
UTRECHT UNIVERSITY

Revisiting Legacy Software System
Modernization

By

Ravi Khadka

A thesis submitted in partial fulfillment for the
degree of Doctor

in the
Faculty of Science

Department of Information and Computing Sciences

April 2016

SIKS Dissertation Series No. 2016-14
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

Cover photo: Ravi Khadka@Fort Lunet III, Houtensepad 150, 3524 SB Utrecht
Cover design: Jayraj Bhatta/Arun Pratihast
ISBN/EAN: 978-90-393-6512-0
© 2016, Ravi Khadka. All rights reserved.

Revisiting Legacy Software System
Modernization

Modernisering van Legacy Systemen Herbeschouwd

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus,
prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te
verdedigen op woensdag 13 april 2016 des middags te 12.45 uur door

Ravi Khadka

geboren op 30 augustus 1984 te Jharuwarasi-2, Lalitpur, Nepal

Promotoren:
Prof.dr. S. Brinkkemper

Prof.dr. J.T. Jeuring

Copromotoren:
Dr. R.L. Jansen

Dr. J. Hage

This research was financially supported by the Dutch Joint Academic and Commercial Quality Research
and Development (JACQUARD) program on Software Engineering Research under ServiciFi project.

Preface

This PhD endeavor started back when I was doing my masters. I doubt if I would have ever taken this
research path had I not met BN Sapkota. Your guidance and numerous reviews of my papers that you’ve
done over the years do deserve a sincere thanks.

Slinger, Jurriaan, Sjaak, and Johan- thank you for providing me this opportunity and supporting me
over the years. We shared a lot of good memories- running out of travel budget, acceptance of papers-
particularly ICSE paper, playing volleyball so on so forth. Slinger, thank you for your confidence in
me. In particular at the last stage of my research, you believed on my decision and let me pursue my
direction. Jurriaan, you’ve been the best reviewer of all our papers and my dissertation.

This dissertation is a result of close collaboration with industry. Heartily thanks to Rob Douwes,
Geer P. Haas, and Edwin van Dis for supporting this research. The industrial insights that our ServiciFi
research team received from collaborating with industry are of key values to the research community and
without any doubt to my dissertation.

Michiel & Amir, due to you guys I count the four years as one of the cherished moments- be it those
handful of paper acceptances and bunch of rejections or those all off-track discussions- 9gag & phdcomics.
I am happy to count you guys as a part of this journey. Jaap, Kevin, Ivon, Wienand, Marijn, Cristobal,
Erik, Garm, Jurriaan, Naser, Eko, Rogier, Oskari, Alexander, Sean, Anna, thanks for your company.
Thanks to all the staff members of OenI group for your input, particularly, Fabiano & Remko- I will not
forget your contributions in some of my papers.

I am grateful to my masters students whom I (in-)directly supervised. Gijs, Andrie, Belfrit, Bart,
Thijs, and Prajan- thank you for your wonderful work and for intense discussions we had. Georgiana,
Angeliki, and Dr. Maria- without your statistical expertise, I would never be an ISCE-ier. Tracy- I am
grateful for your immediate availability to proof-read my papers and even this dissertation.

Thanks to Dai, Qianjie, Yu, Bing/Bo, and Quy. I treasure the moments that I’ve shared with you
guys as housemates. Within this research period, I’ve lived with Michael & Lisa. Feb 10, 2014 was “the
day the music died”- Michael, your songs and memories we’ve shared are everlasting. To all my Nepali
friends here in the Netherlands- Ajit/Rubbi, Ashim, Arun/Puja, Barsha, Chandra/Sujata, Ekraj, Gau-
rab/Meng, Govinda, Khagendra/Bhagwati, Mohan, Prajwal/Ruby, Prajan/Priyanka, Rabindra/Renu,
Rameshwor/Gehini, Reena, and Sunil- thanks for creating a home away from home. Yiouli, Nicole,
Michalis- thanks for your Greek hospitality.

Finally, I wholeheartedly thank my family and friends back home for your unconditional support.
Especially, to my mother and father- your continuous love and encouragement has finally paid off. I
owe my thanks to my brothers/sister-in-laws, I can’t image this dissertation would have been complete
without your supports. Ananta/Bhaba, Sajjan/Srinkhala, and Him- thank you all for your (in-)direct
contribution to this work.

As of now, when I think of this journey- what an adventure it is! Submission deadlines, paper ac-
cepts & rejects, conference visits & side trips, never ending Dutch course with Ricky (Kiwi), 2015 Nepal
earthquake and your generous support. Simply, this dissertation is not just only about my research but
a memorable snapshot of my life. Thank you all.

Contents

1 Introduction . 1

1.1 Research Context . 4

1.2 Scientific Relevance . 9

1.3 Research Approach . 11

1.4 Outline of Thesis and Publications . 22

I Developing a Legacy System Modernization Process

2 A Method Engineering based Legacy to SOA Migration Process 29

2.1 Introduction . 30

2.2 Background . 31

2.3 The ServiciFi Method . 35

2.4 Evaluation . 39

2.5 Conclusion . 44

3 Legacy to SOA Evolution: A Systematic Literature Review 47

3.1 Introduction . 48

3.2 Research Method . 49

3.3 Evaluation Framework for Legacy to SOA Evolution . 52

3.4 Overview of the Primary Studies . 56

3.5 Result . 57

3.6 Discussion . 62

3.7 Conclusion and Future Research . 67

4 A structured legacy to SOA migration process and its evaluation in practice 71

4.1 Introduction . 72

4.2 The Structured Process . 73

4.3 Evaluation . 79

4.4 Analysis and Discussion . 82

vii

4.5 Conclusion . 86

II Legacy System Modernization in Practice

5 Migrating a large scale legacy application to SOA: Challenges and Lessons Learned 89

5.1 Introduction . 90

5.2 Related work . 90

5.3 Research Background . 91

5.4 The Migration Process . 93

5.5 Lesson Learned . 100

5.6 Conclusion . 101

6 How Do Professionals Perceive Legacy Systems and Software Modernization? 103

6.1 Introduction . 104

6.2 Study Design . 104

6.3 Findings . 106

6.4 Discussion . 115

6.5 Related Work . 118

6.6 Concluding Remarks . 120

7 Post Migration Analysis of Legacy System Modernization . 123

7.1 Introduction . 124

7.2 Related Work . 125

7.3 Case Study Design . 126

7.4 Case Studies . 127

7.5 Findings . 135

7.6 Validity . 138

7.7 Conclusion . 139

III Conclusion

8 Conclusions and Outlook . 143

8.1 Revisiting Research Questions . 144

8.2 Contributions and Implications . 150

8.3 Limitations and Future Works . 151

IV Finale

Bibliography . 157

List of Figures . 175

List of Tables . 177

Publication List . 179

Summary . 181

Nederlands Samenvatting . 183

SIKS Dissertation Series . 185

ix

x

Chapter 1

Introduction

Enterprise information systems are indispensable backbones for enterprises. Enterprises have become

dependent on information systems for the day to day running of their business, in the sense that they may

go bankrupt because of prolonged system failures. Enterprise systems are defined as implementation and

customization of software packages that enable the integration of transaction-oriented data and business

processes throughout an organization [185]. Such systems enable an enterprise to integrate their data

used throughout the entire organization by a seamless integration of the information flowing through

the company such as financial and accounting information, human resource information, supply chain

information, and customer information [73].

Many information systems have been operating within enterprises for decades, and consequently

they are entrenched in the enterprises. The rich feature sets of information systems result in many

different departments becoming dependent on them, and thereby making them irreplaceable. Further-

more, through many customizations, the information systems have been adapted to fit the needs of the

enterprise, further strengthening the system’s foothold in the organization. It is not surprising that

information systems have been heavily adapted because of the needs of the enterprise and hence include

significant organizational knowledge as business logic to perform daily operations [185, 196].

As information systems acquire a history of heavy customizations and adaptations according to the

different demands and purposes of the enterprises over time, often the information systems become

entrenched within the enterprise, and as a result conflict with the constant changes that enterprises

undergo. Enterprises are challenged by business drivers such as adopting new business requirements,

changes in legislation, escalating customer expectations and as well as IT drivers such as changes in

the technology infrastructure and platform [280]. Changes due to new business requirements are driven

by mergers and acquisitions, reorganizations, adopting new business opportunities, and cross enterprise

collaborations. For instance, various banks including ING, ABN AMRO, Lloyds announced job cuts as a

part of reorganization and planned to invest in digital banking to adopt new business opportunities [204].

Often, changes in new rules and legislations are key drivers of change within enterprises. A major recent

example of such change is the adoption of Single Euro Payment Area (SEPA)– a payment-integration

initiative of the European Union (EU) for the simplification of bank transfers denominated in euro. With

SEPA adoption, banks within the EU were obliged to adhere to the SEPA payments mechanism by 1

February 2014 [82]. Escalating customer expectations are another cause of changes within enterprises.

With the new advances in Internet technologies, business–to–customer (B2C) interaction has profoundly

1

changed. For example, the banking domain has drastically transformed its distribution of services from

physical branches of the banks providing services to customer to Automated Teller Machines (ATM), and

recently to online internet banking and mobile banking. These transitions are observed due to customer

expectations of easy banking and to avoid staying in queues in ATMs or retail banking outlets as much

as possible [266]. Such business drivers for change bring about changes in the information systems as

most enterprises heavily rely on application of IT [282].

In addition to business drivers, IT drivers are key in bringing changes within enterprise systems.

Consider a traditional bank that heavily relied on customers visiting the physical offices is now considering

to adopt a digital strategy by replacing as many traditional services with online services. Similarly,

new emerging technologies such as using business intelligence and big data to serve their customers

and to better manage risk, and to leverage cloud computing technology to reduce IT costs have been

key trends in the banking domain as identified by Gartner [100]. Adoption of service delivery via

mobile channels within the financial domain is a good example of a change enabled by IT. A survey

in 2013 indicated that more than 60% of the banks consider services via mobile channels as a top

priority [37]. ING, one of the leading banks in the Netherlands, has witnessed considerable impact in

providing mobile banking. Since introducing a mobile based online banking, over 1.2 million people

have downloaded the app [126, 37]. Additionally, IT drivers such as adding new products and system

features, and reducing IT costs, challenge the enterprises to evolve their IT landscape. These drivers

of changes, be it business or IT, exert tremendous pressure on enterprises to evolve their enterprise

systems. By addressing these frequent changes, the enterprises aim to achieve more flexibility and

agility, and enable faster–time–to market [281]. Meanwhile, the changes are often addressed with ad–

hoc modifications with frequent updates and alterations [22, 4] within the information systems thereby

resulting in “ignorant surgery” [211]– a consequence of changing software without understanding the

original design concept. Nevertheless, frequent changes in the information systems must at all time

guarantee the desired functional and non-functional quality attributes, such as stability, availability,

dependability and security.

Despite such “ignorant surgery” to adapt such changes, these systems are thoroughly tested, fine-

tuned to optimize performance and represent a significant financial investment. As these systems mature,

they reach a level of stasis: changes tend to be incremental, the architecture is frozen in time, and the

system is managed with a “if it ain’t broken, don’t fix it” mentality. Ad–hoc modifications lead to

unstructured code and incomplete or often lack of documentation regarding the changes [283, 196]. In

the meantime, the systems become an integral part of the enterprise by adapting to the changes as per

organizational needs. The day-to-day business is heavily dependent on the enterprise system such that a

single failure can have a significant impact on business. For instance, an IT system failure at Royal Bank

of Scotland (RBS) cost the bank £175m [225] and a failure at National Air Traffic Services (NATS) in

the UK led to cancellation/delay of flights across all airports in the UK1.

As these systems age, enterprises struggle with several challenges- knowledge about the system slowly

disappears: the initial developers and maintainers retire or change jobs, subcontractors go bankrupt

or change their business, and documentation ages while incremental changes are being implemented.

Eventually, the existing information systems become too fragile to modify, too expensive to redevelop,

and too risky to replace as they perform the core business operations of the enterprises. Managers

1http://www.bbc.com/news/uk-30460619

2

are reluctant to incur the cost and risk involved in replacing such invaluable information systems that

are critical to day-to-day operations. The continuous aging of these information systems results in

obsolescence of parts of the system. Hence, the systems resist modifications, are expensive to maintain,

and eventually reach the end of their lifecycle.

These information systems– often referred to as legacy software systems– have been developed over

the previous decades using programming languages such as COBOL, RPG, PL/I, C, C++, Java, and

currently remain active within enterprises despite their well-known issues such as being inflexible and hard

to maintain. The underlying reason includes legacy systems support complex core business processes and

hence are still vitally important to the enterprises. They simply cannot be removed as they implement

and store critical business logic, while the proper documentation, skilled manpower, and resources to

evolve or maintain these legacy software systems are actually scarce.

Hence, legacy software systems present a dilemma. On the one hand the legacy software systems

stay at the core of day-to-day business and are vitally important to the continuity of the business,

while representing a massive, long-term business investment [32]. On the other hand, maintaining these

systems is difficult and expensive due to a lack of resources such as documentation and skill-set. It is

important to note that most organizations with legacy systems are spending up to 75%–90% of their

development resources in maintenance [241, 179, 1], leaving only 25% for innovation [190]. Due to the

issues associated with legacy software systems, momentum is growing to modernize those legacy software

systems towards new technological environments, primarily aiming at reducing the maintenance costs

and increasing flexibility [32, 170]. In academia there is significant interest in the modernization of legacy

software systems, and a plethora of research has been reported on the issues of legacy software systems

and possible modernization strategies [8, 32].

Recent research on legacy software system modernization indicates that the academic software mod-

ernization methods focus on solving the technical issues [174, 221, 143], whilst legacy modernization has

to include the associated business issues. Because of such issues, a well–defined approach for moderniza-

tion is advocated by researchers [202, 175, 174, 196]. This need for a method combining technical, and

business issues has led us to define our first research objective as:

Research Objective 1 (RO1)–“Develop a software modernization method that includes tech-

nical and business aspects.”

Legacy system modernization has received much attention in industry as well. For instance, in the

executive survey of Gartner 20132, legacy system modernization is placed at position 5 out of the top

10 technology priorities [98] and has been within the top 10 priorities for last the three consecutive

years [97]. As identified by Gartner [239], legacy software modernization aims at achieving the following

objectives:

� to retain legacy applications indefinitely due to their core position in the market, while coping with

ever-changing requirements,

� to improve business process efficiency and agility by integrating monolithic legacy systems, and

� to move to new solutions such as Software–as–a–Service (SaaS) and cloud computing.

2http://www.gartner.com/newsroom/id/2304615

3

Similarly, in 2014 the National Association of State Chief Information Officers3 (NASCIO) placed legacy

application modernization (renovation) in the 6th position out of the top 10 technologies, applications

and tools priority [199]. These reports indicate that enterprises still struggle with their legacy software

systems and are planning to modernize them.

Although, the research community realized the need for legacy system modernization in the mid

1990s and since then a plethora of legacy system modernization approaches have been reported. It is

therefore surprising to see that enterprises are still dependent on legacy software systems. As of 2008, a

market research report [265] from the National Computing Center4 (NCC) states:

“.....it has been estimated that about 80% of IT systems are running on legacy platforms.

International Data Corporation estimates that 200 billion lines of legacy code are in use today

on more than ten-thousand large mainframe sites...”

Additionally, a market research reported by Microfocus in 2013 states that 1.5 million new lines of

COBOL code are written every day to support 90% of the Fortune 500 business systems everyday

and COBOL still powers 85% of all daily business transactions processed [189]. Similarly, in 2014

Gartner reported that 92 out of 100 banks use mainframe as their back-end to process their high volume

transactions [61].

The evidence indicates that despite a plethora of modernization approaches, the problems of legacy

software systems and their modernization are still prevalent in industry. Research conducted by Razavian

& Lago [223] suggests that legacy software modernization methods reported in academia are too abstract

to be implemented in industry and 97% of the academic approaches do not fit the industrial purposes in

the context of legacy to SOA modernization. Market research conducted by consulting firms indicates

that legacy software modernization projects in industry often overrun budget and time. For instance,

a survey published by Gartner in 2014 indicates that legacy software modernization projects in the

insurance domain have high failure rates– only 42% of projects meet the original budget, and 82% take

longer than expected [99]. Similarly, Forrester Consulting [69] reports that 31% of modernization projects

fail to meet the planned due date and 33% of modernization project exceed the planned budget. This

indicates that there is a knowledge gap among academia and industry in understanding legacy systems

and their modernization, thereby inhibiting the adoption of knowledge flow [221]. This knowledge gap

leads us to define the other research objective of this thesis that aims at exploring how legacy software

systems and their modernization are perceived within the industry.

Research Objective 2 (RO2)–“Identify how software modernization is perceived and con-

ducted in practice.”

1.1 Research Context

In this section we provide an overview of the concepts that form the foundation of this thesis along with

the relevant literature. We start with the concept of software evolution in subsection 1.1.1 in which

we depict how software evolution is related with legacy software systems and software modernization.

In subsection 1.1.2, we present an overview of legacy systems with respect to the available literature.

3http://www.nascio.org/
4http://www.ncc.co.uk

4

The subsection further explores the academic perception of legacy software systems, in particular, the

characteristics of legacy systems. In subsection 1.1.3, we discuss legacy modernization approaches.

1.1.1 Software Evolution

The term evolution describes a phenomenon that refers to progressive changes in the properties and

characteristics of classes of entities such as natural species, societies, artefact, theories. The changes

are intended to maintain the status quo or to improve fitness in a changing environment. Such changes

are also inevitable in the life cycle of software systems. The seminal work of Belady & Lehman is still

relevant in understanding the foundation of software evolution. They performed empirical experiments

on OS/360 to understand software evolution [19]. This pioneering work on software evolution stated

the first three laws of software evolution and by 1996, a total eight laws of software evolution were

formulated [168]. All these laws are defined in the context of E-type systems [167], i.e., software systems

that solve a problem or implement a computer application in the real world and are thereby inherently

more change prone.

The law of continuing change– an E-type program that is used must be continually adapted, else it

becomes progressively less satisfactory [167]– provides an intrinsic need for evolution.

The law of increasing complexity– as a program evolves, its complexity increases unless work is done

to maintain or reduce it [167]– identifies the need for maintenance. Despite the fact that some researchers

and practitioners use software evolution as a preferable substitute for maintenance [23], this research dis-

tinguishes these two terms. Software maintenance refers to activities that take place at any time after

the new development project is implemented, whereas software evolution is focused on examining the

behavior of software systems so as to identify and implement changes for adaptation/improvements [140].

Furthermore, software evolution also focuses on methods and tools intended to facilitate software evolu-

tion after the intimal software development [169].

Software maintenance includes activities that are largely aimed at keeping systems operational.

Swanson [267] categorized maintenance into three types as: (i) corrective maintenance– performed in

response to the assessment of failures, (ii) adaptive maintenance– performed in anticipation of changes

to the data and processing environments, and (iii) perfective maintenance– performed to eliminate in-

efficiencies, enhance performance, and improve maintainability. Corrective and adaptive maintenance

are focused on keeping the systems up and running whereas perfective maintenance is aimed at keeping

the software systems up and running at less expenses and to better serve the needs of the users. Later,

Chapin et al. [54] introduce a fourth type of software maintenance as “Preventive maintenance”– per-

form to prevent problems in the future by taking pre-emptive actions. ISO/IEC 14764 uses these as four

categories of software maintenance [127].

Definition of Software Evolution–“the dynamic behavior of programming systems as they are

maintained and enhanced over their life times, and all the activities including tools and methods intended

to facilitate software evolution” [19, 169].

Definition of Software Maintenance– “the correction of errors, and the implementation of mod-

ifications needed to allow an existing system to perform new tasks, and to perform old ones under new

conditions” [79].

5

1.1.2 Legacy System

The law of continuing change states that a system must be continually adapted or it becomes pro-

gressively less satisfactory. The perfective maintenance indicates the need of modifications to eliminate

inefficiencies, enhance performance, and improve maintainability. Additionally, the preventive mainte-

nance refers to modifications performed for the purpose of preventing problems before they occur. The

law of continuous change, perfective and preventive maintenance put emphasis on addressing (reme-

dial) changes to make software systems more maintainable, otherwise software systems gradually turn to

legacy software– software systems that significantly resist modification and are less maintainable. Sev-

eral other characteristics are inherent to legacy systems such as inflexible, brittle, expensive to maintain,

lacking documentation, difficult to extend and integrate with other systems, and lacking legacy experts.

In general, the following problems are often associated with legacy software systems:

� Legacy systems are typically implemented using obsolete technology, possibly in older programming

languages and hardware platforms.

� The lack of documentation and experts of the legacy systems lead to knowledge erosion and hence

resulting in a slow and expensive maintenance process.

� Well-defined interfaces are often lacking in the legacy systems, thereby requiring significant efforts

to extend and integrate with other systems.

Despite these drawbacks inherent to legacy systems, the importance of a legacy system is widely

acknowledged. Legacy systems are the backbone of enterprises and often regarded as an organizational

asset with a high economic value [285]. These systems are mission critical and embed a lot of busi-

ness logic that represent many years of coding, developments, enhancements, modification and testing.

Therefore, enterprises cannot simply discard their legacy systems, despite the maintenance nightmares

and underlying problems of software erosion [214].

Definition of Legacy System– “any system that cannot be modified to adapt to constantly changing

business requirements and is still valuable to its stakeholder such that its failure can have a serious impact

on business” [43].

1.1.3 Software Modernization

Enterprises with legacy systems are confronted with a dilemma [22]. Despite unjustifiable maintenance

costs, enterprises cannot simply get rid of legacy software systems as they are core systems for run-

ning day-to-day business. Therefore, momentum is growing to evolve and reuse those legacy systems

within new technological environments via software modernization [32]. The primary aim of software

modernization is to reduce maintenance cost and increase flexibility.

Definition of Software Modernization– We define legacy modernization as “the process of evolv-

ing existing software systems by replacing, re-developing, reusing, or migrating the software components

and platforms, when traditional maintenance practices can no longer achieve the desired system proper-

ties” [142].

Due to the inherent issues with legacy software systems, various software modernization techniques

have been proposed. Such modernization techniques can broadly be categorized into software modern-

ization strategies.

6

1.1.3.1 Software Modernization Strategies

Software modernization can be categorized into four different strategies [8] that are briefly discussed

below:

1. Replacement strategy– is a way of retiring a legacy system and replacing it with a commercial-

off-the-self (COTS) package. Replacement is considered to be less risky but there is little or no

possibility of reusing the existing business logic embedded within the legacy system. Normally,

legacy software systems are modified and customized in the course of a life-cycle and are the

sources of undocumented business logic or enterprise knowledge. An option does exist in which

the COTS package is modified as per the need of the enterprise, but this incurs substantial costs.

Additionally, there is no guarantee that the replaced new system will be as robust and functional

as the original one [68, 8].

2. Wrapping– is one of the most widely used modernization strategies that allows the possibility

of encapsulating existing legacy software for reuse in a new target architecture [255]. In general,

wrapping provides a customized access to the legacy code with minimal changes to the code base

itself such that the wrapped component can be used by other software components. Wrapping is

a quick win strategy and can be used when the legacy system has a high business value. However,

wrapping does not reduce maintenance cost, rather increases it as the enterprise has to maintain

the interface (wrapper) layer as well.

3. Redevelopment– is a strategy to redevelop the legacy system functionalities. However, the risk

of failure is usually too large for enterprises to seriously adopt a redevelopment approach [32] and

management is not willing to spend a significant amount of investment to an approach having huge

risk of failure. With respect to cost, redevelopment does incur significant development cost and

limited reuse of existing legacy assets. Less reuse of existing assets is justified by the fact that the

documentation of legacy software systems are in general not up-to-date.

