shown to the user

[Faculty of Science
Information and Computing Sciences]

14

Soundness and completeness

Specialized type rules should not tamper the type system

1. Generate a meta-expression which encompasses all possible
instantiations of the type rule

2. Gather set of constraints Swith using specialized type rules

3. At the same time, recall all type preconditions P
4. Gather set of constraints Snone using only default type rules

5. Prove that P ∧ Swith =⇒ Snone (soundness)
and/or P ∧ Snone =⇒ Swith (completeness)

[Faculty of Science
Information and Computing Sciences]

15

Meanwhile, in GHC...

instance TypeError (Text "Cannot ’Show’ functions." :$$:
Text "Perhaps a missing argument?")

⇒ Show (a → b) where ...

▶ Leverages the rest of type-level techniques in GHC

▶ Only available for type class and family resolution

▶ May not influence the ordering of constraints
▶ No specialization

▶ Messages cannot depend on the function being used

[Faculty of Science
Information and Computing Sciences]

16

▶ Specialized type rules enable developers to give custom
error messages for their DSLs

▶ Rules might depend on syntactic and type-level information
▶ Suggest reparations for common errors
▶ Enable custom messages for concrete scenarios

▶ A two-stage approach enables that second possibility

Thanks for listening!

[Faculty of Science
Information and Computing Sciences]

16

▶ Specialized type rules enable developers to give custom
error messages for their DSLs

▶ Rules might depend on syntactic and type-level information
▶ Suggest reparations for common errors
▶ Enable custom messages for concrete scenarios

▶ A two-stage approach enables that second possibility

Thanks for listening!