4. Migration– concerns the transformation of legacy software systems to a new technological context

by maximizing reuse [127]. The migration strategy tends to be costly and time consuming compared

to other strategies. However, a migration strategy gradually allows to internally restructure, reuse

and modify the legacy systems into a new target system, thereby potentially reducing maintenance

costs associated with legacy systems in the long run [273].

Figure 1.1 depicts how these strategies compare with respect to cost and reuse of existing assets. Each

modernization strategy has its own pros and cons, hence a variety of factors such as available budget,

resources, time constraints play an important role in choosing a strategy. Often two or more modern-

ization strategies are combined to conduct legacy modernization, as there is no silver bullet tackling the

problem [8].

1.1.3.2 Software Modernization Methods

Within the last four decades, a plethora of legacy system modernization methods have been reported

upon. Sneed [252, 256] presents a method to migrate legacy software systems from a mainframe to a

client-server architecture using wrapping techniques. Sneed & Majnar [259] discuss the use of wrapping

to migrate legacy software systems to a client-server architecture at different levels of encapsulation

such as job, transaction, program, module, and procedure. Souder & Mancoridi [261] present a tool to

7

R

e

u

s

e

Cost

Wrapping Migration

Replacement Redevelopment

low

high

high

Figure 1.1: Comparison of modernization strategies with respect to cost and reuse [8]

integrate a legacy software system into a distributed environment using wrapping technology. Canfora

et al. [44] describe an approach to decompose the legacy software systems using program slicing and

then use wrappers to migrate to client–server architecture. For migrating legacy software systems to a

client-server architecture, the wrapping technique is predominant [145].

With the advent of the object-oriented (OO) paradigm, numerous legacy to object-oriented program-

ming language modernization methods are reported. Demeyer et al. [77] report several object-oriented

re-engineering patterns to modernize object-oriented languages. Lucia et al. [74] present a six phase

sequential legacy to object-oriented migration process that encompasses reverse engineering and re-

engineering. Cimitile et al. [64] propose a method for decomposing legacy systems into objects using

reverse engineering activities. Sneed [249, 253] reports on modernization methods to migrate a COBOL

program into a functionally equivalent OO program. Newcomb [203] describes a re-engineering tool

that automatically transforms a procedural program into a functionally comparable OO system. Zou &

Kontogiannis [304] develop a re-engineering workbench that not only migrates a procedural language to

OO, but also allows modeling quality requirements for the target migrant system.

In the last decade, the advancement of web-based technologies has fostered legacy software system

modernization (e.g., [264, 164, 44, 75]). In particular, the service-oriented architecture (SOA) has been

a popular target architecture for legacy software system modernization and various legacy to SOA mod-

ernization approaches have been proposed (e.g., see the systematic literature reviews by Razavian &

Lago [222], and Almonaies et al. [8]). Lately, cloud computing has been seen as a new target platform for

legacy software modernization. A systematic literature review (SLR) by Jamshidi et al. [129] reported

that 23 different legacy to cloud modernization approaches have been reported from 2010 to 2013. The

popularity of legacy to cloud computing modernization is reflected in a number of research projects such

as REMICS [192]5, ARTIST [26]6, MODAClouds [10]7.

The techniques used for modernization are diverse and largely dominated by wrapping technology.

Other frequently used techniques include program slicing [143, 16, 58, 184, 300], feature modeling [187,

181], model transformation techniques [57, 92, 124], wrappers [268, 289, 229, 247, 248], aspects [193],

and architectural pattern languages [106, 116].

The legacy system modernization research identified in academia are largely technology–oriented.

5http://remics.eu/
6http://www.artist-project.eu/
7http://www.modaclouds.eu/

8

They provide different techniques/methods to facilitate legacy system modernization and point out

various challenges faced in the course of applying those techniques/methods. It has been observed that

insufficient attention is provided to the business issues of the legacy software modernization [196, 202].

1.1.3.3 Service-Oriented Architecture

Service-oriented architecture (SOA) [83] is an architectural paradigm that represents an open, extensible

and composable software architecture built from reusable software components known as services. SOA

focuses on the reusability of the components by separating the interface from the internal implementation.

The underlying principles that promote SOA include loose coupling, abstraction of underlying logic,

agility, flexibility, reusability, autonomy, statelessness, and discoverability [83, 206]. From a software

modernization perspective, SOA promises to reuse the pre-existing legacy assets by encapsulating them

as added-value services [207, 221]. Channabasavaiah & Holley [52] argue that enterprises will realize the

following benefits by modernizing legacy software systems to SOA:

� Leverage existing assets: One of the key, and the most significant, benefits of SOA is the reuse

of the existing legacy assets by encapsulating the legacy features as added-value services. The

reusability of the legacy assets enables an enterprise to preserve the business value of the invest-

ment made in developing the legacy software systems over the years. Additionally, the services

hide the implementation and platform complexity of the legacy application and provide a uniform

mechanism of access via service interfaces.

� Faster time-to-market : SOA facilitates the creation of a service inventory that contains both busi-

ness and technical details of business services. Enterprises can use the service inventory to identify

services that meet their requirements and reuse whenever possible. Additionally, due to reuse of

existing legacy assets, the time needed for design, development, testing and deployment is signifi-

cantly reduced, thereby shortening the time–to–market for any new products.

� Cost Reduction: In a SOA environment, several existing services can be composed to deliver an

added-value service via service composition [208]. As new requirements emerge for new products,

enterprises can leverage the service inventory to identify matching services and compose them to

deliver a new service. At the same time, the reuse of existing assets significantly contributes to

cost reduction as compared to the new development of products.

� Flexibility : The computing and the development platform can vary significantly within an enterprise

leading to interoperability issues [281]. SOA can significantly reduce interoperablity issues by

hiding the platform complexity via the definition of standard service interfaces. By encapsulating

the computing and platform complexity, SOA opens up a wide possibility of integrating silo–

applications within enterprises.

In this dissertation, SOA is considered as the target architecture of the legacy modernization. In

particular, Part I of the dissertation is focused on modernizing legacy software systems towards a SOA

environment.

1.2 Scientific Relevance

Legacy software systems, their characteristics, and possible solutions for modernizing these systems are

well–known and long researched domains within the software engineering scientific community. The re-

9

search work reported in the late 70’s and early 80’s on software evolution and software maintenance are

pioneering works that are still valid for legacy software systems and their modernization. In particular,

Lehman’s laws of software evolution [168] and the contribution made by Swanson in software mainte-

nance [267] are still relevant to understand the foundation of software evolution. Based on the concept

of software evolution and software maintenance, a lot of research has been reported within the domain

of legacy software system and their modernization. One of the key empirical contributions within legacy

software modernization goes to Sneed for his work from 1984 on software renewal [250]. In the mid 90’s

the term legacy systems and their characteristics are widely discussed, highlighting in particular the high

cost to maintain those systems. Rough estimates of the cost allocated for software maintenance could go

as high as 70-80% of the total life cycle cost of a system [180]. The importance of software evolution and

maintenance was clearly visible during the “Year 2000 (Y2K)” problem [84]. Smith et al. [245] reported

that one of the reasons of the severity of the Y2K problem is the existence of legacy software systems

and their huge code base.

Since then legacy software systems and their modernization gained steadily in importance and moved

into the center of attention of software engineers [23, 218]. Over the years, the software engineering

community has been closely following the developments within software evolution. As early as 1996,

client–server platforms were used as targets to modernize legacy software systems (e.g., Sneed [252] and

Canfora et al. [44]). Later, with the advancement in Internet technology, the trend of legacy software

modernization gained momentum to modernize to web applications (e.g., Stroulia et al. [264], Lavery et

al. [164], and De Lucia et al. [75]). With the promised benefits of SOA, legacy software modernization

became largely focused on modernizing towards SOA (e.g., the SLR by Razavian & Lago [222], Almonaies

et al. [8]). Lately, with the potential offered by the clouds, now legacy software modernization has turned

to modernizing towards clouds (e.g., legacy to clouds SLR by Jamshidi et al. [129]).

Changes to software systems during their life-cycle is a continuous process. Such changes are triggered

by evolving requirements, technologies, and market demands. Over the years, the reverse engineering

has played a key role in legacy software system modernization. Muller et al. [195] argue that reverse

engineering techniques have been key in assisting legacy software system modernization. Chikofsky &

Cross [60] define reverse engineering as “the process of analyzing a software system to identify the systems

components and their inter-relationships and create representations of the system in another form or at a

higher level of abstraction”. Several reverse engineering techniques are widely used to assist modernizing

legacy software systems. For instance, techniques for system understanding such as feature location,

program visualization, source code analysis, program slicing, concept analysis, software architecture

recovery are being extensively used to understand and assist modernizing legacy software systems.

Legacy software and its modernization are regularly reported upon at the top tier software conferences

such as the International Conference on Software Engineering8 (ICSE) and Foundations of Software En-

gineering9 (FSE) under the headings of software evolution and software maintenance, thereby indicating

an active research field. In addition to that there are two dedicated and leading conferences– the Interna-

tional Conference on Software Maintenance and Evolution (ICSME– formerly known as the International

Conference on Software Maintenance10 (ICSM)) and the International Conference on Software Analysis,

Evolution, and Re-engineering (SANER– merger of the European Conference on Software Maintenance

8http://www.informatik.uni-trier.de/~Ley/db/conf/icse/index.html
9http://www.informatik.uni-trier.de/~Ley/db/conf/sigsoft/index.html

10http://www.informatik.uni-trier.de/~ley/db/conf/icsm/index.html

10

and Re-engineering11 (CMSR) and the Working Conference on Reverse Engineering12 (WCRE)– where

researchers publish their research on legacy software system and their modernization. Workshop venues

such as the symposium on the Maintenance and Evolution of Service-Oriented Systems and Cloud-based

Environments13 (MESOCA), the International Workshop on Principles on Software Evolution14 (IW-

PSE) regularly publish new research ideas and experience reports from industry related to the legacy

software systems domain.

Legacy software systems and their modernization has regularly been a topic of significant interest in

industry as well. Market research firms such as Gartner, Forrester Research have regularly indicated that

legacy software modernization is one of the top priorities within industry. Additionally, a majority of

financial institutions is still using their legacy software systems in the back office to run their day–to–day

operations.

The research reported in this dissertation is relevant to both the scientific community and industry.

To the scientific community, this research adds to the body of knowledge of software evolution and

software maintenance by delivering a structured legacy software system modernization method. This

research also provides an insight into how industry values their legacy systems and what challenges

industry faces while modernizing. These challenges can be viewed as future research direction for the

scientific community. Finally, we believe that this research will facilitate technology and knowledge

transfer between academia and industry in the domain of legacy software system modernization.

1.3 Research Approach

In this section, we discuss the scientific research approach and the research methods used in this dis-

sertation. We use the concept of practical problem and knowledge problem in the context of design

science [291] (cf. Fig 1.2) to justify the research objectives.

People,

Organizations,

Technology

Practical

Problems

(RO1)

Engineering

cycle

Analytical & empirical

research methods

Knowledge base:

nomothetic,

practical-oriented,

N=1 theories

Environment Knowledge base
Access to

problem

domain

Possible

solutions

Add

Use

Mutual

nesting

Knowledge

problems

(RO2)

Figure 1.2: Design science framework (Wieringa [291])

Wieringa [291] defines a practical problem as a difference between the way the world is experienced

by stakeholder and the way they would like it to be. Practical problems require solution(s) that bring

changes within the world of the stakeholder to meet the goals. In contrary, a knowledge problem is

a difference between the current knowledge of stakeholder about the world and what they would like

to know. Unlike practical problems, knowledge problems do not call for a change to the world but for

a change in the knowledge about the world. RO1 is a practical problem whereas RO2 is a knowledge

problem. It is important to note that a practical problem, when decomposed into subproblems, can

include knowledge questions– to facilitate the understanding of the current state of the key problem or

11http://www.informatik.uni-trier.de/~Ley/db/conf/csmr/index.html
12http://www.informatik.uni-trier.de/~Ley/db/conf/wcre/index.html
13http://www.informatik.uni-trier.de/~ley/db/conf/mesoca/index.html
14http://www.informatik.uni-trier.de/~ley/db/conf/iwpse/index.html

11

to identify if the artifacts meet the objectives. An example of a decomposition of a practical problem is

depicted in Figure 1.3.

Practical problem

Knowledge problem:

What is the problem?

What is the current status of the problem?

Knowledge problem:

Is the design valid?

Does the realization meet the goals of stakeholeders?

Practical problem:

Design a solution

Realize the solution

Figure 1.3: Decomposition of practical problem (adapted from Wieringa [291])

Research Objective 1 (RO1)–“Develop a software modernization method that includes tech-

nical, and business aspects.”

In RO1, we explore existing academic legacy software system modernization methods in the context

of modernizing towards service-oriented architecture (SOA) with an aim to develop a legacy to SOA

modernization method that addresses technical, and business issues of modernization. Within RO1, the

method is a solution that makes a difference in the world of the concerned stakeholder.

A logical structure to solve a practical problem is an engineering cycle– an approach that starts with

an investigation to understand the problem, then specifies and implements the solution design with its

validation [291, 292]. To investigate RO1, we design a legacy to SOA modernization method and validate

the method.

We have formulated the following research question to investigate the RO1.

RQ 1 How can a modernization process be designed that facilitates enterprises in modernizing

software systems?

This research question represents a practical problem within the legacy software modernization

domain. Like Wieringa [291], we use an engineering cycle to investigate the problem, and then

develop and validate a structured method. The method is focused on legacy to SOA modern-

ization in which we consolidate the technical and business issues associated with legacy to SOA

modernization. This research question is further sub–divided into three sub–questions:

RQ 1.1 What are the (essential) steps to combine business aspects and technical aspects in soft-

ware modernization?

Several legacy software system modernization approaches have been reported in literature

to modernize legacy systems to a new technology. A significant number of such approaches

focuses on the development of the supporting technology to address the technical modern-

ization perspective (i.e., implementation techniques to reuse legacy software system). Other

approaches focus on developing a modernization strategy to determine the migration feasi-

bility. Furthermore, not enough attention is given to business aspects of the modernization

12

in spite of the fact that researchers [175, 174, 202] argue a need of consolidated method that

combines all the aforementioned aspects.

To provide a solution to this practical problem and address the research question, we identify

steps necessary to combine business and technical aspects of the software modernization. To

consolidate the method, we use method engineering [39]– an information system development

method to construct advanced development methods by reusing parts of existing methods.

The consolidated legacy to SOA method is validated with modernization experts and is further

validated with two case studies.

RQ 1.2 What is the state of the art of software modernization in academia?

After we have shown the feasibility of combining different aspects in one legacy modernization

method, we systematically investigate what techniques and methods are reported in academia

regarding legacy to SOA software modernization. We use a systematic literature review (SLR)

approach to answer this knowledge problem. The SLR is used to create an inventory of

methods and techniques used in various phases of legacy to SOA software modernization.

To this end, 121 research papers were identified and evaluated so as to create an inventory

of current research approaches, methods, tools and techniques To minimize the researcher

bias, we have carefully followed the guidelines outlined by Kitchenham et al. [154] to perform

an SLR. In every step of the SLR process, we have identified potential threats to validity

and have taken appropriate measures to mitigate those validity threats. For instance, to

minimize the researcher bias, 121 papers were distributed over 5 researchers to identify the

methods and later the results were cross-validated by a researcher other than the one who

categorized the methods initially. Additionally, inclusion and exclusion criteria for the papers

were clearly documented to minimize missing relevant studies. used in legacy software system

modernization.

RQ 1.3 How can a structured legacy to SOA software modernization process be developed from

existing methods and techniques?

This is a practical problem with the aim of developing a legacy to SOA modernization process

from existing legacy modernization methods. This research question extends the steps of the

RQ 1.1 and aims at developing a phase-wise structured method for legacy to SOA modern-

ization. For each phase, we present a rationale to justify its need, current practices, and

challenges that require further attention. This research is based on the rationale that there is

a need for a structured legacy to SOA modernization method that incorporates not only the

technical issues but also the business issues [175, 174, 202].

The proposed structured process is then evaluated by migrating features of two simple yet

representative applications to SOA. To further validate the structured process, we selected 17

academic papers reporting legacy to SOA modernization from 2000 to 2011 and mapped the

activities described therein to the phases of the structured process.

13

Research Objective 2 (RO2)–“Identify how software modernization is perceived and con-

ducted in practice.”

In RO2, we investigate how legacy software systems and legacy software modernization are per-

ceived in industry. This knowledge problem aims at providing answers for a change or update of

the current knowledge about legacy systems and (legacy) software modernization. We consider

this knowledge to be of significant value, due to the fact that there is a knowledge gap between

academia and industry in understanding legacy systems and their modernization, thereby inhibit-

ing the adoption of knowledge transfer. For example, Razavian & Lago [223] indicate that 97%

of the academic legacy to SOA modernization approaches do not fit the industrial purposes in

the context of legacy to SOA modernization [223]. We believe that the knowledge gained from

RO2 can be used to leverage the adoption of academic modernization methods in industry. To

investigate this research objective, we use different empirical research methods: (i) case studies to

investigate how legacy system modernization is performed on an industrial scale, (ii) a grounded

theory method to identify how practitioners view legacy systems and what challenges they face

during modernization, and (iii) mixed methods such as combining case studies and interviews to

understand the impact of legacy modernization.

We have formulated the following research question to investigate RO2.

RQ 2 What are the perceptions of practitioners about software modernization?

In RQ 2, we explore the industrial perception of legacy systems and legacy software moderniza-

tion. In particular, we investigate what characteristics of legacy software systems still keep them

operational, what are the key drivers for modernization, what key challenges are faced in the

modernization process and what business objectives are met after conducting legacy software mod-

ernization. To gain knowledge on such questions, we further divide the research question into three

sub-questions:

RQ 2.1 How is large scale software modernization performed in practice?

To establish a context for legacy system modernization in industry, this research question

investigates how legacy software systems are modernized in practice. It further explores what

techniques are used for modernization, and what challenges are faced during modernization. It

is evident that there are relatively few case studies of industrial legacy software modernization

reported in academia thereby limiting the knowledge on how modernization is conducted on

an industrial scale. Hence, this research question presents a large scale legacy software to

SOA modernization method in the financial domain and details the modernization process.

A single case study research method [297] is used to conduct this research. One of the

limitations of a single case study is the possible bias in data collection and interpretation.

This potential bias in this research is minimized by including multiple data collection methods

(documentation, interviews, workshops) and involving two researchers within the project to

regularly cross-validate the findings.

14

RQ 2.2 What are the discrepancies between the perception of legacy software and their modern-

ization in academia and industry?

The preliminary findings of the research question RQ 2.1 and the extensive use of legacy

software systems in the financial domain lead us to investigate this research question in which

we aim at identifying how legacy systems and their modernization are perceived in industry.

Particularly, what characteristics of legacy software systems keep them operational in industry,

what drivers lead to modernization and what are the challenges faced during modernization?

We use the grounded theory research method–an explorative research method that aims at

discovering new perspectives and insights, rather than confirming existing ones to investigate

this research question [103], and analyze the interviews of 26 practitioners.

In order to validate the findings of the grounded theory research, we use survey as a data

triangulation method– a validation process that uses more than one data source to increase

(decrease) confidence in a finding by providing confirming (contradictory) evidence. The

findings of the interviews are in–line with the survey.

RQ 2.3 How often are pre-modernization business goals achieved after a “technically” successful

software modernization?

In this research question, we investigate what it means for a legacy system modernization to be

“successful” from a business perspective. As of now, legacy software modernization is claimed

to be successful when the technical modernization is completed. However, there has been

limited research on investigating the post–modernization results. With this research question,

we aim at identifying what business goals are met by enterprises upon modernizing their

legacy software systems. We investigate five case companies that have completed software

modernization and explore the business goals behind modernization. We further identify

which of those business goals are met by software modernization.

We use multiple case studies [297] to investigate this research question and utilize multiple

data sources to minimize the research bias.

1.3.1 Research Methods

In this thesis, we have used a number of research methods that are dominantly used in software engi-

neering and information system research. We discuss the research methods in the following subsections:

1.3.1.1 Design Science

Design science research [121] aims at creating and evaluating IT artifacts intended to solve identified

organizational problems. Such artifacts are then developed and validated in coordination with a knowl-

edge base. Figure 1.4 depicts the design science research based on Hevner et al. [121]. In Part I of this

dissertation we develop a legacy to SOA modernization method and subsequently validate the method.

This context of developing and evaluating the legacy to SOA modernization method is suitably covered

by the design science research method. Design science allows to combine the knowledge from existing

theories and methods (e.g., existing modernization methods, reported academic literatures) with the new

15

data (e.g., lesson learned from case studies) to derive new results and theories. Such results are then

evaluated using other data sources such as interviews, reference cases or surveys [272].

Artifact Creation

Evaluation

Design

Cycle

Relevance

Cycle
Rigor

Cycle
E
n
v
ir
o
n
m
e
n
t K

n
o
w
le
d
g
e

B
a
se

Design Science

Figure 1.4: Design Science Research Method [121]

IS Research

Information science (IS) research is typically a combination of behavioral science and design sci-

ence [121]. Behavioral science seeks to develop and justify theories around information systems

while design science aims at creating innovations around information systems to enhance effec-

tiveness and efficiency [78, 121]. This research has combined both (design science and behavioral

science) and has resulted in the development and evaluation of several design artifacts, such as a

legacy software system modernization method to enhance the modernization process. The eval-

uation phase aims to justify the suitability of the method by validating it with experts or case

studies.

Environment

The environment defines the problem space in which the phenomena of interest reside, and in which

the research is conducted. The space is composed of practitioners, business organizations and their

existing and planned technologies and practices. Also, the environment incorporates goals, tasks,

problems and opportunities that define business needs as they are perceived by people within the

organization [121]. With respect to the environment, this research is particularly focused on, but

is not limited to, legacy software system modernization researchers, industrial practitioners, and

various existing modernization processes, methods, tools and techniques to support modernization.

Knowledge Base

The knowledge base provides the scientific foundation (e.g., theory and literature) and method-

ologies (e.g., the systems of methods used in a particular area of information systems research)

from and through which information science research is performed [121]. This research is related

to legacy software systems and the modernization process, which finally contributes to the existing

knowledge base of the software evolution and maintenance community. The results and findings

of this research are significant to the practitioners. Additionally, the contributions of behavioral

science and design science in information systems research are applied to a business need in a

particular environment, and add to the content of the knowledge base for further research and

practice [121].

The evaluation of artifacts developed within IS research is a continuing process which is referred to as the

design cycle. In this continuous process, there is a constant feedback loop with the Environment and the

16

Knowledge base. These feedback loops are known as Relevance cycle and Rigor cycle respectively [120,

291].

The design science research method is used in this dissertation to develop several design artifacts

such as modernization methods (Chapter 2 and Chapter 4), theory building (Chapter 6) and to evaluate

these.

1.3.1.2 Case Studies

Substantial research within this dissertation relies upon the observation of real–world industrial legacy

software system modernization. Hence, it is important to choose an appropriate research method in

software engineering that allows us to study contemporary phenomena in its natural context [233].

Case study research method is a suitable research method to observe these real–world legacy system

modernization processes.

Case study research method is used in many situations to contribute to our knowledge of individual

or organizational phenomena [297]. Case studies strive to portray what it is like to be in a particular

situation, by looking at a case or phenomenon in its real-life context, usually employing many types

of data. Case study research involves the close examination of people, topics, issues, or programs, for

purposes of understanding, and theory building and testing [297].

Figure 1.5 depicts different types of case study design, as illustrated by Yin [297]. Figure 1.5 (A)

represents a holistic single case design that involves an intensive description and analysis of a single

case. Chapter 5 is based on a holistic single case design in which we explore a large scale legacy to SOA

modernization process in a large financial institution. Figure 1.5 (B) illustrates a multiple case design

in which multiple sources/cases are analyzed. In Chapter 7 we use multiple case studies to study the

post–modernization effects within enterprises. Figure 1.5 (C) and (D) are embedded case design in which

different units/cases are analyzed in the same context.

Within the field of information systems, successful completion of a case study research requires

initiative, pragmatism, the ability to take advantage of unexpected opportunities, and optimism and

persistence in the face of difficulties and unexpected events, particularly during data collection activities.

Additionally, research based on case studies is often reported for being too specific and directed towards

hypothesis generation, thereby leading to validity threats and research bias [90]. In this research, we

mitigate these challenges by identifying representative cases and by designing and following a case study

protocol. Furthermore, in our case studies, we have rigorously followed guidelines to create case study

protocols as prescribed by Jansen & Brinkkemper [131] and Yin [297].

1.3.1.3 Systematic Literature Review

Over the last four decades, a plethora of research methods have been reported in the context of legacy

software system modernization, SOA being the target architecture. However, there is no systematic

overview of this research, and in particular the techniques, methods and approaches used to evolve

legacy systems to a SOA environment. In the systematic review conducted by Razavian & Lago [222], a

classification of SOA migration into eight families is discussed. However, this review does not provide an

inventory of methods and techniques used for legacy to SOA modernization. Hence, we have adopted a

Systematic Literature Review (SLR) method to systematically gather and analyze existing literature and

17

Context

Case

Embedded unit

of analysis

Embedded unit

of analysis

Context

Case

Embedded unit

of analysis

Embedded unit

of analysis

Context

Case

Embedded unit

of analysis

Embedded unit

of analysis

Context

Case

Embedded unit

of analysis

Embedded unit

of analysis

Context

Case
Embedded unit

of analysis

Embedded unit

of analysis

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

(A) Holistic Single Case Design (B) Holistic Multiple Case Design

(C) Embedded Single Case Design (D) Embedded Multiple Case Design

Figure 1.5: Types of case study designs adapted from Yin [297]

provide an extensive inventory of methods and techniques used. An SLR is an evidence-based approach

that aims at providing answers to some research questions by documenting an exhaustive summary

of current literature, analyzing and synthesizing findings [154]. SLR is a useful and powerful research

method in collecting and analyzing existing work, which is a common task in establishing background

knowledge for any research.

However, SLR is not the only research method to systematically gather and analyze existing litera-

ture. A systematic mapping study (SMS) [154] is also a potential approach. However, Kitchenham [153]

argues that SMS is suitable when few papers exist on a topic, or the topic is too broad or scattered.

SMS in particular is more directed towards uncovering research trends, rather than providing answers

to specific research questions [215]. In our case, SLR is deemed more appropriate due to the fact that

there is abundant research published and the aim is to provide a complete overview of a research domain,

based on all papers published on legacy to SOA modernization.

A typical SLR consists of three phases as shown in Figure 1.6 with the details of activities that

are performed within each phase. Initially, the Plan Review Phase provides the context of the review

by identifying the research questions and developing a review protocol. The Conduct Review Phase

represents the operationalization of the review process by selecting data sources, defining search queries,

selecting primary studies (often based on scanning topic and abstract) and analysis of the data. Finally,

the results of the review are documented in a report.

The SLR method is used in Chapter 3. The SLR constitutes an inventory of current research

18

Plan Review Phase

1. Specify Research Questions

2. Develop Review Protocol

3. Validate Review Protocol

Conduct Review Phase

4. Locate Data Sources

5. Select Primary Study

6. Assess Study Quality

7. Analyze and Synthesize Data

Document Review Phase

8. Write Review Report

9. Validate Report

Figure 1.6: An SLR Process [154]

approaches, methods and techniques used in legacy to SOA evolution. The result of the SLR also

identifies current research issues in legacy to SOA modernization and provides future research directions

to address those research issues.

In this thesis, we have also used literature study as a research method. The literature study method

closely resembles SLR as both research methods are used to gain certain knowledge or understanding of

a certain research topic. However, a literature study might not be as complete and valid as that of a

SLR because a literature study is much less formal in the sense that it allows more freedom in collecting

relevant studies and analyzing their content. Nonetheless, literature study is an effective and efficient

method to get an overview of a research topic. In Chapter 4, we have used a literature study to validate a

structured process and in Chapter 6, the literature study method is used to identify the current academic

perspective of legacy systems and legacy software system modernization.

1.3.1.4 Snowballing Based Literature Search

Snowballing based literature search is a method for identifying additional relevant articles through the

reference lists of a set of identified articles [293]. Webster and Watson [287] use snowballing to find

relevant literature and propose two types: backward snowballing– using the reference list of a paper

to identify new papers to include, and forward snowballing– identifying new papers based on those

papers citing the paper being examined. In this dissertation, we use a backward snowballing approach in

Chapter 7 to identify benefits claimed due to software modernization. Backward snowballing approach

is used due to the fact that the time and effort required to conduct a literature search is relatively

less. Jalali & Wohlin [128] compare SLR with backward snowballing approach and argue that backward

snowballing approach is easy to use and requires less time and effort.

1.3.1.5 Grounded Theory Method

Grounded Theory (GT) is a systematic, inductive and comparative approach to develop a theory itera-

tively from data. In contrast to the hypothetico-deductive method, where the researcher has a predefined

hypothesis at the beginning of the investigation, GT is explorative, aimed at discovering new perspectives

and insights. Adolph et al. [3] argue that GT is an excellent method for studying software engineering

and generating theories that are relevant to the practitioner, and is increasingly popular in software

engineering research [3]. For instance, Coleman et al. [65, 66] use GT to understand software process

improvement in Irish software product companies; Hoda et al. [123, 122] adopt GT to study the human

aspects of software engineering; Dedrick et al. [76] use GT to study adoption of open source platforms

within industry; Angela et al. [186] use GT to understand customer-focused practices in eXtreme Pro-

gramming (XP); Balasubramaniam et al. [220] use GT to identify factors that influence Internet software

development processes; Hutchinson et al. [125] use GT method to document technical, organizational and

social factors that influence organizational responses to Model–Driven Engineering (MDE) in industry;

19

and Greiler et al. [111] use GT to identify how developers and testers perceive testing plug–in based

systems.

In this dissertation, one of the objectives is to discover new perspectives and insights about legacy

software systems and (legacy) software modernization from the practitioners perspective. We do not have

any explicit hypothesis about the practitioners perception of legacy software systems and their modern-

ization, rather intend to generate theory. Additionally, there is little empirical evidence documented in

academia regarding the practitioners perception of legacy software systems. Adolph et al. [3] emphasize

that GT is useful for research in areas that have not been previously studied or where a new perspective

might be beneficial. Hence, we exploit GT in Chapter 6 to identify the industrial perspective of legacy

software system and legacy software modernization. Using the illustrative diagram shown in Figure 1.7

Figure 1.7: Grounded Theory Method [111]

from Greiler et al. [111], we briefly summarize the GT process. Following the interview guidelines, we

start collecting data by interviewing practitioners that have experience in legacy software systems and

transcribe the interviews. The transcription is then analyzed to find patterns and accordingly codes

are assigned to indicate concepts, which in turn are aggregated into categories. The resulting concepts

and categories are connected via memos, leading to theory refinement. The process continues until the

categories are “saturated”– no new codes/categories are added even with new interviews. The generated

theory/finding is then compared with literature and/or validated, if required, covering new perspectives

and insights, rather than confirming existing ones.

1.3.1.6 Survey Method

A survey is a comprehensive system for collecting information to describe, compare or explain knowledge,

attitudes and behavior. In this research, survey is used for a data triangulation [233] to validate the

findings of the interview results of the GT method in Chapter 6. A data triangulation process– a method

that uses more than one data source, or collects the same data at different occasions– is typically used

to provide confirming (contradictory) evidence and further helps to improve validity of the findings of an

empirical study. Data triangulation process is being increasingly used in software engineering research.

Some recent examples such as Greiler et al. [111] and Beller et al. [20] use survey as a secondary data

source to improve validatory of the findings from another primary source.

20

1.3.2 Validation

A crucial aspect of conducting any research is to rigorously operationalize the entire research process and

validate it, whenever possible [109]. Validation of research and data have become increasingly an area

of concern within the scientific community. An article published in Nature in October 2011 indicates

that misconduct (i.e., falsification or fabrication, (self-)plagiarism) accounts for 44%. Honest error (i.e.,

honest differences in the design, execution, interpretation or judgement in evaluating research methods

or results) accounts for 28% of the total number of retractions within the scientific community [279].

The research methods used in this dissertation are predominantly empirical, and therefore require

a rigorous validation and evaluation measure. For example, Yin [297] and Eisenhardt [81] argue that

validation, in particular research method validation and data validation, is an important aspect of the

case study research method. In this dissertation, we have paid careful attention to operationalizing the

selected research methods, validating the data and reducing the research bias throughout the research.

In case of operationalizing the selected research methods, we have diligently followed available re-

search guidelines. For instance, in the case studies we have followed guidelines from Runeson & Host [233]

by creating case study protocols and clearly documenting the data sources, if possible. In the SLR-based

research method, the guidelines to conduct SLR by Kitchenham et al. [153] have been strictly followed.

In the case of interviews (Chapter 2, 5, 6, and 7), the participants are given an interview protocol to

prepare a common understanding of what is going to be discussed. Such protocols (research protocol

and interview protocols) have been proven to be highly important as they provide a common ground

for understanding the terms and techniques used (e.g., the concept of legacy systems was understood

differently for different enterprises). Whenever possible, the developed artifacts (e.g., Chapter 2) are

validated with experts and subsequently enhanced.

In case of data validation, we have focused on documenting the data sources, whenever possible. For

example, the majority of the interviews conducted within the context of this research has been recorded

and transcribed with the permission of the interviewee. In case of misunderstanding and to further

validate, the interviewees were consulted via email to clarify the issues– a method known as cooperative

inquiry [226]. Artifacts collected in the course of data gathering such as forms, SLR classification forms,

disputes among the researchers while classifying primary studies, documents from the case study are

documented.

To mitigate research bias in the research analysis phase, different types of validity are discussed

throughout the dissertation. Goodwin & Leech [109] describe validation as a measure to ensure the

well–foundedness of the measurements with the real world. As per Yin [297], the following four different

kinds of validity are identified:

1. Construct validity: reflects to what extent the operational measures that are studied really represent

what it was meant to be measured.

2. Internal validity: reflects the extent to which a causal conclusion based on a study is warranted.

3. External validity: concerns the generalizability of the findings and measures the extent to which it

is possible to generalize the findings.

4. Reliability: concerns with the extent to which the data and the analysis are dependent on the

specific researchers.

21

Furthermore, we have also used data triangulation to validate the findings of some of the research.

For instance, we used survey method in Chapter 6 to ensure the reliability of the findings. Similarly,

a focused workshop was conducted to validate the findings of Chapter 5. Some of the artifacts such as

the serviciFi method of Chapter 2 and the legacy to SOA migration method of Chapter 4 are evaluated

using controlled experiments.

To promote reproducibility within software engineering, various artifacts produced within this re-

search are freely available. Such resources include the anonymized interview transcripts (Chapter 6

and 7), anonymized survey data (Chapter 6) and the complete data form used in the SLR (Chapter 3).

Table 1.1 lists the research questions, the research methods used and the measures undertaken to

ensure the validity of the research.

Table 1.1: Summary of mapping of research questions with research method and validity

RQ No. Chapter Research Method Validation Measure

RQ 1.1 2 Design Science Controlled experiments, Expert evaluation

RQ 1.2 3 SLR Cross validation among co–authors

RQ 1.3 4 Design Science, Case Study Controlled experiment

RQ 2.1 5 Case Study Expert Interviews

RQ 2.2 6 Grounded Theory Survey

RQ 2.3 7 Case Study Cooperative Inquiry

1.4 Outline of Thesis and Publications

The research presented in this thesis is previously published in peer–reviewed venues. The dissertation

is divided into two parts based on the two research objectives. Part I of the thesis focused on developing

a structured software modernization method that combines technical and business issues. The modern-

ization method is developed in the context of modernization of legacy software systems towards a SOA

system. Part I of the dissertation consists of three chapters.

Chapter 2: In this chapter, we identify necessary steps to combine technical and business aspects of

a legacy to SOA modernization method. These steps are identified using method engineering

approach. As a research contribution, this chapter provides a starting point towards developing

a structured method by identifying the necessary steps. This chapter addresses research question

RQ 1.1.

R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage. A method engineering based

legacy to SOA migration method. In the 26th IEEE International Conference on Software

Maintenance (ICSM 2011), pages 163–172. IEEE, 2011.

Contributions: R.K. and S.J. designed the research. R.K. and G.R. conducted the research.

R.K. wrote the manuscript. R.K. and A.S. performed additional case studies. R.K. conducted

additional research to enhance validation. A.S., S.J., and J.H. participated in discussion and

editing of the manuscript.

22

Chapter 3: To document current state of art of legacy software system to SOA modernization, we

perform a systematic literature review (SLR). This chapter addresses research question RQ 1.2

and presents an inventory of methods and techniques that are currently available for legacy to

SOA modernization based on the research articles published within the period of 2000 to 2011.

R. Khadka, A. Saeidi, A. Idu, J. Hage, and S. Jansen. Legacy to SOA evolution: a systematic

literature review. In A. D. Ionita, M. Litoiu, and G. Lewis, editors, Migrating Legacy Applica-

tions: Challenges in Service Oriented Architecture and Cloud Computing Environments, pages

40–71. IGI Global, 2012.

Contributions: R.K. designed and conducted the research. R.K. and A.I. collected the articles.

R.K., A.I., A.S., S.J., and J.H. reviewed the articles and cross-validated with the other team

members. R.K. wrote the manuscript. A.S., S.J., and J.H. edited the manuscript.

Chapter 4: Based on chapter 2 and chapter 3, we develop a structured legacy to SOA modernization

method consisting of six phases. In chapter 2, we detail the necessary steps and demonstrate

the usability of the proposed method to combine business and technical aspect of modernization.

In this chapter, we present rationale to justify the need of each phase, current practices within

each phase, and challenges that require further attention. In terms of research contributions, this

chapter identifies relevant phases to develop a structured legacy to SOA modernization method,

whereas in Chapter 2, we identify necessary steps to combine business and technical aspects of

legacy to SOA modernization. This chapter corresponds to RQ 1.3.

R. Khadka, A. Saeidi, S. Jansen, and J. Hage. A structured legacy to SOA migration process

and its evaluation in practice. In the IEEE 7th International Symposium on the Maintenance

and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2013), pages 2–11.

IEEE, 2013.

Contributions: R.K. designed and conducted the research, and wrote the manuscript. A.S.,

S.J., and J.H. participated in discussion and edited the manuscript.

Whilst Part I of this dissertation is aimed at answering a practical problem, Part II is focused

on exploring a knowledge problem. While conducting research for Part I, the author participated in

discussions with experts from industry and identified that they still highly value legacy software systems.

Even though experts from industry acknowledge the problems of legacy software systems, they consider

legacy software systems to be performant and fit for purpose. With respect to legacy software system

modernization, experts from industry indicate that legacy modernization methods reported in academia

are too abstract to apply in practice. Some of the views expressed by experts from industry are to some

extent new to academia, thereby resulting in a potential knowledge gap between perception of legacy

software systems and their modernization within industry and academia. Part II of this dissertation

investigates the knowledge gap by conducting empirical research focusing on industry. Hence, the research

performed in Part II is largely empirical in nature. The empirical research is based on observed and

measured phenomena from which knowledge is derived and documented about industrial perception

of legacy software systems and their modernization. Because of its empirical nature, Part II of this

23

dissertation is not a natural continuation of Part I. The structured method legacy modernization method

developed in Part I of this research is not used in the chapters of Part II rather the research questions of

Part II are based on observations to gain new perspectives of industry around legacy software systems

and software modernization. Part II consists of three chapters.

Chapter 5: In this chapter, we present the findings of a case study of a large scale legacy to SOA

modernization process in the payments domain of a Dutch bank. In particular, we discuss the

challenges faced and lesson learned during the modernization process. This chapter addresses

research question RQ 2.1.

R. Khadka, A. Saeidi, S. Jansen, J. Hage, and G. Haas. Migrating a large scale legacy appli-

cation to SOA: Challenges and lessons learned. In the 20th Working Conference on Reverse

Engineering (WCRE 2013), pages 425–432. IEEE, 2013.

Contributions: R.K. designed and conducted the research and wrote the manuscript. A.S.,

S.J., J.H., and G.H. participated in discussion and edited the manuscript.

Chapter 6: In this chapter, we describe the outcome of an exploratory study in which 26 industrial

practitioners were interviewed on what makes a software system a legacy system, what the main

drivers are that led to the modernization of such systems, and what challenges are faced during the

modernization process. The findings of the exploratory study is further validated with a survey.

This chapter addresses research question RQ 2.2.

R. Khadka, B. V. Batlajery, A. Saeidi, S. Jansen, and J. Hage. How do professionals perceive

legacy systems and software modernization? In the 36th International Conference on Software

Engineering (ICSE 2014), pages 36–47. ACM, 2014.

Contributions: R.K. designed the research and wrote the manuscript. R.K. and B.V.B. con-

ducted the research. B.V.B. collected the data and R.K. interpreted the data. A.S., S.J., and

J.H. participated in discussion and edited the manuscript.

Chapter 7: In this chapter, we report on five software modernization case studies to document the

pre-modernization business goals, and to decide whether those goals have been achieved after

modernization. Software modernization is claimed to be successful when the modernization is

completed using those technical solutions. We use an explanatory case study approach to document

the pre-modernization business goals, and to decide whether those goals have been achieved. This

chapter addresses research question RQ 2.3.

R. Khadka, P. Shrestha, B. Klein, A. Saeidi, S. Jansen, J. Hage, E. van Dis, and M. Bruntink.

Does software modernization deliver what it aimed for? A post modernization analysis of

five software modernization case studies. In the 31st International Conference on Software

Maintenance and Evolution (ICSME 2015), pages 477–486. IEEE, 2015.

Contributions: R.K. designed the research and wrote the manuscript. R.K., P.S., and B.K.

24

conducted the research. P.S. and B.K. collected the data and R.K. interpreted the data. A.S.,

S.J., J.H., E. van D., and M.B. participated in discussion and edited the manuscript.

Chapter 8: In this chapter, we provide an overview of the answers to all research questions, discuss

the contributions and implications of this thesis. Finally, we identify potential future research

directions.

25

26

Part I

Developing a Legacy System

Modernization Process

27

Chapter 2

A Method Engineering based Legacy to SOA Migra-

tion Process

Abstract

Legacy systems are vitally important for the continuation of business in an enterprise as they support

complex core business processes. However, legacy systems have several well-known disadvantages such

as being inflexible and hard to maintain, so momentum is growing to evolve those systems into new

technology environments. Recently, service-oriented architecture has emerged as a promising architec-

tural style that enables existing legacy systems to expose their functionality as services, without making

significant changes to the legacy systems themselves. A significant number of the legacy to service mi-

gration approaches addresses the technical perspective (i.e., supporting technology) to expose the legacy

code as services. The other approaches focus on determining the feasibility of the migration that includes

economical and technical feasibility, based on the characteristics of the existing legacy system and the

requirements of the target SOA system. In this chapter, a legacy to SOA migration method that does

not single out the migration feasibility and technical perspectives, but combines these two perspectives of

migration, is proposed. Method engineering is used to develop the migration method by reusing method

fragments from existing service-oriented development methods. Then, concept slicing is used to develop

the service by extracting the relevant parts of the legacy code. The method is evaluated and enhanced

by interviewing experts and further validated with two case studies. The method is found to be appro-

priate and effective in extracting services from legacy code with the aim of reusing these services in new

configurations.

29

2.1 Introduction

A large number of enterprises depend on business-critical systems for consolidating business information

that have been developed over the last three decades or more using 3GL programming languages such

as COBOL, RPG, C, C++ [22]. These systems are called legacy systems. It is estimated that more

than 80% of the world’s business runs on COBOL, and 50-70% of the total IT costs are devoted in the

maintenance of these systems [162]. Legacy systems are now a roadblock for the evolution of the IT

infrastructures in an enterprise due to their well-known disadvantages such as being inflexible and hard

to maintain [32].

However, enterprises still rely on these legacy systems as they usually implement complex core

business processes, and the high risk associated with necessary changes [137]. Since legacy systems are

vitally important for the continuation of business in the enterprises, momentum is growing to evolve

those systems into new technology environments [32]. Recently, Service-Oriented Architecture (SOA)

has emerged as a promising architectural style that enables existing legacy systems to expose their

functionality as services, without making significant changes to the legacy systems themselves [170]. The

migration from legacy systems to SOA can be beneficial from an economical and technical perspective.

From the economical perspective, enterprises are constantly challenged by an accelerating pace of changes,

such as intra-organizational changes, changes in market demands and opportunities, and, consequently,

changes in enterprise collaboration. The migration of legacy to SOA enables legacy systems to adapt to

such changes [151] and aims at reducing the maintenance costs [207]. From the technical perspective,

seamless enterprise collaboration through service composition and heterogeneous application integration

within/outside the enterprises [148] are claimed.

Several approaches have been reported in literature to migrate legacy systems to SOA and web

service technology. A significant number of such approaches focus on the development of the supporting

technology to address the technical migration perspective (i.e., implementation techniques to expose the

legacy code as service) [162, 300, 257, 176, 182, 63, 8, 165, 72]. Other approaches focus on developing

a migration strategy to determine the migration feasibility. Such feasibility is determined based on

the characteristics of the existing legacy systems for their potential to be exposed as services and the

requirements of the target SOA system [170, 53, 273, 227]. However, a legacy migration method requires

the consolidation of both the aforementioned perspectives (i.e., migration feasibility and supporting

technology) [75], which, as per our knowledge, is still missing.

In this chapter, a legacy to SOA migration method, hereafter called ServiciFi method, is developed

that combines the migration feasibility and development of supporting technology of the legacy to SOA

migration. The serviciFi method is developed by assembling the fragments of existing service-oriented

development methods using method engineering [39]. For the development of the supporting technology,

concept slicing [108] is used to facilitate the extraction of the services from the legacy code.

The rest of the chapter proceeds as following: Section 2.2 introduces the research design that has

been followed to develop the serviciFi method. Section 2.3 explains the serviciFi method followed by the

evaluation using experts review and two case studies in Section 2.4. Finally, Section 2.5 concludes the

chapter with an outlook to future research directions.

30

2.2 Background

The serviciFi method is designed following the design science in information systems research, suggested

by Henver et al. [121]. The serviciFi method is first designed and evaluated with experts review followed

by two case studies. Method engineering is used to design the serviciFi method by assembling the

activities of existing service-oriented development methods. In the following subsections, the method

engineering approach and it’s related concepts used while designing the servicFi method are detailed.

Further, concept slicing is also explained as a supporting technology for the migration.

Method engineering for information system development is an approach to construct advanced

development methods by reusing parts of existing methods [39]. In the work of Brinkkemper [39], a

“method” is defined as an approach to perform a system development method consisting of directions

and rules, structured in a systematic way in the development activities with corresponding products.

The development activities and corresponding products are called “method fragments”. The method

engineering approach is used to develop the serviciFi method due to the fact that reusing the existing and

proven method fragments from existing service-oriented development methods saves time and reduces the

adoption problem (i.e., easy to adapt to the existing standards/methods). A specific strategy of method

engineering is assembly-based situational method engineering [40] [274], which includes a step to create a

method base in case, if it does not exist. A method base is a repository where the method fragments can

be stored and retrieved [39]. To create the serviciFi method, there is no existing method base from which

the method fragments can be reused. So, the assembly-based situational method engineering is used to

create the method base for the serviciFi method. The assembly-based situational method engineering

has the following steps that are followed to create the serviciFi method.

2.2.1 Analyze Situation and Identify Needs

The need for the serviciFi method has been described in Section 2.1. The serviciFi method should

combine the migration feasibility and development of supporting technology to extract legacy code and

expose them as services. Also, the extracted services should adhere to the current standards of SOA to

facilitate the heterogenous application integration across/within the enterprises.

2.2.2 Select Candidate Methods

In this step, the service-oriented development methods containing relevant method fragments are selected.

Based on higher number of citations (popularity), availability of documentation and completeness of the

method, the following service-oriented development methods are selected: Service-Oriented Design and

Development Methodology (SODDM) [208], Web Service Implementation Methodology (WSIM) [166],

and Service-Oriented Modeling and Architecture (SOMA) [12]. Hereafter, these methods are called

“candidate methods”.

2.2.3 Analyze Candidate Methods and Store Relevant Method Fragments in Method Base

In this step, the method base is filled with the relevant method fragments derived from the three candidate

methods. For each candidate method, a Process Deliverable Diagram (PDD) is created, by applying

the metamodeling technique as described by Weerd et al. [274]. The PDD of the candidate methods

31

depicts every activity and deliverable of each phase. The details of the metamodelling technique to

develope a PDD is describe in Reijnders et al. [228]. To give an impression of how a PDD is represented,

the PDD of the serviciFi method (cf Figure 2.4) is presented as an example. A PDD consists of two

integrated diagrams: the process view on the left-hand side of the diagram is based on a UML activity

diagram, and the deliverable view on the right-hand side of the diagram is based on a UML class

diagram. The process/deliverable view diagram constitutes different types of activities/concepts. These

activities/concepts are depicted in Figure 2.1 and explained as follows:

� Standard activity/concept: A standard activity/concept contains no further activities/concepts.

� Open activity/concept: An open activity/concept contains further activities/concepts.

� Closed activity/concept: An activity/concept whose activites/concepts are not elaborated since it

is not known or not relevant in the specific context.

Open activity

Closed activity

Standard activity STANDARD CONCEPT

CLOSED CONCEPT

OPEN CONCEPT

Figure 2.1: Activity and Concept types [274]

The PDD of the candidate methods depict every activity and deliverable of each phase, which are

stored in method base as method fragments.

2.2.4 Select Useful Method Fragments and Assemble a New Method

In this step, useful method fragments from the method base are selected and assembled to form the

serviciFi method. This step is divided into three sub-activities.

First, the general phases of the serviciFi method need to be identified, which is done by comparing

and analyzing the phases of the three candidate methods. The phase comparison is depicted in Table 2.1.

As a result of this comparison, five phases of the serviciFi method are identified, resembling the phases

Table 2.1: Phase Comparison

WSIM SODDM SOMA

1 Requirements Planning
Business Modeling & Transformation

Solution Management

2 Analysis
Analysis & Design

Identification

3 Design Specifications

4
Coding

Construction & Testing
Realization

Testing Implementation

5 Deployment

Provisioning
Deployment, Monitoring &
Management

Deployment

Execution & Monitoring

of the three candidate methods. To make these phases reflect their intent, they are renamed as follows:

32

� Project initiation

� Candidate service identification

� Service specification

� Service construction and testing

� Deployment, monitoring and management

Second, a method comparison among the method fragments, stored in the method base, is done using

the method comparison matrix [275] to create a so-called “super-method”. The super-method contains

the activities that are considered reusable for the serviciFi method. Creating the super-method involves

the step-by-step comparison of all the activities and deliverables among the three candidate methods of

the method base. Each activity, in the same phase, was evaluated based on their description to find if

the activity was:

� Out of scope such that the activity is discarded.

� Equal to another activity such that only one of the activities is included in the super-method.

� Fully contained within another activity such that scoping decision is made.

� Not relevant in the current phase such that the activity is discarded.

Table 2.2: Excerpt of the project initiation phase of the method comparison matrix

WSIM SODDM SOMA

Determining the need of web service Analyzing the business needs -

- Review current technological
landscape

-

Elicit web service requirement Conceptualize
the new
requirements

-Manage Web service requirements

Model usage scenario

- Manage project deliverables and re-
sources

Initiate project management

*Prepare test cases for user acceptance
test and system test*

- -

- - Define business architecture and
models

- - Select solution templates and pat-
terns

- - Conduct method adoption work-
shop

Table 2.2 depicts an excerpt of the method comparison matrix of the project initiation phase. The

activities within bold are the assembled method fragments to form the super-method. The activities

within italics are out of scope. The activities within * * are not relevant in the current phase. The

activities that are similar or if combined are similar to higher-grained activities, are presented in same

row of the method comparison matrix. The corresponding excerpt of the super-method representing the

excerpt of the method comparison matrix (Table 2.2) is depicted in Figure 2.2. Among “Analyzing the

business need” of SODDM and “Determine the need for web service” of WSIM, which are functionally

similar activities, the earlier one is chosen as the naming is more meaningful. The “Conceptualize the new

requirements” activity of SODDM is chosen since it represents the higher-grained activity as compared

to the three similar activities of WSIM (i.e., “Elicit Web service requirements”, “Manage web service

requirements”, “Model usage scenario”). Finally, the “Initiate project management” activity of SOMA is

chosen as compared to “Manage project deliverables and resources” activity of SODDM as naming of the

33

activity is more meaningful. By comparing the activities and the deliverables of each phases, the super-

method of the serviciFi method is created. Third, the super-method by now consists of method fragments

Project initiation phase

Analyze the business needs

Review technological landscape

Conceptualize the new requirements

Initiate project management

Figure 2.2: Excerpt of the project initiation phase of the super-method

assembled from the three candidate methods. But, to adapt the super-method for migration, several

other activities and deliverables such as cost-benefit analysis [246], identifying third party services that

have similar functionality to the to-be-extracted services, priority techniques to determine the priority

of extraction of identified services are added. Also, the assembled method fragments are renamed to

adapt with the migration context. For instance, the “Analyze the business needs” of the super-method

(see Figure 2.2) is renamed to “Define project goals”, “Review technological landscapes” to “Analyze

technological landscape”, and so on. Based on these modifications in the super-method, the serviciFi

method is finalized and is explained in Section 2.3.

Figure 2.2 and Table 2.2 are only excerpts of the super-method and the method comparison matrix,

respectively. The details of the super-method and the method comparison matrix are not included in

this chapter due to the reasons of brevity. Their details have been reported in the work of Reijnders et

al. [228].

The serviciFi method aims at reusing the existing legacy code to extract services. The “Service

construction and testing” phase of the serviciFi method is distinct with the corresponding “Implementa-

tion” phase of the three candidate methods. The “Service construction and testing” phase should include

activities to facilitate the legacy source code extraction, whereas, the corresponding “Implementation”

phase of the three candidate methods aims at creating new services from scratch. Concept slicing is used

as an implementation technique (i.e., supporting technology) to extract the legacy codes and expose

them as services in the “Service construction and testing” phase.

Concept slicing [108] combines two techniques from software (re)engineering and maintenance

domain: program slicing and concept assignment to generate an “Executable Concept Slice” (ECS). Pro-

gram slicing [290] is a well known code analysis technique that is used to identify and abstract the smallest

possible subset of a program that can perform an expected functionality. Concept assignment [30] is a

technique that assigns individual human-oriented concepts to portions of source code. Both techniques

have been used as source code extraction techniques that take a criterion and program source code as

input and yield parts of the program as output. However, the extraction criterion of program slicing is

expressed at a very low level to construct a slicing criterion such as using program variables, which makes

34

slicing difficult to apply. In concept assignment, the extraction criterion is expressed at the domain level,

making it more practical to apply, but unlike program slicing, the extracted code is not executable as

a separate (sub)program. To achieve the combined advantages, while overcoming the individual weak-

nesses, Gold et al. [108] combined these two techniques as concept slicing and successfully extracted

executable source code from legacy code.

2.3 The ServiciFi Method

The serviciFi method is depicted in Figure 2.4 as a PDD. In the following subsections, each phase and

its constituent activities are detailed.

2.3.1 Project Initiation

The “Project initiation” phase performs the assessment of the viability of the legacy to SOA migration by

analyzing the technical and economical feasibility. The phase starts with the “Define project goals” ac-

tivity that identifies what functionalities of the legacy system need to be exposed as services. The second

activity, “Analyze technological landscape”, analyzes the technical aspects of the existing legacy systems

such as the programming language used to build the legacy system, availability of the documentation or

resources and also the requirements of the target SOA system. In the “Analyze technological landscape”

activity, the “portfolio analysis” [246] of the identified functionalities that are to be exposed as services,

is performed. The portfolio analysis assesses both the technical information and business values of the

identified functionalities. The technical information includes the overall system functioning of the legacy

system and the functionalities present in the legacy system from which the identified functionalities are

to be migrated. The business value of the identified functionalities includes the preliminary benefits that

is achievable by exposing the identified functionalities as services. The “Portfolio analysis” gives the high

level overview of the legacy system, its functionalities and the economic benefits. The portfolio analysis

is performed by interviewing the developers, if there are any, and/or consulting the available documen-

tation, and/or the current users of the legacy systems. The business value indicates the viable business

investment and the preliminary return of investment, which is calculated in terms of maintenance cost

(if possible). The business value of the migration is analyzed by interviewing the business managers and

by investigating the market needs. The project goals and analysis of technological landscape provide

new requirements for the project, which are documented as requirements in “Elicit new requirements”

activity. Finally, the “Project management plan” is stated. The outcomes of the project initiation phase

are project management plan and the (dis)approval of the migration project.

2.3.2 Candidate Service Identification

This phase focuses on identifying candidate services to satisfy the requirements detailed in the “project

initiation” phase. The first activity, “Analyze as-is situation”, is an open-activity consisting of three

sub-activities as shown in Figure 2.3.

The “Analyze development history” sub-activity investigates the artifacts of the legacy system, such

as requirements documents, UML diagrams, data diagrams, source code, class diagrams, system depen-

dence graphs and even comments in the code in detail as compared to the “Analyze technical landscape”

activity of the “Project initiation” phase. All this information provides better understanding about the

35

Analyze as-is situation

Analyze development history

Cost-benefit analysis

Identify existing third party services

DEVELOPMENT

HISTORY

COST BENEFIT

ANALYSIS REPORT

EXISTING THIRD

PARTY SERVICES

CURRENT SITUATION

DOCUMENTATION

Figure 2.3: Analyze as-is situation

development history as well as functionalities contained within the legacy system. The “Cost-benefit

analysis”, as suggested by Sneed [246], is performed to estimate the cost of the migration. The cost-

benefit analysis is carried out to compare the migration costs with expected benefits. Typically, in

this step a comparison between the benefits of migration, redeveloping and doing nothing is performed.

The “Cost-benefit analysis” sub-activity determines if the migration project is economically viable. The

“Identify existing third party services” activity investigates if the services that the migration method

aims to extract is already available in the market. Availability of such existing services can either pro-

vide opportunities to create composite functionalities or already decide to reuse those existing services

rather than extracting from the legacy system, if possible. For instance, if one of the functionalities to

be extracted as a service is the “Validation of credit card” functionality, then reusing the available free

web services such as ValidateCreditNumber15 can be economical.

Once the “Analyze as-is situation” is documented, the next activity is the “Identify candidate ser-

vices”. As for now, this activity is carried out manually based on the functionalities identified in the

legacy code against the requirements identified in the “project initiation” phase. It is possible that there

could be mismatches between the identified functionalities in the legacy code and the requirements of the

services to be exposed. Such mismatches are documented in the “Goal comparison” activity, which can

be used to determine if the identified candidate service can satisfy the business requirements. Depending

on the goal comparison, the project might be canceled if the identified candidate services do not fulfil the

requirements. For each of the identified candidate services, the granularity has to be determined, which

is performed in the “Determine service granularity” activity. The service granularity determines if the

identified candidate services need to be extracted as an atomic service or as a composite service, repre-

senting the composition of the atomic services. Both the granularities have their own advantages such

as extracting the atomic services allows composing the new functionalities in future and hence, increases

reusability of the extracted services. Whereas, extracting the composite services allows maintaining few

services after deploying in service infrastructure and hence, reduces the maintenance cost. The final

activity is “Set priority of services” in which the identified candidate services are prioritized based on

the requirements and business needs. Priority technique MoSCoW [194] is used to determine and create

the priority list of the identified candidate services. Based on the priority list the development iterations

are planned. The first iteration is started with the highest priority functionality. After every iteration,

the priority list is re-evaluated. The iteration fosters the incremental development of the migration.

15http://www.webservicex.net/ws/WSDetails.aspx?WSID=14&CATID=2, Last accessed on: 30 March 2011

36

Candidate service identification

Project initiation phase

Service specification

Deployment, monitoring and management

PROJECT GOAL

Service construction and Testing

Elicit new requirements

Write project management plan

Determine service granularity

Map existing third party services

TECHNOLOGICAL

LANDSCAPE

SERVICE CASE

Structural

Behavioural

policy

CANDIDATE

SERVICES LIST

CONCEPT SLICEConcept slicing

MAPPING REPORT

Programming

Perform Tests

TEST RESULT

SERVICE

Has

SERVICE

INFRASTRUCTURE

Goal comparison

[sufficient goals met]

[else]

[else]

Analyze as-is situation

[Passed tests]

[else]

Deploy services

Manage and monitor services

Create user support material

Develop provisioning strategy

Set priority of services

Analyze technological landscape

Define project goals

REQUIREMENT

PROJECT PLAN

PROVISIONING

STRATEGY

Used in

DEPLOYMENT TEST

RESULTS

DOCUMENTATION

DEPLOYMENT

REPORT

[else]

Test deployment

Passed test

GOAL

COMPARISION

Specify services

Identify candidate services

[project accepted]

[iteration]

Realized with

MONITORING PLAN

CURRENT SITUATION

DOCUMENTATION

Priority list

Composed of

Figure 2.4: PDD of the serviciFi method

2.3.3 Service Specification

The “Service specification” phase further details the identified candidate services for the current iteration

as well as redesigning any existing third party services, if any third party services are identified from the

37

“Identify existing third party services” sub-activity of the “Analyze as-is situation” activity. Such third

party services involved in the current iteration need to be mapped against the existing data types and

variable names of the legacy code. This activity provides an overview of the input and output messages

required by these candidate services. Once the mapping between the existing services and candidate

services is done, the candidate services are detailed on a technical level. Based on the work of John-

ston [135], the following three steps are performed to complete the service specification in the technical

level: (i) Structural specification that determines the necessary operations that represent the functional-

ity of the candidate services and messages that are communicated via the operations by observing the

legacy code, (ii) Behavioral specification that defines service interfaces that a client will use along with

the necessary input, output messages and operations, and (iii) Policy specification that denotes policy

assertions and constraints for each specific service.

2.3.4 Service Construction and Testing

The “Service construction and testing” phase is concerned with the extraction of the source code from

the legacy system. The “Concept slicing” technique is used to extract the legacy code as an executable

concept slice (ECS). This technique is successfully used by Harman et al. [114] to extract the executable

(sub)programs from the COBOL-based financial application and by Gold et al. [108] from C-based

accounting software. The concept slicing activity is followed by “Programming” activity to facilitate

the execution of the ECS, if required. For instance, the ECS might need to be deployed in different

environments so the ECS might need to be refactored and/or the system calls present in the ECS might

need to be replaced or re-programmed. Such modifications are done in the “Programming” activity.

Finally, each ECS is tested to determine if it is functioning in accordance with the legacy code. In

“Perform tests” activity, the following tests are performed: unit tests, functional tests, and system tests

depending on how the ECS is developed. In case of automatic extraction of an ECS using concept slicing

tools, only functional tests are carried out. In case, if the ECS is developed using manual extraction,

then all the specified tests need to be executed. When the ECS passes these tests, it is safe to assume

the extracted code does in fact satisfy the required functionality and is ready to be deployed as a service

in a service infrastructure. At the same time, the iteration for the next candidate service in the priority

list is initiated.

2.3.5 Deployment, Monitoring and Management

The “Deployment, monitoring and management” phase concerns the deployment of the ECS as a service.

The initial activity “Develop provisioning strategy” facilitates the usage of the services from both technical

and business aspects by a consumer [216]. Service provisioning typically includes activities such as

publishing services into a catalog, versioning of services, and metering & billing of the usage of the

services [146]. The services are then deployed in the service infrastructures and tested. Based on the

outcome of the “Test deployment” activity, either the extraction of the service has to be performed

again if the specified functionality is not met or the service is ready for usage. Subsequently, the user

support materials such as documentation are created. Furthermore, to ensure the proper functioning

of the deployed services, the support for management and monitoring is provided in the “Manage and

monitor services” activity.

38

2.4 Evaluation

In order to evaluate the serviciFi method, initially eight semi-structured interviews have been conducted

with experts. Later, the serviciFi method was applied to two case studies to evaluate it in practice. In

the following subsections, each evaluation method is detailed.

2.4.1 Experts Review

The method is evaluated with several experts from industry and academia by conducting semi-structured

interviews. This method was chosen because it includes a mixture of open-ended and specific questions,

designed to elicit not only the information foreseen, but also unexpected types of information [242].

Table 2.3 depicts the details of the experts. The names are kept anonymous and the experience (in

years) in the related field was explicitly asked before the interview was conducted. The variation in the

expertise of the experts enabled the assessment of the serviciFi method from different perspectives of

software practitioners. Prior to the interview, the experts were provided the PDD of the serviciFi method

Table 2.3: Details of the experts

Name Expertise Experience Sector

A Software product manager 5 Industry

B Application manager 5 Industry

C Software engineering researcher 5 Academia

D Migration from legacy to SOA/cloud 5 Industry

E Migration from legacy to SOA 3 Industry

F Software migration 3 Industry

G SOA researcher 7 Academia

H Requirement engineering researcher 6 Academia

and the corresponding documentation. The method was first explained to each expert before conducting

the actual interview. Later, the experts were asked to give feedback or remarks on the method. The

interviews were conducted in English and each of them took between 80 to 120 minutes. Every interview

was recorded and then transcribed. The interviews were conducted to evaluate the proposed method on

the basis of five quality measures, suggested by Brinkkemper et al. [40] while designing methods using

method engineering. The five quality measures are described as following:

� Completeness: The serviciFi method is the assembly of the method fragments of existing service-

oriented development methods, so the experts were asked if the serviciFi method captures the

complete activities/phases of a migration scenario.

� Applicability: The experts were asked if any activities/phases in the serviciFi method were in

contradiction with each other in a way that hinders the applicability in any migration project.

� Efficiency: The experts were asked if the serviciFi method is efficient and does not contain any

repetition of the phases/activities that would increase cost and effort.

� Consistency: The experts were asked if the phases/activities were consistent (i.e., semantically

correct and meaningful) with each other.

� Reliability: The experts were asked if the serviciFi method is reliable to apply in any real world

legacy to SOA migration project.

39

2.4.2 Discussion of the Experts Review

After all experts were interviewed, Constant Comparative Analysis (CCA) [263, 36] was used to analyze

the results. The CCA method is used to create knowledge from the data source by avoiding subjective

interpretation [269] (i.e., interpretation of the data in accordance with the research objectives). The

outcome of the analysis was categorized into two: (i) minor change requests that included changes

such as renaming the activity names, renaming the deliverables, and (ii) major change requests that

included changes such as adding/deleting activities, adding iterations among the phases, adding/deleting

branchings. The PDD depicted in Figure 2.4 already includes the adjustments made after CCA.

In response to the completeness and consistency quality measures, 75% (6 out of 8 experts) agreed

that the phases of the serviciFi method are complete and consistent. However, the addition of “Cost-

benefit analysis” sub-activity in “As-is situation” activity of “Candidate service identification” phase

was emphasized. Also, the analysis resulted in the emphasis on using the iterative development method.

One of the experts described the need for the iterative development method as “the migration process is

time consuming so there needs to be iterative development cycles to include the changes occurred within

the project life time.”

In response to the applicability quality measure, the analysis indicated that almost all experts agree

on the applicability of the method as the serviciFi method contains all the typical phases and activities

required for a migration project.

In response to the efficiency and reliability quality measures, half of the experts (4 out of 8 experts)

were not confident about the efficiency and reliability of the method. The analysis showed that efficiency

and reliability might be influenced by the tools and techniques used in the method along with the various

factors of the legacy systems such as availability of the documentation, support from the current users to

understand the system, quality of the source code, redundancies in the source code, and understandability

and maintainability of the code. One of the experts explained this situation as “determining the efficiency

is contextual because the candidate service identification phase and service construction phase highly

depend on the status of the legacy system such as how well the legacy code is written and maintained so

far.”

The analysis also emphasized the need of migration for the current users. The migration of such users

is indeed an important aspect, which should not be underestimated [183, 200]. It is recommended to

carry our proper user migration planning by conducting training programs [231], however, user migration

is out of scope of this research.

Overall the analysis of the expert reviews revealed that most of the experts agreed on completeness,

consistency, and applicability quality measures but were not confident on the efficiency and reliability.

In order to evaluate the efficiency and reliability quality measures, two case studies were conducted in

which the serviciFi method was used to extract services from legacy system. The details of those case

studies are described in 2.4.3 and 2.4.4.

2.4.3 COBOL Case Study

The initial case study was conducted in a Dutch product company that uses a COBOL-based legacy

system for wage and personnel administration. For the reason of confidentiality, information such as

40

company name, product name, and available functionalities of the legacy systems are kept anonymous.

The company wanted to reuse one of the functionalities present in the legacy system as a web service.

For the migration of the functionality, the serviciFi method was used. The project goal was to extract

the specific functionality and expose it as a web service. The portfolio analysis of the “Analyze techno-

logical landscape” revealed that the system was developed about 10 years ago in COBOL. Various other

functionalities of the whole legacy system were also dependent on this particular functionality. The aim

of this migration was to attract more customers to use their software as a service. Also, the company

aimed at reducing the maintenance cost by exposing the functionality as a service. The “Elicit new re-

quirements” activity of the “Project initiation” phase emphasized the use of web service standards to be

followed while migrating. The project plan was documented and the “Candidate service identification”

phase was started. In the “Candidate service identification” phase, the “As-is situation” sub-activity

indicated that the legacy code consists of 1588 lines of code with a lot of exceptions. The availability

of the original programmer of the source code helped us to understand the specific functionality. The

“Cost-benefit analysis” was done by the company which showed that the migration is economically viable

and profitable. The “Identifying existing third party services” was not relevant in this case because the

company wanted to have it’s own service and also the “Goal comparison” activity was not relevant. The

service was to be extracted as an atomic service such that it can be reused in future for any other service

composition. Due to the extraction of a single service, no priority list was created. In the “Service spec-

ification” phase, the initial activity “Map existing third party services” was not relevant for the current

functionality. The structure, behavior and policy of the service were specified by consulting the original

programmer and the product manager of the system.

“Concept slicing” was performed manually due to the unavailability of a slicing tool for COBOL

programs. Using the concept assignment, 14 out of 132 variables were identified that were related to

the concept (i.e., the functionality to be extracted). Based on those 14 variables, program slicing was

applied using which we extracted 426 lines of code from the 1588 lines of code. The extracted code was

successfully compiled and in total 240 test cases were run to validate the functionality of the extracted

code. All the results of the test cases were compared with the results of the test cases that were run on

the original code and a 100% successful result was obtained.

2.4.4 C++ Case Study

In a second case study, a C++ program called SrnaCalc16 has been used to demonstrate and evaluate the

proposed approach. It is an open-source calculator issued under the GNU General Public License ver.3.0

(GPLv3). SrnaCalc is a simple command-line calculator with essential mathematical functions, memory

and scripting capability. The “Analyze technological landscape” activity indicated that the following

functionalities were present: operators to display the operators used, eval to evaluate the expression,

getPrecision and setPrecision to manage precision, memory to list the contents of memory, add,set,

isset, get, remove and read to add, change, find, append, remove, and read a variable of the memory,

respectively.

The goal was to extract the eval functionality, which calculates expressions, and to expose it as

a service. The “Elicit new requirement” and the “Write project management plan” activities were not

relevant in this case study. The “Analysis as-is situation” activity resulted in program metrics as depicted

16http://sourceforge.net/projects/srnacalc/

41

in Table 2.4 and program dependency graph as depicted in Figure 4.5. The program dependency graph

was generated using the Understand tool [240] and was manually edited to enrich it visually by filling

with colors and differentiating the edges. The SC\eval.cpp, represented with the dark background, is

the main code which implements the eval functionality. The dotted edges represent the non-relevant

dependencies of the main code with other program files after the concept slicing. The comments in the

program were written in Czech so Google translator was used to translate the comments for a better

understanding of the program.

Table 2.4: Program metrics

Attributes Count

#Classes 12

#Class & header Files 21

#Methods 84

#Library Units 114

#Lines of Code 2196

#Blank Lines 236

#Comment Lines 223

#Ratio Comment/Code 0.13

The “Goal comparison”, “Determine service granularity”, “Set priority of services”, and “Map ex-

isting third party” activities were not relevant in this case study. By manually investigating the code,

the service specifications were documented by identifying the function that evaluates the expression and

the required parameters.

To facilitate the “Service construction and testing” phase, CodeSurfer [110], a C/C++ slicing tool,

has been used to extract the legacy code. The extracted code has been initially tested in Visual Studio

2010 Ultimate edition and the shared library file, evaluate.dll, is created. To deploy the service and

make it available to clients, a service descriptor file, service.xml, is created. Listing 2.1 depicts the

evaluate interface of the evaluate web service. Finally, the service.xml and the evaluate.dll are deployed

in the WSO2/C++ web service framework [294]. The service is successfully tested by developing a client

application.

42

SC\main.cpp

SC\commandcall.cpp

SC\implement.cpp

SC\commandset.cpp

SC\commandset.h

SC\eval.cpp

SC\command.cpp SC\command.h

SC\implement.h

SC\chain.cpp

SC\parser.cpp

SC\commandcall.h

SC\registry.h

SC\element.h

SC\eval.h

SC\registry.cpp

SC\parser.h

SC\memory.cpp

SC\memory.h

SC\container.h

SC\chain.h

SC\eval.cpp

Program files

Extracted function

SC\eval.h

Dependency

Dependency not

relevant after extraction

Figure 2.5: Dependency Graph

Listing 2.1: Service description file (service.xml)� �
<service name=”evaluate”>

<parameter name=”ServiceClass”

locked=”xsd:false”>evaluate</parameter>

<description>

The Calculator evaluation function presented as Evaluate service

</description>

<operation name=”evaluate”>

<messageReceiver class=”wsf cpp msg recv”/>

</operation>

</service>� �
2.4.5 Discussion of the Case Studies

The serviciFi method has been successfully assessed and proven to be feasible and practical in the two

case studies. Moreover, the result of these case studies also complemented some of the quality measures

and the findings of the expert reviews. The successful extraction of services in both the case studies

supported the applicability, efficiency and reliability of the serviciFi method. However, the completeness

and consistency quality measures are yet to be determined as some of the activities in different phases

of the serviciFi method were skipped. Also, the extraction of services as an iterative process was not

applicable as both the case studies involved only a single service extraction. However, the experience

43

of service extraction in the case studies complemented the experts review regarding the efficiency and

reliability quality measures. As per the analysis of expert reviews, the efficiency and reliability of the

method are influenced by the availability of tools and techniques along with the characteristics of the

legacy system, which was reflected while conducting the case studies. Considerable time has been invested

to conduct the manual slicing in the COBOL case study while it was easy in the C++ case study due to

the availability of slicing tool. Also, the availability of the original programmer and his support enhanced

the service extraction process in COBOL case study.

2.4.6 Threats to Validity

The followings are the main threats to the validity of the results of a case study [297]: (i) reliability

validity, (ii) internal validity, and (iii) external validity. The reliability validity concerns with the repeata-

bility (i.e., if the same case study is performed by another researcher later following the same procedures

as conducted by the earlier researcher, the result of the latter should also arrive at same findings and

conclusions). With respect to reliability, the repetition of the COBOL-based industrial case study was

not possible. But, the procedures followed in the initial case study are well documented and the same

procedures were followed in the C++ case study, which was conducted by a different researcher. The

potential threat to the internal validity was the direct involvement of the authors in both case studies,

which can introduce bias in the result. To minimize the threat to internal validity, the two case studies

were conducted by two different researchers and the result was analyzed by a third researcher. With

respect to the external validity, more case studies will have to be performed to extend the results of the

current case studies. The different execution context of the two case studies (i.e., one being industrial

and the other being experimental) has supplemented the generalizability (i.e., external validity).

2.5 Conclusion

In this chapter, the serviciFi method for legacy to SOA migration has been presented that was developed

using method engineering and concept slicing. Unlike other approaches reported in the literature, the

serviciFi method successfully combined the migration feasibility with supporting technology to expose

the legacy code as services. The serviciFi method has been evaluated, enhanced with expert reviews

and has been proven to be feasible to migrate legacy systems to SOA with two case studies. The core

of the method is method engineering that reuses the method fragments from existing service-oriented

development methods and enhanced by the concept slicing method to develop services by extracting the

legacy code.

As a part of future work, the serviciFi method needs to be evaluated with realistic industrial case

studies. Also, the serviciFi method can be improved in several ways. The first one concerns the possibility

of identifying the service-rich areas in legacy code and automating the identification of the candidate

services. Currently, the candidate service identification activity is carried out manually, which can

be time consuming and difficult in realistic legacy to SOA migration projects. Pattern identification

techniques such as architectural and structural patterns [115], process mining techniques [137], and

feature location techniques [101] are possible directions for future work to automate the candidate service

identification phase. The next possible direction of the future work concerns the enhancement of service

construction phase of the serviciFi method by implementing service extraction activities using code query

technologies [270, 87]. Code query technologies support the so-called extract-abstract-present paradigm.

44

Extraction maps source code to relations, the query language then provides the means to query these

relations, in order to build new relations and, finally, the results can be presented.

45

46

Chapter 3

Legacy to SOA Evolution: A Systematic Literature

Review

Abstract

Enterprises depend on business-critical systems that have been developed over the last three decades

or more, also known as legacy systems. They have several well-known disadvantages (e.g., inflexible,

domain unspecific, and hard to maintain), and this is recognized by both vendors and customers of

these software systems. Both vendors and customers of these systems are well aware that better and

more flexible customer specific solutions can be created following the service-oriented paradigm. Hence,

momentum is growing within enterprises to evolve legacy systems towards Service-Oriented Architecture

(SOA). The evolution to SOA is favored because of various advantages including well established sets

of open standards, platform and language independent interfaces, clear separation of service interface

and implementation, and loose-coupling among services. In the last decade, there have been significant

developments in legacy to SOA evolution, and that has resulted in a large research body of which there

exists no comprehensive overview. This chapter provides a historic overview, focusing on the methods

and techniques used in legacy to SOA evolution. The authors conducted a systematic literature review

to collect legacy to SOA evolution approaches reported from 2000 to August 2011. To this end, 121

primary studies were found and evaluated using an evaluation framework, which was developed from

three evolution and modernization methods widely used in the software re-engineering domain. The

evaluation constitutes the inventory of current research approaches and methods and techniques used in

legacy to SOA evolution. The result of the SLR also identifies current research issues in legacy to SOA

evolution and provides future research directions to address those research issues.

47

3.1 Introduction

Recently, many enterprises have focused on increasing their business flexibility and achieving cross-

enterprise collaboration to remain competitive in the market, and to meet their business objectives.

Enterprises are especially challenged by constant changes in the business environment and changes in the

supporting information technology (IT) infrastructures that hinder the overall success of enterprises [280].

Furthermore, most enterprises still rely on so called legacy system- software developed over the previous

decades using 3GL programming languages like COBOL, RPG, PL/I, C, C++. Despite the well-known

disadvantages, such as being inflexible and hard to maintain, legacy systems are still vitally important to

the enterprises as they support complex core business processes; they cannot simply be removed as they

implement and store critical business logic. Unsurprisingly, the knowledge contained in these systems is

of high value to an enterprise. On the other hand, proper documentation, skilled manpower and resources

to evolve these legacy systems are scarce. Therefore, momentum is growing to evolve and reuse those

legacy systems within new technological environments Service-Oriented Architecture (SOA) being the

most promising one [32, 170].

SOA has emerged as an architectural style that enables the reuse of existing legacy assets within

a new paradigm that facilitates loose coupling, abstraction of underlying logic, flexibility, reusability

and discoverability [206]. The evolution from legacy to SOA can be beneficial from both economical

and technical perspectives. From an economical perspective, legacy to SOA evolution fosters change

management including intra-organizational changes, and changes in enterprises [149, 150, 210]. From a

technical perspective, seamless enterprise collaboration through service composition [148] and reduction

in maintenance cost are claimed as long term benefits [210, 238]. Motivated by these benefits, there

has been significant research in legacy to SOA evolution. However, there is no systematic overview

of legacy to SOA evolution, particularly focusing on the techniques, methods and approaches used to

evolve legacy systems to a SOA environment. In the systematic literature review conducted by Razavian

& Lago [222], an overview of SOA migration families is reported. It focuses on classifying the SOA

migration approaches into eight distinct families. The classification is inspired by the reengineering

horseshoe method [25] rather than giving a historical overview of SOA migration methods. Also, a

brief overview of legacy to SOA evolution is reported by Almonaies et al. [8] that divides the legacy to

SOA evolution approaches into four categories: replacement, redevelopment, wrapping and migration.

The legacy to SOA evolution approaches reported in this research were not based on any systematic

literature review process, so a complete, historical overview of the legacy to SOA evolution approaches

is still lacking.

In this chapter, we provide a systematic literature review (SLR) of the existing literature of legacy

to SOA evolution. We provide a historical overview of the legacy to SOA evolution approaches reported

in academia. We focus on identifying techniques, methods and approaches that are relevant to legacy to

SOA evolution or that facilitate the legacy to SOA evolution process. In order to provide such a historical

overview, we have developed an evaluation framework inspired by three software evolution frameworks

reported in literature. The evaluation framework consists of six distinct phases and each phase has its

own evaluation criteria to evaluate any legacy to SOA evolution approach reported in academia. The

main contributions of this research are as following:

� A historical overview of legacy to SOA evolution.

� A legacy to SOA evolution process framework.

48

� An inventory of methods and techniques used in various phases of legacy to SOA evolution.

� A series of research issues and recommendations for future research directions.

We argue that our evaluation framework enables a more comprehensive understanding of legacy

to SOA evolution allowing us to recognize the contributions made so far, opportunities for combining

approaches and identifying open issues and research challenges that still exist in legacy to SOA evolution.

We believe that such an overview will benefit academic researchers and industrial practitioners. The

academic researchers can follow up on identified research issues to foster the legacy to SOA evolution,

whereas the industrial practitioners can adopt various methods and techniques that are reported in

research in real world industrial practices.

The chapter is structured as follows: Section 3.2 provides the details of our research method; Sec-

tion 3.3 presents the evaluation framework; Section 3.4 discusses the overview of the primary studies;

Section 3.5 elaborates the findings of our SLR, Section 3.6 discusses the findings & best practices in legacy

to SOA evolution and describes the threats to validity. Finally, Section 3.7 we present the conclusions

of our research and possible future research directions.

3.2 Research Method

We have adopted the procedures of conducting a systematic review process based on the guidelines

proposed by [154]. A systematic review consists of a review protocol that details the rationale of the

survey, research objectives, search strategy, selection criteria, data extraction, synthesis and analysis of

the extracted data and interpretation of the findings. Such a review process is typically appropriate in

our research since it summarizes the existing contributions, identifies the gaps in the current research and

avenues for further research, and provides a background to position new research activities in a research

framework.

3.2.1 Review Protocol

A review protocol is a plan that specifies the procedures to be undertaken prior to the execution of a

systematic review. Such a review protocol describes how to conduct the search, select relevant studies

and selection criteria, and the analysis of the extracted data. A review protocol is composed of the

following: research question, data sources, search strategy, study selection strategy, data extraction, and

data synthesis. The first four define the scope and motivation of the research while the last two describe

how the results are concluded from the data.

3.2.1.1 Research Question

In order to achieve our objective of creating an overview of legacy to SOA evolution approaches, we have

formulated the following research questions:

1. How can a legacy to SOA evolution method be systematically defined?

2. What methods and techniques are used to facilitate such a systematic legacy to SOA evolution

method?

3. What are the existing research issues and what should be the future research agenda in legacy to

SOA evolution?

49

3.2.1.2 Data Sources

For our research, we have included the following eight electronic libraries/indexing sources as data

sources: ACM Digital Library, CiteseerX, IEEE Xplore, ISI Web of Knowledge, ScienceDirect, Scopus,

SpringerLink, and Wiley Inter Science Journal Finder.

3.2.1.3 Search Strategy

We have constructed a search string using SOA, legacy, and migration as main keywords, and have

included synonyms and related terms. The search string is then constructed using Boolean “AND”

to connect the three keywords and Boolean “OR” to allow synonyms and word class variants of each

keyword. The resulting search string is depicted in Listing 3.1.

Listing 3.1: Search string� �
(SOA OR ‘‘Service−Oriented’’ OR ‘‘Service−Based’’ OR ‘‘Service−Centric’’ OR ‘‘Service−Engineering’’ OR ‘‘SOSE’’

OR ‘‘web service’’ OR ‘‘service−oriented computing’’) AND(Monolith OR ‘‘legacy code’’ OR ‘‘Legacy system’’

OR ‘‘existing system’’ OR ‘‘legacy component’’ OR ‘‘legacy software’’ OR ‘‘monolithic system’’ OR ‘‘existing

software’’ OR ‘‘pre−existing software’’ OR ‘‘legacy information system’’ OR ‘‘legacy program’’ OR ‘‘pre−existing

assets’’) AND(migration OR evolution OR modernisation OR reengineering OR re−engineering OR reuse OR ‘‘

service identification’’ OR ‘‘candidate service identification’’ OR ‘‘service extraction’’ OR bridging OR

reconstruction OR modernization OR decomposing OR ‘‘incubating services’’ OR integrating OR redesigning OR

‘‘Service mining’’ OR migrating OR transformation)� �
The search string was executed in the digital libraries/indexing services to titles, abstracts and

metadata– assuming that these provide a concise summary of the work. Besides the search string, the

range of study dates also has to be defined in the search strategy. We decided to choose 2000 as the

starting year for the search strategy because SOAP [38] was first submitted to W3C in 2000.

3.2.1.4 Study Selection

It is likely that some of the results (study data) of a search might contain the keywords but are irrelevant

to our research. For instance, a study data with the title “An evaluation of legacy systems and grid

service systems of health-care domain: An initial step towards transformation to cloud-based system” is

included in the result of the initial selection. In order to exclude such irrelevant studies, study selection

is performed such that the study data is assessed to determine the actual relevance. A set of inclusion

and exclusion criteria based on the scope of research and the quality of the studies were determined by

us. The inclusion and exclusion criteria are given in Table 3.1.

The study selection not only eliminates irrelevant studies, but also ensures the quality of the study

and the scoping of the research. For instance, I1 inclusion criterion and E4 exclusion criterion ensure

that the study data meet the standards of peer-reviewed scientific papers. Inclusion criteria I2, I3 and

exclusion criteria E1, E2 and E3 scope the research in accordance with the research objective/motivation.

50

Table 3.1: Inclusion and Exclusion Criteria for study selection

Inclusion Criteria Exclusion criteria

I1. A study in the form of a scientific peer-reviewed paper.
Motivation: A scientific paper guarantees a certain level
of quality through a peer review process and contains a
substantial amount of content.

E1. A study that is not about legacy to SOA evolution.
Rationale: Our objective is to study legacy to SOA
evolution, so we exclude any other legacy modernization.
For example, legacy modernization to object-orientation,
cloud computing or grid services will be excluded.

I2. A study that is focused on legacy to SOA evolution.
Motivation: We are interested in legacy to SOA evo-
lution, which implies that any study targeting legacy to
SOA evolution should be included.

E2. A study that is related to challenges and issues while
modernizing legacy systems to SOA.
Rationale: We focus on a specific solution to legacy to
SOA evolution. We exclude papers with an objective
of presenting challenges, issues, and future directions to
legacy to SOA evolution.

I3. The objective of the study is to present/propose a so-
lution(s) to legacy to SOA evolution.
Motivation: We are interested in a specific solution to
legacy to SOA modernization. A solution could be a com-
plete evolution process/method or solution enabling legacy
to SOA evolution.

E3. A study that has other objective(s) than providing a
solution(s) to legacy to SOA evolution.
Rationale: We exclude papers with a main objective
other than proposing a solution to legacy to SOA evo-
lution. For instance, we exclude papers with an objective
of presenting challenges, issues, future directions to legacy
to SOA evolution and comparing the modernization tech-
niques of legacy to SOA evolution.

E4. The Study is reported in another language than En-
glish.
Rationale: We exclude the papers that are written in
languages other than English, since English is the com-
mon language for reporting in most of the international
venues of computer science

3.2.1.5 Data Extraction

We extracted the study selection in a spreadsheet including the following details: title, authors, pub-

lication year, publication form (journal/conference/workshop/book chapter), name and abstract. We

conducted the first selection round based on the “title and abstract” of the study. The study was cat-

egorized as follows: (i) relevant (study inside the scope of the research), (ii) irrelevant (study outside

the scope of the research), and (iii) moderate (unable to decide the relevancy of the paper). For each

irrelevant and moderate study, explicit reasons were provided in the spreadsheet. The moderate category

was decided by repeating the review by a reviewer other than the initial reviewer and by discussing the

paper with the team. The final outcome is the collection of relevant studies, which we refer to as the

primary studies.

3.2.1.6 Data Synthesis

The primary studies were evaluated against the evaluation framework and the findings are reported the

following sections.

We conducted a review process adhering to the review protocol. Initially, we had 8493 hits when we

ran the search query over the electronic libraries/indexing sources. Those 8493 articles were analyzed

by five researchers to determine the relevancy based on title & abstract, which left 269 articles. These

articles were then evaluated based on inclusion and exclusion criteria, which resulted in 121 primary

studies. The details of the review process can be found in Idu et al. [144]. Figure 3.1 depicts the review

process.

51

Identify relevant studies-

electronic libraries/

indexing services

Selection of studies

based on title & abstract

and remove duplicate

Selection based on

inclusion & exclusion

criteria

N=8493

N=269

N= 121

Primary Studies Result

Figure 3.1: The review process with number of studies

3.3 Evaluation Framework for Legacy to SOA Evolution

To develop an evaluation framework for legacy to SOA evolution, we needed to identify the phases that

are typically related to evolution/modernization of legacy systems. Based on a high number of citations

(popularity), availability of documentation, and completeness of the legacy evolution/modernization pro-

cess, the following methods from software re-engineering domain were used to identify the phases for our

evaluation framework: the butterfly method [295], the Renaissance method [286], and the Architecture-

Driven Modernization (ADM) [152]. The main reason for using these evolution/modernization methods

is that the software re-engineering domain has been extensively researched and widely practiced in indus-

tries, as compared to SOA evolution methods. In particular, we want to reuse the concepts from those

methods in the development of a new method for legacy to SOA evolution. Method engineering [39]

allows us to reuse existing concepts from existing methods to construct new methods. Hence, we use

method engineering and reuse the concepts from the three above-mentioned legacy evolution/modern-

ization methods. We argue that reusing the methods and practices from existing standards/methods

saves time and reduces the adoption problem (i.e., it is easier to adapt to the existing methods/practices

than learning new methods). The details of the construction of the evaluation framework are reported

in Idu et al. [144]. One can argue that there are sufficient relevant legacy to SOA evolution methods

that could have been used to develop the evaluation framework. Most of the legacy to SOA evolution

methods reported in literature, either focus on developing supporting technology (i.e., implementation

techniques to expose legacy systems in SOA) or planning the legacy to SOA evolution (i.e., determin-

ing the feasibility of evolution) [222]. However, a legacy to SOA evolution requires the consolidation

of both, developing supporting technology and planning the legacy to SOA evolution [75, 143]. In our

approach, we aim at developing such a framework that combines both aspects (i.e., planning legacy to

SOA evolution and implementation). Furthermore, we aim at assessing those existing legacy to SOA

evolution methods using our developed evaluation method rather than using them to develop a new

method. From the three methods, we have identified phases that are common to all of them. For in-

stance, legacy system understanding, target system understanding, evolution feasibility determination

52

and implementation of evolution are common phases in the above-mentioned methods. To make our

evaluation framework more relevant to the SOA domain and to reflect the intent of legacy to SOA evo-

lution, we further analyzed and identified some phases from the following service-oriented development

methods: Service-Oriented Design and Development Methodology (SODDM) [208], Web Service Imple-

mentation Methodology (WSIM) [166], and Service-Oriented Modelling and Architecture (SOMA) [12].

The details of the identification of the phases are detailed by Reijnders et al. [228] using the method en-

gineering approach. From these service-oriented development methods, we have added candidate service

identification and deployment & provisioning phases to our evaluation framework. Finally, our evalua-

tion framework includes six phases divided over two generic stages. The evaluation framework and the

phases are depicted in Figure 3.2. The evolution planning addresses the question “what to do?” and “is

evolution feasible in the given context?” The evolution implementation & management addresses the

question “how to do it?” and “what techniques can be used to perform the evolution?” In the following

subsections, we explain the phases of our evaluation framework.

Legacy

system

understanding

Target

system

understanding

Evolution

feasibility

determination

Candidate

service

identification

Implementation

Deployment &

provisioning

Evolution planning

Evolution implementation

& management

Figure 3.2: The evaluation framework

3.3.1 Legacy System Understanding

Understanding the legacy system and its as-is situation are crucial to the success of any evolution [241].

This includes a detailed analysis of the legacy system and various techniques can be used. For instance,

reverse engineering, program understanding, architectural recovery can be used, often with tool support

to generate system artifacts. Legacy system understanding often includes analyzing the development

history, interviewing the developers (if any) and current users to come to an understanding of the

architecture of the legacy system. In our evaluation framework, we have defined evaluation criteria to

investigate if any legacy to SOA evolution method includes legacy system understanding and to what

extent this phase is discussed.

3.3.2 Target System Understanding

The target system understanding phase facilitates the representation of the desired architecture of the to-

be SOA. This phase describes the target SOA environment, which includes activities like defining major

53

components/functionalities of the SOA environment, specific technologies and standards to be used,

the state of the targeted SOA, and availability of existing similar services to reuse. In our evaluation

framework, we have defined evaluation criteria to determine whether a legacy to SOA evolution method

includes target system understanding for the desired SOA system and to what extent this phase is

discussed.

3.3.3 Evolution Feasibility Determination

The legacy system understanding and the target system understanding phases provide better under-

standing of the as-is and to-be situations, respectively. Based on this understanding, the feasibility of

the evolution has to be determined and is done in the evolution feasibility determination phase. The

feasibility assessments are carried out at a technical, economical and organizational level. The technical

assessment includes measuring the code complexity of the legacy system in terms of cohesion, coupling,

reusability and abstraction [227]. Economical assessment includes determining economic feasibility of the

evolution, for instance by using the cost-benefit analysis, as suggested by Sneed [246]. Upon analyzing

the technical and economical feasibility, the organization approves the evolution project by also consid-

ering whether its business goals are met by the intended SOA system. In our evaluation framework,

we have defined evaluation criteria to determine whether a legacy to SOA evolution method includes

evolution feasibility and if so, how is it performed.

3.3.4 Candidate Service Identification

Legacy systems are subjected to evolutionary development and bug fixing in the source code often by

people who did not develop it. This typically leads to much redundancy in the code. Furthermore, poor

documentation and lack of appropriate resources (e.g., developers, architects) make the understanding

of source code a hard task. In such a scenario, identifying the potential services and service-rich areas

in legacy code is definitely a challenging task [141]. The candidate service identification phase aims at

locating service-rich areas. Various techniques can be used for this purpose. For instance, architectural

reconstruction, feature location, design pattern recovery, cluster analysis techniques, concept analysis,

and source code visualization can be used to identify service-rich areas in a large body of legacy code.

In our evaluation framework, we have defined evaluation criteria to investigate if any legacy to SOA

evolution method includes techniques to identify potential candidate services.

3.3.5 Implementation

The implementation phase is concerned with the technical evolution of the whole legacy system to the

target system using various techniques, often supported by the tools. For instance, wrapping, program

slicing, concept slicing, graph transformation, code translation, model-driven program transformation,

screen scraping, code query technology, and graph transformation can be used to extract/leverage the

legacy code as services. In our evaluation framework, we have defined evaluation criteria to investigate

if a legacy to SOA evolution method includes any techniques to extract/leverage legacy code as services.

54

3.3.6 Deployment & provisioning

The deployment & provisioning phase is concerned with deployment and management of the services

after extraction of the legacy code. Upon extraction, services are deployed in the service infrastructure.

Service provisioning typically includes the after-deployment activities such as publishing, versioning of

services, metering and billing of the usage of the services [146]. In our evaluation framework, we have

defined evaluation criteria to determine whether a legacy to SOA evolution method includes deployment

& provisioning.

Based on the identified phases, we have derived the list of evaluation criteria given in Table 3.2:

the first column presents the stages within an evolution, the second column lists the identified phases

of our evaluation framework, the third column presents the evaluation question as evaluation criterion

for each phase, and the final column gives possible answers for each evaluation question. The answers

can be of three types: Yes/No– to indicate whether the given criterion is met, narrative– to answer an

open question and scale– to quantify the degree of support for any criterion. The judgement of scale is

presented in Table 3.3.

Table 3.2: The evaluation criteria based on the evaluation framework
Stage Phase Evaluation Criteria Answer

Evolution

Planning

Legacy

System

Understanding

Does the solution include legacy system understand-
ing?

Yes/No

Which technique(s) is used for legacy system under-
standing?

Narrative

To what extent are those techniques used? Scale

Is there any tool support for legacy system under-
standing?

Yes/No

Target

System

Understanding

Does the solution include target system understand-
ing?

Yes/No

What criteria/factors are included for target system
understanding?

Narrative

To what extent are those criteria/factors used? Scale

Evolution

Feasibility

Determination

Does the solution include evolution feasibility assess-
ment?

Yes/No

What technique(s) is used for evolution feasibility as-
sessment?

Narrative

Evolution

Implementation

&

Management

Candidate

Service

Identification

Does the solution include candidate service identifica-
tion?

Yes/No

What technique(s) is used for identifying candidate
services?

Narrative

Is there tool support for candidate service identifica-
tion?

Yes/No

Implementation

Does the solution provide any implementation tech-
nique for evolution?

Yes/No

What technique(s) is used for implementation? Narrative

Is there tool support for the implementation? Yes/No

Deployment

& Provisioning
Does the solution provide deployment & provisioning
of the services?

Yes/No

Case Study
What empirical evidence (industrial/experiment) is
provided?

Narrative

In which language is the legacy system developed? Narrative

55

Table 3.3: The judgement scale to assess the support of techniques and method used
Scale point Scale Definition Representation

No support The specified technique is not mentioned. -

Implicitly discussed The specified technique is mentioned. +

Explicitly discussed The specified technique is mentioned and dis-
cussed but no detailed information is given.

++

Explicitly discussed with evi-
dence of use

The specified technique is mentioned, dis-
cussed and there is empirical evidence of its
usability.

+++

3.4 Overview of the Primary Studies

In total, we found 121 publications as our primary studies after evaluating against the inclusion and

exclusion criteria. Figure 3.3 shows the distribution of primary studies published per year along with

the trend-line. The positive slope of the trend–line not only indicates an increasing amount of research

being carried out in legacy to SOA evolution domain, but also reflects the increase of legacy to SOA

evolution approaches along with the maturity of SOA paradigm– SOA being used as architectural style

after SOAP [38] was first submitted to W3C in 2000. We cannot be certain that we have covered all

studies with a publication date in 2011, since studies may not have been indexed yet at the time. This

is one of the possible reasons for the sharp decrease in publications in 2011.

10

15

20

25

30

N
um

be
r o

f p
rim

ar
y
st
ud

ie
s

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Primary Studies 1 1 0 2 8 8 15 10 23 26 20 7

0

5

10N

Figure 3.3: Distribution of the primary studies published per year

Figure 3.4 presents the distribution of the primary studies across venues from which at least two

articles were selected. It is very interesting to notice that the largest amount of research is reported at

venues related to system maintenance, evolution and re-engineering such as CSMR, ICSM, WSE rather

than core service-oriented computing venues such as SCC, ECOWS, ICSOC. This implies legacy to SOA

evolution is often seen as a solution to maintenance/evolution problems of (legacy) software systems.

Also, the frequency of publication in journals is relatively low as compared to conferences or workshops,

which is not surprising in such a young field. Note that we have not included the venues with less than

two occurrences.

Table 3.4 presents the distribution of the primary studies according to the kind of source. The result

shows that conferences are the most widely used method of dissemination for legacy to SOA evolution

approaches. The number of journal articles for legacy to SOA evolution approaches is less as compared

to the conference papers.

56

8

7

8

9

4 4 4
5

6

4 4 4

3 3

2 2 2 2 2 2 2 2 2 2 2 2 2
2

3

4

0

1

2

Figure 3.4: Summary of primary studies across different venues

Table 3.4: Summary of primary studies according to the sources

Source/Year 00 01 02 03 04 05 06 07 08 09 10 11 Total

Book 0 0 0 0 0 0 0 0 1 2 1 1 4

Conference 1 1 0 1 6 4 13 9 12 17 17 4 85

Journal 0 0 0 0 1 0 2 1 7 5 2 2 20

Workshop 0 0 0 1 1 4 0 0 3 2 1 0 12

Total 1 1 0 2 8 8 15 10 23 26 20 7 121

3.5 Result

The result of our SLR is based on the evaluation criteria described in Table 3.2. Using our evaluation

criteria, we evaluated 121 publications. Due to limitations of space, we have not included the full result

of our complete evaluation in this chapter. Appendix A depicts an evaluation of a small number of

articles. For the complete evaluation result, we refer to Khadka et al. [144]. The result is primarily

focused on whether the publication supports the phases of our evaluation framework, what methods

and technologies are used (if supported), and whether any tool support for methods and techniques is

discussed. Furthermore, the details of empirical evidence (case study) reported in each publication are

also presented. In our evaluation, we created an inventory of the methods and techniques as mentioned

in the publication. We did not conduct any subjective assumption for categorization. For instance,

in many publications “architectural recovery” and ”architectural reconstruction” of the legacy system

understanding phase are considered to be identical; however, we did not combine them into one. Since

we do not conduct any subjective assumption, we believe that this will reduce bias of our findings. We

present our findings with two aspects: (i) degree of coverage– indicates what stages/phases are supported

by the primary studies and (ii) methods and techniques used– inventory of what methods and techniques

are generally in practice in each phase.

3.5.1 Degree of Coverage

Out of 121 publications, 12 publications have full coverage of the evolution planning stage, i.e., 12 publi-

cations support the legacy system understanding, target system understanding and evolution feasibility

determination phases. Individually, under the evolution planning stage, 66 publications support legacy

57

system understanding, 43 publications support target system understanding and 20 publications support

an evolution feasibility determination phase.

Similarly, 15 publications out of 121 have full coverage of the evolution implementation & man-

agement stage, i.e., 15 publications support the candidate service identification, implementation, and

deployment & provisioning phases. Individually, 59 publications support the candidate service identifi-

cation phase, 97 support the implementation phase and 22 support the deployment & provisioning phase.

Interestingly, only 2 publications [143, 303] support the overall phases of our legacy to SOA evolution

framework. Table 3.5 presents the distribution of primary studies per phase.

Table 3.5: Distribution of primary studies per phase

Legacy to SOA Evolution

2

Evolution Planning

12

Evolution Implementation & Management

15

Legacy System

Understanding

66

Target System

Understanding

43

Evolution

Feasibility

Determination

20

Candidate

Service

Identification

59

Implementation

97

Deployment &

Provisioning

22

3.5.2 Methods and Techniques

We have inventoried the methods and techniques reported in the primary studies and depict them as in

bar chart accordingly, one for each of the phase of our evaluation framework. Note that in most of the

phases the information was Not Available (N/A) and that the results presented in the bar charts do not

include N/A.

Figure 3.5 depicts the methods and techniques that are used for the legacy system understanding

phase. Reverse engineering technique is by far the most widely used technique. Documentation and

Interviewing are the second and third most used techniques followed by mostly source code analysis or

architectural reconstruction techniques. Based on the Scale criteria (-, +, ++, +++), 22 papers exten-

sively discussed legacy system understanding with +++, 18 papers with ++, and 20 papers with +.

In most of the cases, multiple methods and techniques were used for legacy system understanding. An

interesting observation is that most of the methods and techniques used for legacy system understand-

ing are technical in nature such as reverse engineering, architectural recovery, program understanding.

Manual techniques like documentation and interviewing are less common than in-depth descriptions of

technical methods. One of the reasons for using methods and techniques of such technical nature is that

legacy resources like documentation and developers are scarce– a widely identified problem in legacy evo-

lution [22, 32]. Furthermore, only 26/121 papers discuss tool support for legacy system understanding.

In most of the papers, multiple techniques are combined for legacy system understanding.

Figure 3.6 depicts the methods and techniques that are used for target system understanding. Here

selection of a specific architecture is most widely used. It is interesting to note that almost all of the

instances in the chart are techniques that actually represent the technological aspects of the target

system, while only Interviewing refers to the process (i.e., organizational) perspective. Only 13/121

papers extensively discusses the target system understanding with +++, 12/121 papers with ++, and

12/121 papers with +.

58

30 29

35
30 29

25

30

17

1315

20

9
6 6 5 4 4 4 3 3 3 2 2 2 2 25

10

0

Figure 3.5: Distribution of methods and techniques used for legacy system understanding

17

7
6

5

22

10

15

20

25

5
4

3

0

5

Specific
architecture

Specific
technology

Functional
specification

SOA
environment

details

Specific
standards

Interviewing Others

Figure 3.6: Distribution of methods and techniques used for target system understanding

The methods and techniques that are used for the evolution feasibility determination phase are shown

in Figure 3.7. Here Cost-Benefit Analysis (CBA) is widely used, followed by Code complexity. While

the CBA technique is primarily an economically oriented analysis, the other most used techniques, Code

complexity and Reusability assessment, refer to a technical analysis. The details of CBA are presented

by Sneed [246] and Umar et al. [273] and the details of code complexity are explained by Sneed [248].

The concept of option analysis for re-engineering (OAR) is proposed by Bergey [24]; it has been used in

SMART [15, 172, 173].

Figure 3.8 depicts the methods and techniques that are used for the candidate service identification

phase. Manual identification is most commonly used. It is also noteworthy that none of the other

techniques are widely used, leading to 51 distinct techniques encountered in the primary studies other

than Manual. It is interesting to note that candidate service identification has also been separately

researched to foster legacy to SOA evolution.

59

15

14

16

10

12

14

6

4
6

8

2 2 2 2

0

2

4

0

Figure 3.7: Distribution of methods and techniques used for evolution feasibility determination

Alahmari et al. [5] propose model-driven architecture based service identification using a SOA meta-

model to identify services in legacy code. Aversano et al. [13] combined information retrieval techniques

with a similarity based metric to identify potential services in legacy systems. In [58], the authors propose

an ontology based approach in which an ontology stores knowledge of both the application domain and

the legacy code. Later, formal concept analysis and relational concept analysis are used to identify the

candidate services. Nakamura et al. [197] generate data flow diagrams from the legacy code using reverse

engineering techniques to aid candidate service identification. Zhang et al. [298] use clustering technique

to analyze the architectural information and identify the related modules as potential candidate services.

45
39

35
40
45

1820
25
30

3 3 3 2 2 2 2 2 2 2 2 25
10
15

0

Figure 3.8: Distribution of methods and techniques used for candidate service identification

The methods and techniques that are used in the implementation phase are presented in Figure 3.9.

Wrapping is by far the most widely used. Considering the big difference between Wrapping and the

other techniques used, we believe that most of the legacy to SOA evolution techniques do not focus on

60

altering existing legacy code bases. Also, wrapping is a fast, less risky, economical and easy solution

although the legacy system remains monolithic. The result of our evaluation shows that techniques like

model transformation, program slicing, and code transformations are much less frequently used. From

Table 3.5, we find that 97 out of 121 papers support the Implementation phase. In our evaluation, we

also found out that 74 papers out of these 97 papers (i.e., papers supporting the implementation phase)

also have tool support for implementation. Furthermore, 22 publications support the deployment &

provisioning phase.

70
62

60

0

43

40

50

20

30

6 5 4 4 4 4 4 4 3

0

10

0

Figure 3.9: Distribution of methods and techniques used for implementation

Figure 3.10 depicts the distribution of empirical studies conducted to validate the proposed legacy

to SOA evolution in the primary studies. The majority of primary studies presented case studies which

were performed at an Industrial level. Interesting to note is the fact that there was a small number of

studies that presented both Experimental and Industrial case studies, thus covering a wider applicability

of validation. Among the industrial case studies, C++ and COBOL based legacy systems are most

common: four cases for each. In the experimental case studies, Java-based systems were widely used

(sixteen in all), followed by COBOL (four systems).

No
18%

Exp.
33%Exp./Ind.

2%%

Ind.
47%

Figure 3.10: Distribution of case study performed

61

3.6 Discussion

Based on the SLR, we present our findings & best practices, and open research issues & agenda in the

following paragraphs.

3.6.1 Findings & Best Practices

The evolution planning stage of the evaluation framework (cf., 3.2) addresses the feasibility of evolution

from business and technical perspectives. The evolution planning focuses on justifying whether the legacy

system is economically and technically suitable for evolution. To a large extent, the success and failure

of an evolution project depends on proper planning [246]. In the context of legacy to SOA evolution,

evolution planning becomes more complicated as various technical factors of the legacy systems should

be well understood. Such technical factors include complexity metrics [251] and coupling and cohesion

metrics for reusability [113, 212]. In the case of legacy systems, obtaining such information is a challenging

task, particularly due to the unavailability of resources and documentation. Other important factors

include cost estimation for evolution and economic feasibility to determine the profitability of evolution.

The economic feasibility should take into account the current expense of maintaining the legacy system

and the costs predicted for maintaining the target system after evolution. Hence, evolution planning

should also consider the architecture and standards of the target system.

Within evolution planning, legacy system understanding has been extensively investigated, primarily

with reverse engineering techniques. The two major categories under reverse engineering in legacy system

understanding are program understanding and architectural reconstruction. Program understanding [70]

is defined as the process of acquiring knowledge about a computer program and is extensively used for

software maintenance, software evolution and software re-engineering. Corbi [70] identifies three actions

that can be used to understand a program: read about the program (e.g., documentation), read the

program itself (e.g., read source code) and run the program (e.g., watch execution, get trace data etc.).

All these three actions have been used in legacy to SOA evolution under various related topics, such

as documentation, source code analysis, static analysis and dynamic analysis. Most of the articles

state that program understanding or source code analysis techniques are used to understand the legacy

codes. However, only few articles explain such program understanding techniques in detail. Source

code analysis techniques have been presented well by Zhang et al. [300]; static analysis in [303] using

Flow Graph Manipulator (FGM) and dynamic analysis using JGrabLab/GReQL in [303] and TGraph

by Fuhr er al. [92]. Architectural reconstruction is a process in which the architecture representations

of a software system are obtained from the existing source code [139] and is widely used in the software

reengineering domain. Similarly, the use of architectural reconstruction has been also been reported in

legacy to SOA evolution approaches. Cuadrado et al. [72] used the QUE-es Architecture Recovery (QAR)

workflow to reconstruct the architecture of legacy systems using Jude, Omondo UML studio and Eclipse

Test and Performance Tools Platform (TPTP) tool. Lewis et al. [171] and O’Brien et al. [205] used the

ARMIN tool to reconstruct the architecture of the DoD command and control (C2) legacy application

such that various undocumented dependencies in the source code were identified. Li and Tahvildari [177]

used the Extracting Business Services (E-BUS) toolkit to reconstruct the architecture of various Java-

based systems. Similarly, Zhang et al. [300] use architecture recovery to obtain design and architectural

information that are used as input for service identification. Our evaluation indicates that architectural

reconstruction has been used more often with tool support than program understanding. Also, in most

62

of the cases both program understanding and architectural reconstruction have been employed. Feature

location techniques ([56, 284]) have also been reported in understanding legacy systems.

The target system understanding phase intends to choose the architecture and related SOA tech-

nologies of the future system, which eventually plays an important role in the quality of the future SOA

system. Lewis et al. [172] argues that the characteristics of the target system will temper decisions

about whether legacy components can be reused. Basically, target system understanding can be viewed

from two perspectives: functional characteristics and technical characteristics of the target system. The

functional characteristics include the potential functionalities to-be evolved from the legacy code. This

process is referred to as service design. It also defines to what level of granularity the services are to be

defined and, accordingly, the orchestration of the services has to be managed to support business pro-

cesses. Various functional and non-functional properties should also be considered, such as maintainabil-

ity, interoperability, responsiveness, performance, security, and availability. The technical characteristics

of the target environment include service technology (SOAP or REST-based), messaging technologies,

communication protocols, service description languages, and service discovery mechanisms. Despite the

importance, target system understanding is not described in detail in most of the articles. Rather,

the articles just state that the target architecture or target system is an important aspect. However,

the functional characteristics of target system understanding has been well explored in SOAMIG [92]

and SMART [172, 171]. The SOAMIG method describes the importance of service design, which is

the result of forward engineering (design of the target architecture and the orchestration of services)

and reverse engineering (potential functionalities as services from legacy system understanding). The

SMART method focuses on designing the target system based on the potential functionalities as services

and to assess them with the stakeholders by taking into account of various functional and non-functional

characteristics of the target system. From the technical characteristics perspective, Cuadrado et al. [72]

provide a clear explanation of using the OSGi specification and service platform. The authors consider

maintainability and interoperability as important criteria of the target system and accordingly use OSGi

specifications to support those non-functional characteristics.

One of the important phases from the organizational perspective is evolution feasibility determination

that determines the go or no-go of the evolution project. Evolution feasibility determination focuses on an

economical and technical assessment of the legacy system and the target system along with the business

goals that the organization wants to achieve through evolution. The evolution feasibility determination

phase uses the finding of the legacy system understanding (e.g., code complexity, cohesion and coupling

metrics, etc) and the findings of the target system understanding (e.g., non-functional characteristics,

selection of service technology, orchestration design, etc) to determine the technical and economical

feasibility. The best practices in the evolution feasibility determination phase include the cost-benefit

analysis proposed by Sneed [246] for re-engineering projects and serves as a good starting point. This

CBA model has been widely followed in legacy to SOA evolution [143, 247, 248]. Umar and Zordan [273]

extended the CBA model to include the integration costs which facilitates the strategic decision making

in legacy to SOA evolution. The SMART method uses options analysis for re-engineering (OAR) [244]

to determine the so called migration feasibility decision point. Based on the SMART method and a

decision framework by Erradi et al. [85], Salama and Aly [237] present a decision making tool for the

selection of the legacy to SOA modernization strategies, which also considers evolution feasibility.

Based on the outcome of the evolution planning, the next step is to decide how to implement the

63

evolution and what implementation techniques are preferred. It has been widely recognized that legacy

evolution is not purely a technical problem, but involves business engineering as well [302]. The main

challenges are how to identify business functionality as a potential service, how to evolve such business

functionality as a service and finally, how to maintain and monitor the service once it is deployed.

Based on these three requirements, we have identified three phases under evolution implementation &

deployment stage.

Identifying service-rich areas in a huge chunk of legacy code has been a challenging task in legacy

to SOA evolution. Our survey has revealed that techniques applied to locate service-rich areas can be

broadly classified into two: modeling the business requirements (top-down) approach and legacy code to

business functionalities (bottom-up) approach. In modeling the business requirement approach, the core

business process is designed from the functionalities identified from the legacy system understanding and

then the process is subdivided until it can be mapped to functionalities in legacy system. In most of

such approaches, BPMN is used to model the business process [5, 92, 178, 229, 303]. The legacy code

to business functionalities approach utilizes legacy code as starting point to discover existing business

knowledge within legacy systems. Various techniques have been used, such as information retrieval [13],

concept analysis [300], cluster analysis [299], business rule recovery [184] and pattern matching and

discovery [96, 301, 134].

Based on the findings of the Implementation phase, the legacy to SOA evolution can be either catego-

rized as legacy system integration or legacy system migration. Legacy system integration is an approach

in which the legacy code is not substantially modified and is used from within a new environment.

The legacy systems typically remain in their original environment. Generally, techniques like wrapping,

adaptors and middleware based approaches fall into the integration category, which is the predominant

implementation technique as far as we have seen in legacy to SOA migration. Integration is claimed

to be a fast, less risky, economical and easy solution but the legacy system remains as it is [8, 273].

Wrapping–based legacy to SOA evolution are reported by Sneed [247, 248] in which the author has de-

veloped various tools to support the evolution; Ricca and Marchetto [229] used wrapping to evolve ATM

functionality to SOA. On the other hand, the legacy system migration approach is one in which the

legacy code is transformed, internally modified, or reused in a new environment. Umar and Zordan [273]

define migration as ”an internal restructuring and modification of legacy systems into target systems”.

The migration technique is claimed to be costly, time consuming but in the long run the organization

can gradually replace the existing legacy system. Various techniques have been used to migration legacy

systems to SOA (program slicing [16]; Chen, et al. [58]; Khadka et al. [143]; Marchetto and Ricca [184];

Zhang, et al. [300]; model transformation techniques ([57, 92, 124]). The distinction between integration

and migration is discussed by Umar et al. [273] in detail with respective benefits and drawbacks.

In the deployment & provisioning phase, the evolved services have to be deployed and activities are

required to manage and control the behavior of services during usage. In the context of legacy to SOA

evolution, activities such as testing, versioning and monitoring are important. Service testing has been a

research challenge in the SOA domain due to the dynamic binding [46] and the fact that the source code

of services might not reside within a single organization [175]. Service testing in the context of legacy

to SOA evolution is even more complicated because the exposed service after evolution should perform

correctly when compared to the legacy system. Some legacy to SOA evolution approaches also address

the testing of exposed services [92, 143, 184, 247, 303]. Due to changing business requirements, services

64

need to evolve and this leads to multiple versions of an exposed service [86, 143]. Service versioning is

inevitable in legacy to SOA evolution as well, particularly, in legacy system integration approaches. In

legacy system integration, the legacy code is exposed through interfaces, without making any changes to

the original code. Later, changes made to legacy code after evolution have to be reflected in the service

interfaces as well and this creates multiple versions of the original service. Also, service monitoring for

non-functional attributes becomes important while the exposed services are in use. Service versioning

and service monitoring has not received much attention in legacy to SOA evolution.

An increasing number of articles from 2000 to 2011 on legacy to SOA evolution suggests that the

hype is gaining momentum in academia and is still in maturing stage. It is also interesting to see that

almost half of the results of the research are evaluated in an industrial context. Some good examples of

such research include: SMART [172], which has been evaluated in migrating the Department of Defense

Mission Status System and Command and Control system, the SOAMIG process model [92, 303] used

in Amadeus Germany’s RAIL-system, the wrapping method [247, 248] for a COBOL-based insurance

system, the migration of Java-based legacy application to SOA [27], the feature analysis method for

migrating a COBOL-based telecommunication systems [191], and two case studies of adopting SOA in

the transportation sector and public service sector [202].

3.6.2 Research Issues & Agenda

Several research issues still persist in legacy to SOA evolution. In the following subsection, we present

research topics based on the results of our evaluation.

3.6.2.1 Legacy to SOA Evolution as a Process

Legacy to SOA evolution is a complex process, which is influenced by technical, economical and organi-

zational factors. So, any legacy to SOA evolution requires a structured process model that can address

these technical, economical and organizational factors. The need of such a structured process model has

been also argued by various researchers [159, 175]. Such a structured evolution process should include

a legacy system assessment to recover knowledge, the standards and architecture of the target system,

technical and economical feasibility, a risk analysis, candidate service identification, and the implemen-

tation and maintenance of the system after evolution. Our evaluation framework (cf., Fig 3.2) addresses

these requirements as it covers all the aspects necessary to support any legacy to SOA evolution project.

One interesting finding of our SLR is that only two articles [143, 303], cover all aspects of legacy to SOA

evolution as identified by our evaluation framework.

3.6.2.2 Automation of the legacy to SOA Evolution Process

Upon establishing a legacy to SOA evolution process model, the next challenge is the automation of

such legacy to SOA evolution process through the development of tools and techniques. As identified

by various researchers, e.g., ([159, 175, 202]), one of the major issues of legacy to SOA evolution is tool

support for the various phases. In fact such automation would be expensive and needs a huge effort due

to variation in legacy systems. As can be seen from our SLR finding, various tools and techniques have

already been successfully developed and used in legacy to SOA evolution. Establishing the suitability of

those tools and techniques following a legacy system assessment (technical qualities of legacy code) in

65

the various phases is an interesting and challenging future research topic. Another issue that is worth

investigating is “Can legacy to SOA evolution be carried out in language independent manner?” A

potential research direction to address this issue could be model-driven legacy to SOA evolution. We are

currently involved in an ongoing research project17 that aims at generating a model of the legacy code

and identifying patterns to locate service-rich areas. Such patterns are then employed in tandem with

a code-query based program slicer after which the sliced out functionality can be exposed as a service.

There have been other initiatives in the model-driven legacy to SOA evolution as well [2, 89, 93].

3.6.2.3 Post Evolution Experience Reporting

Legacy to SOA evolution is not just about the successful technical transformation of an existing state

to a new state. Most reports about the legacy to SOA evolution claim successful evolution because it

was technically and economically feasible and the desired target state of SOA has been achieved [202].

However, this “successful” evolution does not really indicate that the enterprise has achieved its business

goals. Answers to various questions still remain unclear after such a “successful” evolution. Did the legacy

to SOA evolution deliver the promised benefits such as increased flexibility, enhanced maintainability,

and reduced costs? In many legacy to SOA evolution projects, there were explicit requirements of the

enterprise (e.g., Cuadrado et al. [72]) aimed at increased usability and interoperability. Does the evolution

to SOA successfully meet such requirements? As identified by Sneed [257] one of the issues after evolution

is performance. Such issues are still to be investigated in sufficient detail through experimental analysis.

3.6.2.4 Determining the Decomposability of Legacy Systems

One of the fundamental issues, pointed out by Brodie & Stonebraker [43], is that the evolution of legacy

system depends on its decomposability. The less decomposable a system is, the more difficult evolution

will be. However, there are still no explicit factors that determine the decomposability of a legacy system.

Sneed [257, 248] provides requirements in terms of code properties for determining the suitability of legacy

code for wrapping. Similar requirements should also be investigated to determine the decomposability of

a legacy system based on the legacy code and complexity. Determining the decomposability of the legacy

code facilitates the evolution feasibility process and thus enables choosing the right evolution strategy

(i.e., wrapping, replacement, redevelopment, migration) [8].

3.6.2.5 Evolution from Organizational Perspective

The SLR reveals that legacy to SOA evolution is primarily seen as a technical challenge, focused on

finding an efficient solution for evolution. However, legacy to SOA evolution also introduces various

organizational challenges such as ownership of services, responsibility of maintaining and monitoring of

services and resistance from the current IT staff to change. One of the peculiar challenges includes the

adoption problem [143, 183] in which the existing users of legacy systems may fear that their expertise

may become redundant due to the introduction of SOA. Such organizational issues should also be properly

investigated and considered in legacy to SOA evolution.

17http://www.servicifi.org/

66

3.6.3 Threats to Validity

Construct validity concerns with “to what extent the inferences can be made correctly”. In our research,

construct validity refers to the consistent understanding between the study designers and executors. In

our review, the review process was designed by one researcher and executed by a group of researchers.

Since the review process was designed by a single researcher there is a chance of misinterpretation of

the theoretical concepts by other executors. One potential area of such misinterpretation is the selection

of the search keywords. In order to avoid such misinterpretation, we have included possible synonyms

and even related terms for each keyword and had them reviewed by all five researchers. Further, we

have followed specific guidelines to conduct the systematic literature review, which also enhances the

consistent understanding among the researchers. The other potential area of subjective misinterpretation

is the scale measurement in the evaluation framework. For such subjective interpretation, we provide a

clear explanation of the judgement scale (cf. Table 3.3).

Internal validity refers to the extent to which the design and execution of the study are likely to

prevent systematic errors. In our research, internal validity refers to the elimination of bias. In our

review, the involvement of five researchers in the study selection and evaluation process minimizes the

threats to internal validity. Furthermore, in each round of study selection the distribution of the studies

was done in such a way that each researcher obtains a different set of studies. We have introduced

three categories of studies “relevant”, “irrelevant” and “moderate”. For each moderate study, the next

categorization is done by a researcher other than the one who categorized the study as “moderate”.

Another potential area of bias is the categorization of the studies into “relevant”, “irrelevant” and

“moderate”. Such a threat is mitigated by clearly specifying the inclusion and exclusion criteria (cf 3.2).

Furthermore, the data selection (initial selection, secondary selection and primary study) process was

distributed among five researchers rather than one researcher. This step also reduces the possibility of

bias.

External validity refers to the generalizability of the results of the study. The scope of our study

is restricted purely to the academic domain and in particular peer–reviewed scientific papers. We are

aware of the fact that legacy to SOA evolution approaches also originate in industry, and may not have

been reported upon academically. Due to feasibility issues and to maintain the quality of the research,

we did not include such industry based legacy to SOA evolution approaches.

3.7 Conclusion and Future Research

In this chapter, we have reported on a systematic literature review on legacy to SOA evolution. We

have collected 121 relevant papers, published in between 2000 and August 2010, and evaluated them. In

order to evaluate those relevant papers, we have described an evaluation framework for legacy to SOA

evolution consisting of six phases, categorized over two stages. The proposed evaluation framework is

designed by analyzing common phases from three major frameworks related to evolution/modernization

of legacy systems, taken from the domain of software engineering. Based on our legacy to SOA evolution

framework, we defined evaluation criteria against which all 121 papers were evaluated.

The resulting overview of the evaluation has created an inventory of historical contributions to

the evolution of legacy to SOA, and a list of methods and techniques that are widely practiced. Due

to limitations of space, only a snapshot of the result of evaluation can be presented in Appendix A.

67

Particularly, the methods and techniques according to the phases of our evaluation framework have

provided insights into existing practices in the legacy to SOA evolution process. In summary, the work

described in this chapter offers the following contributions:

� A historical overview of legacy to SOA evolution approaches.

� A systematic evaluation framework for legacy to SOA evolution.

� An inventory of methods and techniques used in legacy to SOA evolution.

� An overview of research issues and future research directions.

We believe that the contributions of this work will benefit researchers on addressing the identified research

issues. On the other hand, the inventory of methods and techniques successfully used in academic research

can be used by legacy to SOA evolution practitioners in real world industrial practices.

We have identified several possible improvements of our research as well. One of the enhancements of

the current evaluation process includes double checking the evaluation result. In the presented evaluation,

the primary articles were divided among five researchers and then evaluated. As an enhancement,

we aim at double checking each evaluation result by at least one other researcher. This will surely

reduce bias (i.e., no subjective categorization are made) and lead to more accurate findings. In our

evaluation, we documented what was reported in the article. For instance, “architectural recovery” and

“architectural reconstruction” techniques can be considered to be the same and both of them again can

be considered to fall under the heading of “reverse engineering”. In our evaluation we have not made

use of such subjective categorizations. In the future, we aim at refining the results of our evaluation

with attribute generalization [71]– a way to generalize the values of the finding into common and related

category. Furthermore, we also aim at evaluating the proposed evaluation framework with case studies

and enhance it accordingly. Currently, our research is only focused on the legacy to SOA evolution

reported in academia. In future, we aim to also provide similar insights into the legacy to SOA evolution

approaches practiced in industry.

Appendix A

68

Reference

Evolution Planning Evolution Implementation and Management

Case Study
Legacy System Understanding

Target System

Understanding

Evolution

Feasibility

Determination

Candidate Service

Identification
Implementation

D
e
p

lo
y

 &
 P

r
o
v
is

io
n

in
g

Y
 /

 N

Technique

S
ca

le

T
o
o

l
su

p
p
.

Y
 /

 N

Technique

S
ca

le

Y
 /

 N

Technique

Y
 /

 N

Technique

T
o
o

l
su

p
p
.

Y
 /

 N

Technique

T
o
o

l
su

p
p
.

E
x
p

.
/

In
d
.

L
an

g
u

ag
e

(Salama &
Aly, 2008)

[151]

Y Source Code
Analysis

+ Y N N/A - Y Filtration,
Organizational

Assessment,

Cost Benefit
Analysis

N N/A N N N/A N N N/A N/A

(Khadka,

Reijnders, et
al., 2011)

[87]

Y Technical

Analysis,
Functional

Analysis,

Documentation,
Interviewing

+++ N Y Service

Requirements
Identification

- Y Cost Benefit

Analysis

Y Concept

Analysis

N Y Concept Slicing Y Y Ind.,

Exp.

COBOL,

C++

(Sneed,

2009)

[160]

N N/A - N N N/A - Y Code

Complexity,

Reusability
Assessment

Y Manual N Y Code Stripping,

Wrapping

Y N Exp. Cobol

(Zhang,

Yang, Zhou,
& Zhong,

2010)

[194]

Y Reverse

Engineering,
Domain Analysis

++ N Y Domain

Business Logical
Model

++ N N/A Y Matching

Algorithm

N Y Wrapping, Code

Modification,
Redevelopment

N N Exp. Java

(Canfora,
Fasolino,

Frattolillo,
&

Tramontana,

2008)
[40]

Y Reverse
Engineering,

Static Analysis,
Dynamic

Analysis

++ N N N/A - N N/A Y Business
Value,

Technical
Quality

Assessment,

Use Cases

N Y Wrapping,
Finite State

Automaton
Specification

N Y Ind. N/A

(Lewis, et

al., 2006)

[108]

Y Documentation ,

Interviewing,

Interviewing,
Source Code

Analysis,

Architectural
Reconstruction

+++ Y Y SOA

Environment

Details,
Functional

Specification

+++ Y Code

Complexity,

Dependency
Analysis, Risk

Analysis, Cost

Benefit Analysis

Y Manual N N N/A N N Ind. C++

(Sneed,

2008)
[159]

N N/A - N N N/A - Y Code

Complexity,
Reusability

Assessment

Y Manual N Y Code Stripping,

Wrapping

Y N Ind. COBOL

(Erradi, et

al., 2006)
[57]

Y Portfolio

Analysis,
Interviewing,

Source Code

Analysis

+++ Y Y Decision

Making Criteria

+++ Y Multi Criteria

Decision Making

N N/A N N N/A N N Ind. N/A

(Zhang, et

al., 2006)

[193]

Y Source Code

Analysis

+++ N N N/A - Y Options Analysis

for Re-

engineering

Y Formal

Concept

Analysis

Y Y Program

Slicing,

Wrapping

N N Exp. Java

(Vemuri,

2008)

[182]

Y Test Cases,

Feature Analysis

+++ N N N/A - Y Return of

Investment

Y Feature

Analysis

N Y Wrapping,

Rewriting,

Refactoring,

COTS,
Declarative

Rule Engine

N N Ind. N/A

(Sneed,
2006)

[164]

N N/A - N N N/A - N N/A Y Business Rule
and Value

Analysis

N Y Code Stripping,
Wrapping

Y N Ind. COBOL

(Fuhr, et al.,

2011)
[61]

Y Code Parsing,

Model
Transformation

++ Y N N/A - N N/A Y Graph Query Y Y Graph

Transformation

Y N Exp. Java

(Umar &
Zordan,

2009)

[175]

Y Strategic
Analysis

++ N N N/A - Y Strategic
Analysis,

Architecture

Analysis, Cost
Benefit Analysis

N N/A N N N/A N N Ind. N/A

(Lewis,

Morris,
Smith, et

al., 2005)

[111]

Y Interviewing,

Documentation

++ N Y Interviewing,

Reference
Models, SOA

Environment

Details

++ Y Cost Benefit

Analysis, Code
Complexity

Y Manual N N N/A N N Ind. C++

(O'Brien, et
al., 2005)

[132]

Y Architectural
Reconstruction,

Program

Understanding

⁺⁺⁺ Y Y Interviewing,
Documentation,

Requirements

⁺⁺⁺ Y Options Analysis
for Re-

engineering

N N/A N N N/A N N Ind. C++

(Zillmann,

et al., 2011)

[196]

Y Reverse

Engineering,

Documentation,

Test Cases, Static

Analysis,

Dynamic
Analysis

⁺⁺⁺ N Y Specific

Architecture

Selection

- Y Technical

Feasibility

Y Business

Process

Mapping

N Y Code

Transformation

Y Y Ind. Java

Chapter 4

A structured legacy to SOA migration process and its

evaluation in practice

Abstract

Legacy to Service-Oriented Architecture migration approaches have been extensively researched over the

last decade, primarily to reuse the valuable business logic that resides within legacy applications. In-

terestingly, most of the proposed approaches fail to cover the complete process from the technological

and business perspectives. This chapter presents a structured six-phase process that covers both migra-

tion planning and execution, and does so by considering the aforementioned perspectives. Furthermore,

within each of the six phases of the process, we present a rationale to justify the need of each phase, cur-

rent practices within each phase, and challenges that require further attention. The proposed structured

process is then evaluated by (i) migrating features of two simple yet representative applications to SOA,

and (ii) by mapping activities reported in literature. Based on our findings, we believe that the proposed

structured process is successfully fitting to capture the essence of the activities that are performed within

the legacy to SOA migration domain by combining various perspectives.

71

4.1 Introduction

One of the IT challenges faced by many enterprises is the maintenance of their legacy applications and

migration of those applications to modern and flexible platforms. Legacy applications inherit various

problems such as lack of up-to-date documentation, skilled manpower, resources of the legacy applica-

tions, and high maintenance costs [22]. Despite such problems, enterprises cannot simply remove/replace

those applications as they are mission critical, implement the core business logic, and their failure can

have a significant impact on business18. Thus, legacy applications present a dilemma: they are vitally

important to the business, however maintaining them incurs unjustifiable expenses [32]. A viable solution

to this dilemma is to migrate those systems into new technological environments in which the legacy

features can be re-used. Service-Oriented Architecture (SOA) has gained significant attention from aca-

demic and industry as a promising architectural style enabling legacy applications to expose and reuse

their functionalities [170]. A legacy to SOA migration not only aims at reducing maintenance costs [210],

but also enables a higher Return on Investment (ROI) [202] and promotes flexibility to changing business

needs [158]. With all these aforementioned benefits of SOA, several approaches to migrate legacy applica-

tions to SOA have been reported in academia [145, 222] and in industry [223, 224]. These approaches can

be basically categorized into two aspects: (i) migration planning: to determine the migration feasibility

based on technological and economical assessments, and (ii) migration execution: to develop a support-

ing technology so as to expose legacy applications as a service and to provide service provisioning upon

exposing the service. However, a legacy to SOA migration approach requires the consolidation of both

the aforementioned aspects (i.e., migration planning and migration execution) [75]. Furthermore, legacy

to SOA migration is not only a complex technical endeavor, but it also involves various organizational

and business perspectives [202]. So, any legacy to SOA migration requires a structured process that can

address these technical, organizational and business issues. The need of such a structured process has

been argued by various researchers such as Kontogiannis et al. [158] and Lewis et al. [175, 173].

In this chapter, we present a structured process that combines the migration planning and migration

execution aspects of a legacy to SOA migration. The structured process is divided into two aspects (i.e.,

migration planning and migration implementation & management), each consisting of three phases. For

each phase, we present a rationale to justify the need for each phase, current practices for each phase, and

challenges that require further attention. The proposed structured process is then evaluated by migrating

features of two simple yet representative applications to SOA. To further validate the structured process,

we selected 17 academic papers reporting legacy to SOA migration from 2000 to 2011 and mapped the

activities described therein to the phases of the structured process. The chapter makes the following

contributions:

� It presents a structured legacy to SOA migration process that consolidates migration planning and

migration execution aspects.

� It identifies rationale, current practices and challenges for each phase of the proposed structured

process.

The rest of the chapter is structured as follows: Section 4.2 describes the structured process with its

phases and elaborates rationale, best practices and challenges of each phase. Section 4.3 presents two case

studies to evaluate the proposed process and provides mapping of activities reported in the literature.

18RBS IT Failure Cost Hits £175m: http://goo.gl/xpDjy

72

In Section 4.4, we analyze and discuss our findings and finally, Section 4.5 concludes our research with

an outlook to future work.

4.2 The Structured Process

Fig. 4.1 depicts the proposed structured legacy to SOA migration process that includes six phases divided

over two aspects: migration planning and implementation & management. The migration planning aims

at answering the questions “how to plan the migration?” and “is migration feasible in the given context?

while Implementation & Management addresses the question “how to execute & manage the migration

process? In the following subsections, we explain each phase.

Legacy

system

understanding

Target

system

understanding

Evolution

feasibility

determination

Candidate

service

identification

Implementation

Deployment &

provisioning

Evolution planning

Evolution implementation

& management

Figure 4.1: Legacy to SOA Migration Process

4.2.1 Legacy System Understanding

Legacy system understanding (LSU) is a deductive process of acquiring knowledge about the “as-is”

situation of legacy applications. The goal of this activity is to find the answers to questions such

as “What does the legacy application do?”, “How does the legacy application do it?” LSU aims at

acquiring information including source code characteristics, identifying dependencies, recovering “as-is”

legacy system architecture. Techniques to obtain the legacy information range from manual inspection

of development history, interviewing developers (if any) and current users to automated re-engineering

techniques [45].

Rationale: In a legacy application, factors such as scarcity of knowledge, lack of resources and up-to-

date documentation make the migration process expensive, complex and error prone. In such a context,

understanding the existing capabilities of the legacy application is essential. The LSU phase does not

only assist at creating an inventory of the existing features within the legacy applications, but also

73

facilitates the decomposition of the legacy applications with the aim to maximize reusability. Hence,

LSU is essential to the success of legacy to SOA migration [241, 205].

Current Practices: LSU has been extensively investigated, primarily using reverse engineering tech-

niques. Nevertheless, the soft knowledge [196] (i.e., knowledge in the form of skills and experiences

within technical staff) is one of the main sources of understanding the legacy applications because these

systems are developed and/or maintained by staff familiar with existing legacy systems [202]. Fig. 4.2

depicts the techniques that are used (not intending to be exhaustive) for LSU.

Legacy System
Understanding

Reverse Engineering Knowledge Based

Interviewing Existing
Documents

Source Code Analysis

Architecture
Recovery VisualizationSoftware

Metrics

-uses**
*

-uses*
*

-uses*

Feature
Location

*
-uses*

Figure 4.2: Legacy system understanding techniques

We have categorized the techniques into two: (i) reverse engineering using source code analysis and

(ii) knowledge-based. By knowledge-based techniques, we mean the knowledge and experience of initial

developers and/or maintainer, the end-user experiences obtained via interviewing, and using existing

documentation to understand the legacy application. Murer et al. [196] refer to such knowledge as soft

knowledge and several authors argue that soft knowledge is of utmost importance to perform a successful

legacy to SOA migration [202, 170, 143, 171]. Nevertheless, resources of the legacy applications are scarce

and hence, reverse engineering techniques are widely used to further understand legacy application. In

particular, researchers have used Source Code Analysis (SCA) to extract information from the legacy

applications. Binkley [31] defines source code analysis as “as a process of extracting information about a

program from its source code or artifacts (e.g., from Java byte code or execution traces) generated from

the source code using automatic tools”. In legacy to SOA migration, SCA is used to locate and extract

features, extract various software metrics, to recover the architecture of the legacy application and to

visualize the dynamic behavior of the legacy application. Feature location, used in identifying functional

units in a source code, has been used to understand the legacy application [56, 191, 284]. Similarly,

software metrics have been extensively used; Sneed [248, 247] measured the size, complexity and quality

of legacy programs in terms of modularity, reusability, maintainability metrics; Perepletchikov et al. [212]

used coupling metrics to determine maintainability. Several authors such as Lewis et al. [171, 170],

O’Brien et al. [205], Cuadrado et al. [72], Zhang et al., [298] have used architectural recovery- a technique

to extract architectural information/views of a software system from the lower-level artifacts such as

74

source code- to facilitate legacy system understanding. Source code visualization, a technique to visualize

static and animated forms of software artifacts such as source code and their dependencies, is also used

to understand the legacy application [277, 72, 303].

Challenges: Despite the extensive use of techniques to understand the legacy application, various

challenges still persist. Being core to the business of the enterprises, legacy applications tend to stay

around much longer than the IT staff who built or maintained them, so the soft knowledge about

those legacy applications, their inter-relationships with other components, and their design decisions will

eventually become scarce if not carefully preserved. This process is known as the knowledge erosion [130]

problem, one of the main issues of enterprises with legacy applications. A viable solution to this problem

is to keep the documentation up-to-date and also to initiate technology transfer & training programs

where the experienced skilled IT staffs transfer their knowledge. Knowledge erosion is an organizational

challenge. One of the technical challenges often encountered in the LSU is the heterogeneity of the legacy

application landscape with multiple programming languages spanning over different hardware platforms

and operating systems. Developing generic tools and techniques for understanding a heterogeneous

IT landscape results in high cost. Furthermore, most of the reverse engineering techniques are semi-

automatic and require human expertise to complement or correct the information extracted from the

legacy application. Maximizing the process of automated reverse engineering techniques to understand

the legacy applications is also a challenge.

4.2.2 Target System Understanding

The target system understanding (TSU) phase facilitates the representation of the desired architecture

of the “to-be” SOA. This phase enables the design of a target architecture with major components

of the SOA environment, standards to be used, quality of service (QoS) expectations, and interaction

patterns between services. In general, the TSU represents two aspects of the target architecture: (i)

the functional aspect, and (ii) the technical aspect. From the functional aspect, the target architecture

not only represents the “to-be” functionalities, but also focuses on various non-functional characteristics

such as performance, security, availability. From the technical aspect, decisions are made regarding the

selection of the technology to be used (SOAP or REST), messaging and communication protocols, service

description languages, and service registry.

Rationale: One of the key benefits of legacy to SOA migration is leveraging existing assets [171] and

the specification of the target architecture has impact on the level of reusability. Lewis et al. [170] argue

that the target architecture largely determines the reusability of the existing legacy components. The

other crucial factor that indicates the importance of the TSU phase is the fact that legacy applications

have undergone numerous bug fixes and over the years they have been efficient, reliable and responsive

to the daily business of the enterprise [22]. Hence, while migrating to SOA, considerable attention should

be given to preserve those non-functional characteristics and the target architecture should facilitate to

preserve such non-functional characteristics.

Current Practices: Despite its importance, the TSU phase is not given sufficient attention. The au-

thors of the SMART method [171, 170] provide guidelines for developing the target architecture based on

the legacy components and to assess them with the stakeholder by taking into account various functional

and non-functional characteristics of the target system. The SOAMIG method [303] describes the impor-

tance of service design as a part of target system understanding, which is the result of forward engineering

75

(design of the target architecture and the orchestration of services) and reverse engineering (potential

features from the LSU). Cuadrado et al. [72] explain the selection of using the OSGi specification and

service platform to preserve maintainability and interoperability non-functional characteristics.

Challenges: For a successful legacy to SOA migration, various business issues have to be considered.

From a business perspective, a legacy to SOA migration is generally triggered by new business needs

and goals. To fulfill those new business needs and goals, a target architecture needs to ensure a balanced

support to the business and to the IT, often termed business-IT alignment. One of the challenges of

legacy to SOA migration is to define an appropriate scope for “business-IT alignment” [196]. Key to

overcome this challenge is componentization- a process to deconstruct, analyze and identify business

components contributing towards business goals of the enterprise [59]. From a technical perspective,

achieving and maintaining the non-functional characteristics of the legacy applications is a key challenge

while developing a target architecture.

4.2.3 Migration Feasibility Determination (MFD)

LSU and TSU provide better understanding of the “existing capabilities (as-is)” and “target requirement

(to-be)” situations, respectively. Following these phases, the feasibility of the migration is determined

from technical, economical and organizational perspectives. From a technical perspective, the findings of

the LSU are used to decide the viability of the migration. From an economical perspective, the tentative

cost of the migration project (economic feasibility) is compared with the allocated budget. From a

business perspective, the management team will also assess whether the business goals are met by the

legacy to SOA migration.

Rationale: A legacy to SOA migration is a multifaceted complex process that involves technical,

organizational and business perspectives. Predicting the feasibility of such a complex process to mitigate

the risk of failure can contribute to the success. Needless to say, any failure can threaten the success and

fortune of an enterprise [55]. With such associated risk of failure, determining the migration feasibility

becomes inevitable from all three perspectives (i.e., technical, organizational and business perspectives).

Current Practices: One of the widely used techniques for determining migration feasibility is the

Cost-Benefit Analysis (CBA), proposed by Sneed [246]. The CBA technique is used by Khadka et

al. [143] and Sneed [248, 247]. Umar & Zordan [273] extended the CBA model to include the migration

costs, which facilitates decision making in choosing a migration strategy. The SMART [170] method

uses Options Analysis for Re-engineering (OAR) to determine the so called migration feasibility decision

point.

Challenges: A key challenge in the MFD phase is to develop tool sets that automate the decision

making process by including technical, economical and business value of the legacy application.

4.2.4 Candidate Service Identification (CSI)

Legacy applications are subjected to evolutionary development and bug fixing. These activities leads

to so-called “spaghetti code” [117]. Furthermore, lack of up-to-date documentation and resources make

the understanding of the code inevitably hard. In such a scenario, identifying candidate services is a

challenging task [158], [303].

76

Rationale: Identifying candidate services is an important activity in the context of legacy to SOA

migration as this activity enables reusability and leveraging the existing legacy features [170]. A plethora

of methods are reported (Gu & Lago [112], Arsanjani et al. [12]) to identify potential services.

Current Practices: Current practices of CSI are broadly categorized into two: (i) top-down and

(ii) bottom-up approaches. In a top-down approach, initially a business process is modeled based on

the requirements and then the process is subdivided into sub-processes until these can be mapped to

legacy functions. The top-down approach is used by Alahmari et al. [6], Fuhr et al. [92], Ricca &

Marchetto [184], and Zillmann et al. [303]. In contrast, a bottom-up approach utilizes the legacy code

to identify services using various techniques such as information retrieval [13], concept analysis [300],

business rule recovery [184], source code visualization [277].

Challenges: Several researchers argue that locating and identifying service-rich areas in legacy ap-

plications is not only a challenging task, but also an open problem [112, 159]. The functionalities are

embedded in legacy applications in such a way that it is difficult to isolate the business functionality

from the complex user interfaces and data access logic. Equally challenging is the determination of the

optimal granularity of the candidate services such that they contribute to the business goals. Zhang et

al. [298] argue that (i) service rationalization- an analysis process to identify the least frequently accessed

component as a candidate; and (ii) service consolidation- an iterative process for redefining all the similar

service instances into a consolidated version that supports a superset of all the functions exposed by the

individual functions, can improve the candidate service identification.

4.2.5 Implementation

The implementation phase is related to the execution of the migration of the legacy applications to

SOA. Needless to say that the implementation depends on factors such as proper migration strategies,

assessments of available tools and techniques while executing the migration process. In our approach, we

classify migration strategies into four categories: (i) replacement in which a legacy application is replaced

entirely with a commercial off-the-shelf (COTS) product; (ii) integration in which the existing legacy

application is accessible via an interface; (iii) redevelopment in which the entire legacy application is

re-developed into SOA, and (iv) migration in which a legacy application is gradually moved to SOA with

reusing the legacy components. Fig. 4.3 depicts the four strategies in a quadrant against “business value

& cost” versus “technical value”. Details of these strategies, their merits and demerits are presented by

Almonaies et al. [8].
Rationale: This phase is one of the crucial phases of the process in which the migration is technically

realized. The legacy application domain is often heterogeneous in terms of programming languages,

hardware and operating systems. Furthermore, these heterogeneous applications are highly dependent

on each other. In such a scenario, relying on a single implementation strategy is not preferred. Hence,

multiple strategies should be used. Various factors such as business value, business priority and the

technical qualities of the legacy applications can be used to decide upon the selection of proper strategies.

Current Practices: The implementation techniques used in legacy to SOA migration can be broadly

grouped into code level and architecture level. Fig. 4.4 depicts various implementation techniques (non-

exhaustive) that are used in legacy to SOA migration. The code level group is further divided into

various techniques that have been used in legacy to SOA migration such as slicing [143, 300, 184, 58],

wrapping [247, 248, 184], refactoring [72], code transformation [303]. In general, wrapping is by far the

77

Cost &

business

value

Technical Value

Integration Redevelopment

Replacement Migration

High

High
Low

Figure 4.3: Realization strategy

most extensively used technique. A plausible explanation of the predominant use of wrapping is due to

the fact that it is fast, less risky, economical and easy. At the architecture level, graph transformation

techniques are used by Heckel et al. [117] and Fuhr et al. [92]. Some of the other techniques being used

in legacy to SOA migration are inspired by model-driven engineering [92, 6].

Implementation
Technique

Code level Architecture level

Slicing
Manual Code
Extraction Wrapping

Code
Transformation Refactoring Redevelopment

Graph
Transformation

Figure 4.4: Implementation Techniques

Challenges: One of the important challenges in the “implementation” phase is the selection of an

appropriate migration strategy. There are no proper guidelines for deciding which factors (e.g., business

priority, technical qualities, business value, non-functional characteristics) have to be considered while

selecting a strategy. Furthermore, legacy applications are in a heterogeneous IT landscape and developing

tools for each variation of the legacy languages tends to be very expensive. This leads to the following

research challenge: can legacy to SOA migration be realized in a language independent manner?

4.2.6 Deployment & Provisioning (D&P)

This phase is related with the deployment and management of the services after exposing the legacy

application as a service. The exposed service is then deployed in the service infrastructure and tested to

determine if the expected functionality is indeed exposed correctly as a service. A successful deployment

then requires service provisioning that includes activities such as publishing and discovering services in

a catalog, maintaining Quality of Services (QoS), versioning, testing, and evolution of services [146].

Furthermore, the user support materials such as documentation are created.

78

Rationale: This phase includes post migration activities that are crucial to the SOA environment.

Services are loosely coupled computation entities [207] and proper management of these entities through-

out their life cycle is an absolute requirement [210]. Activities such as service discovery, maintaining QoS

of services, testing and evolution of services that lead to the proper functioning of the services ensure

that the SOA environment operates reliably and efficiently.

Current Practices: A plethora of research work is reported on service discovery domain [219] in

which the authors present categories of service discovery approaches and compare those approaches.

Whilst service testing is a relatively new research domain, various traditional testing approaches are

used to test services. A survey of these approaches has been reported by Canfora & Di Penta [46].

With respect to service evolution, various approaches have been reported for managing the evolution

of services, e.g., Papazoglou [209] present a theoretical approach for addressing the service evolution

problem; Andrikopoulos et al. [9] presents a service evolution management framework to identify changes

and introduce version control mechanism for services; and Fang et al. [86] describe a service versioning

mechanism to assist service evolution.

Challenges: One of the challenges of the D&P phase is automated service discovery with minimal user

involvement. Most of the approaches, reported in the literature, are semi-automated [219]. The use of

semantics markup languages is a step towards automated service discovery [210]. With respect to service

testing, various traditional testing approaches have been used. Nevertheless, a key challenge in service

testing is to develop a testing approach combined with run-time verification [47]. In terms of service

evolution, service versioning plays an important role. One of the challenges in service versioning is to

determine the service compatibility between a new service version and the old one [86]. Apart from service

compatibility, service versioning potentially introduces overlapping between the service functionalities.

Hence, determining the proper level of service commonality in terms of overlapping functionality is also

a challenge in service evolution [209].

4.3 Evaluation

The proposed structured process has been evaluated with two simple yet representative mathematical

based calculator case studies: one in C++ and one in Java. The details of the case studies are presented

below.

4.3.1 SrnaCalc application

SrnaCalc18 is an open-source and simple command-line calculator with basic mathematical functions

and scripting capabilities. The goal of this migration project is to extract the function that evaluates

any expression. As a part of the LSU, we used the reverse engineering tool Understand19 to explore

the features, functional dependencies and compute various metrics of the calculator program. This

activity resulted in identifying the following features: “eval” to evaluate the expression, “operator” to

display the operators used, “getPrecision” and “setPrecision” to manage precision, “memory” to list the

contents of memory and functions to add, find, change, delete, and append a variable. Furthermore, the

dependency graph, as depicted in Fig. 4.5, helped us to understand the structure of the program. As

18http://sourceforge.net/projects/srnacalc/
19http://www.scitools.com/

79

to TSU, a SOAP based web service is used in addition to WSO2/C++20 web service framework as it

supports C++. Due to the experimental case, determining economical feasibility of the migration was

not relevant. Nevertheless, various software metrics such as coupling, cohesion and Mc-Cabe complexity

were derived to determine the technical feasibility of migration. Furthermore, the CSI phase was also

not relevant due to the small code base. As for Implementation phase, we used CodeSurfer21 tool as a

program slicing tool to extract the “eval” feature. Finally, the extracted service was deployed and was

successfully tested.

SC\main.cpp

SC\commandcall.cpp

SC\implement.cpp

SC\commandset.cpp

SC\commandset.h

SC\eval.cpp

SC\command.cpp SC\command.h

SC\implement.h

SC\chain.cpp

SC\parser.cpp

SC\commandcall.h

SC\registry.h

SC\element.h

SC\eval.h

SC\registry.cpp

SC\parser.h

SC\memory.cpp

SC\memory.h

SC\container.h

SC\chain.h

SC\eval.cpp

Program files

Extracted function

SC\eval.h

Dependency

Dependency not

relevant after extraction

Figure 4.5: Dependency Graph

4.3.2 Java calculator suite

The second case study is a Java-based mathematical calculator, called Java Calculator Suite22. It is an

open-source and has a Graphical User Interface (GUI) with basic mathematical functions. The motivation

of this case study is to migrate and expose the evaluation function that calculates any given expression.

Unlike SrnaCalc, the Java calculator does not have scripting and memory related operations. To perform

LSU, we used STAN23 to generate the dependency graph, as shown in Fig. 4.6. The dependency graph

shows how the GUI is related with the calculator feature. Regarding the TSU phase, a SOAP based web

service is used, and Apache Axis2 web service container24 is used as infrastructure. The Java Calculator

suite is relatively small in terms of size and is an experimental case study. Because of this, the MFD and

CSI are not relevant. For “Implementation” phase, again program slicing was used. Indus25, a program

slicer for Java programs, was used to extract the evaluate function and then the service was deployed

and tested.

With the two experimental case studies we have identified the importance of various phases of the

structured process such as the role of LSU phase was important to understand the features of the

20http://wso2.com/products/web-services-framework/cpp/
21http://www.grammatech.com/products/codesurfer/academic.html
22http://sourceforge.net/projects/bfegler/
23http://stan4j.com/
24http://axis.apache.org/axis2/java/core/
25http://indus.projects.cis.ksu.edu/

80

Figure 4.6: Dependency Graph

program. The derived program metrics from the two programs using reverse engineering tools enabled

us to understand the structure, core features of and dependencies within the program. Equally important

was the use of SOAP and selection of the service infrastructures as a part of TSU phase. The program

slicing technique used in the “Implementation” phase helped to extract the relevant source code and

eventually to expose that as services. One interesting observation is that in the case of Java-based

calculator, the GUI code was interwoven with “evaluation” code so it was not so easy to slice. Finally,

the services were deployed, tested and exposed using WSDL as activities of the D&P phase of the

structured process.

Both case studies that we performed to evaluate the applicability of our proposed structured process

were relatively small in terms of LoC and were of experimental nature. Because of this, some of the

phases were not completely relevant such as in both of the cases we did not perform the MFD phase

and the CSI was done manually. Thus, to further evaluate the applicability of the structured process,

we selected academic papers reporting legacy to SOA migration from 2000 to 2011 and mapped the

phases/activities from this literature to the phases of the structured process. The papers are selected

from our previous work [145] in which we conducted a systematic literature review of legacy to SOA

migration. Out of 121 papers, we selected 17 papers from 2000 to 2011 based on the following inclusion

criteria:

1. papers reporting a legacy to SOA migration method that is evaluated with an industrial or pre-

liminary case study.

2. papers with high citation count (citation count was recorded on 17-05-2013).

Table 4.1 depicts the selected papers and the mapping between the activities reported in the papers

with the phases of our structured process. The full citation report is available here26. Due to the

two inclusion criteria, there were no papers selected from 2000-2002. From Table 4.1, we can observe

that all the phases of our proposed structured process can be mapped to the activities found in the

literature. Given this observation, we believe that the proposed structured process is extensive enough

to capture the essence of the activities that are performed within the legacy to SOA migration domain.

It is interesting to observe that most of the literature (50%) from Table 5.3 have the LSU, TSU, CSI

26http://legacyreengineering.googlecode.com/files/Citation_Report.xlsx

81

and Imp. as common phases. This indicates that legacy to SOA migration is perceived as a technical

endeavor. Out of 17 publications, 15 papers address the implementation aspect of the migration followed

by 15 papers addressing the LSU phase. Furthermore, much less attention is given to the MFD phase,

which is a crucial phase for deciding if a migration process is to be performed. The MFD phase is an

organizational perspective in which the concerned stakeholder decides on whether the migration project

is to be executed based on economical, technical and business values. The low frequency of the occurrence

of the MFD phase further confirms the claim that legacy to SOA migration is largely perceived as a

technical endeavor [201, 196]. In the mapping process, Zillmann et al. [303] is the only paper in Table 5.3

that addresses all the phases of our structured process.

Table 4.1: Activity mapping between the selected papers and the structured process

Paper Year Evaluation LSU TSU MFD CSI Imp. D&P

Sneed et al. [260] 2003 Industrial X X X X

Zhang & Yang [299] 2004 Industrial X X X X X

Jiang & Stroulia [134] 2004 Industrial X X

Chen et al. [56] 2005 Preliminary X X X X

Zhang et al. [298] 2005 Industrial X X X X X

Sneed [257] 2006 Industrial X X

Canfora [49] 2006 Preliminary X X X

Cetin et al. [51] 2007 Industrial X X X X X

Chung et al. [62] 2007 Industrial X X X

Canfora et al. [50] 2008 Industrial X X X X

Nakamura et al. [197] 2008 Industrial X X X

Umar & Zordan [273] 2009 Industrial X X

Chen et al. [58] 2009 Industrial X X X X X

Alahmari et al. [6] 2010 Preliminary X X

Bissyandé et al. [35] 2010 Preliminary X X

Fuhr et al. [92] 2011 Industrial X X X

Zillmann et al. [303] 2011 Industrial X X X X X X

Based on two different types of evaluation (i.e., simple yet representative case studies and activities

mapping), it can be observed that our proposed structured migration framework covers most of the

important phases of a legacy to SOA process. From the initial two case studies, two of the phases of

the structured process (i.e., MFD and CSI phases) were not relevant. However, with the mapping of

activities, we can conclude that those phases are important to any legacy to SOA migration process

as these phases are reported in literature. From these two evaluations, we believe that the proposed

structured process has included all the phases that are crucial to a legacy to SOA migration.

4.4 Analysis and Discussion

We acknowledge the findings and challenges put forward by the following literature [175, 158, 202, 210].

In this section we analyze and discuss the findings of our research. Initially, we present and explain the

findings focusing on each of the phase of the structured process. We then discuss the findings of the

structured process in terms of research issues.

82

Table 4.2: Overview of the current practices, challenges and the possible solutions

Phases Current Practices Challenges Possible Solutions

Legacy System Understanding

Feature location Preventing knowledge erosion Knowledge transfer programs

Software Metrics Developing generic tooling for heterogeneous
legacy understanding

Model-Driven engineering

Architecture recovery Maximizing automation in reverse engineering
process

Utilizing the human feedback

Target System Understanding

Specific standards Identifying optimal business-IT alignment Componentization

Specific technology Maintaining non-functional characteristics Use of proper standards & technologies

Functional specification

Migration Feasibility Determ.
Cost-Benefit Analysis Automating migration feasibility determining

toolset
Technical, economical & business
value information based toolset

OAR

Candidate Service Ident.

Modeling legacy process Identifying functional areas in source code Feature location

Information retrieval Trace visualization

Concept analysis Source code search

Implementation

Slicing Selecting appropriate migration strategies

Code extraction Tooling for developing generic toolset Model-Driven engineering

Code transformation

Refactoring

Graph transformation

Deployment & Provisioning

Discovery Automated service discovery Use of semantic markup languages

Testing Testing with run-time verification Techniques to combine testing with
run-time verification

Evolution Addressing service versioning Usage of service compatibility

Publication Addressing service commonality Self-adaptive services [209]

8
3

Table 4.2 summarizes the findings of current practices, challenges and possible solutions (future re-

search directions) of each phase of the structured process. The LSU phase has a crucial role in the legacy

to SOA migration because of the fact that knowledge about the legacy applications is scarce, particularly,

documentation and resources are limited. Also, the original vendors of the programming languages or the

hardware on which the legacy applications run may not be supported anymore. In such a context, dis-

covering the existing capabilities of the legacy applications is inevitably hard. Due to this, understanding

the legacy applications and its existing capabilities is crucial for a legacy to SOA migration. As seen

from Table 4.2 and Fig. 4.2, the LSU phase leverages reverse engineering techniques to understand the

legacy applications and its features and the knowledge residing within the legacy applications. Various

reverse engineering techniques are employed to understand legacy applications such as feature location,

using software metrics to determine the technical qualities, architecture recovery to extract the high level

diagrammatic representation and software visualization to identify dependencies among the legacy ap-

plications. The reverse engineering techniques that are presented are not-exhaustive. Equally important

as the reverse engineering techniques is the soft knowledge within the original developers, maintainers

and users of the legacy applications because the systems are developed and/or maintained by such staff

familiar with the existing legacy applications. Over the years, such knowledge and skills become scarce

resulting in knowledge erosion due to factors such as ageing and retirements of the technical staff. Despite

the wide use of reverse engineering techniques, several challenges still persist in the LSU phase. One of

the important challenges is the development of generic toolsets for understanding the legacy application

as these applications are heterogeneous in terms of programming languages, hardware and operating

system on which they run. A viable approach to this challenge is leveraging Model-Driven Engineering

(MDE) based techniques as they facilitate computation at a language independent level. Currently,

the reverse engineering techniques are semi-automated and require human expertise to complement or

correct the extracted information. One of the solutions to this challenge is to integrate the knowledge

from human expertise as feedback to improve the reverse engineering process [48]. Finally, prevention of

the (soft-)knowledge erosion is also another challenge which can be mitigated by conducting knowledge

transfer program within the enterprises.

The TSU phase aims at developing a future “to-be” SOA environment not only based on standards

and technologies but also considering the non-functional characteristics of the legacy applications. This

phase also provides a blueprint for service design [303] that enables the reusability of the existing legacy

features as services and orchestration of those services. To develop a future target architecture, various

techniques are employed: using specific standards such as messaging and communication protocols for

SOA based development; specific technology such as SOAP or REST-based, service discovery mecha-

nism, and functional specifications to specify and preserve the existing functional and non-functional

characteristics of the legacy applications in the future SOA environment. One of the challenges of the

TSU is finding an optimal business-IT alignment of the future SOA with the business goals of the en-

terprise as the TSU phase intends to enable service design [196]. A solution to this challenge is to use a

componentization process: a process to deconstruct, analyze and identify business component contribut-

ing to the business goals of the enterprise [59]. Equally important in the TSU phase is to maintain the

existing functional and non-functional characteristics of the legacy applications in the future SOA envi-

ronment. Lewis et al. [170] and Cuadrado et al. [72] argue to use SOA-based standards and technologies

as countermeasures to this challenge.

The MFD phase involves business and organizational perspectives of the migration by allowing the

84

organization to decide if migration is necessary and feasible. The need for migration is determined based

on whether the future SOA environment fulfills or contributes to the business goals expected from the

migration, and the migration feasibility is determined by assessing the technical characteristics and the

cost of the migration. Furthermore, this phase can assist with determining which implementation strategy

is to be considered. Some of the widely used techniques in the MFD phase are: Cost-Benefit Analysis

to determine the economic value of the migration; and, Option Analysis for Re-engineering, reusability

assessment and code complexity techniques aim at assisting on determining migration feasibility in terms

of technical characteristics such as mining existing components for reusability, calculating legacy code

complexity to decide on which implementation strategy to follow. One of the challenges of the MFD

phase is to automate the migration feasibility with a toolset that allows the stakeholders to provide

information about the business value of a legacy component and the tool then extracts information

about technical characteristics of the legacy application and the economic feasibility of the migration.

Finally, the migration feasibility is determined based on this information. A representative framework is

developed by Salama et al. [237] that facilitates the decision making process of selecting an appropriate

migration strategy for SOA migration considering the migration feasibility determination.

Identifying service-rich areas in a huge chunk of legacy code has been a challenging task in legacy to

SOA migration. Various techniques are currently used such as modeling business process and mapping

these to the features within legacy code, information retrieval, concept analysis, business rule recovery,

code visualization and so on. Despite the availability of many techniques still the candidate service

identification remains a challenge. A potential research area to assist with locating candidate services

can be feature location, source code searching and trace visualization techniques. Feature location and

trace visualization have been already used in legacy to SOA migration. Source code searching [14], a

technique to search for relevant code within source code, can be an interesting area to investigate.

In general, legacy to SOA migration is perceived as a technical endeavor. This has resulted in

a plethora of techniques that are used in the “Implementation” phase. Such techniques include but

are not limited to slicing, manual code extraction, wrapping, code transformation, refactoring and graph

transformation. In addition, selection of proper migration strategies is equally important. The challenges

encountered in the “Implementation” phase include determining an appropriate migration strategy based

on technical, organizational and business perspectives, and developing a language independent generic

toolset.

The D&P phase includes various post migration activities that are vitally important and ensures

that the future SOA environment operates reliably and efficiently. Such activities include service speci-

fication publication and discovery, service testing, service evolution and Service Level Agreement (SLA)

management. Some of the key challenges of the D&P phase are automated service discovery, service

testing combined with run-time verification, service versioning, and service commonality for evolution.

Based on the findings of the Evaluation (Section 4.3), the role of each phase and the structured

process itself is applicable in any legacy to SOA migration method. However, there are some challenges

remaining within the structured process. One of the challenges is the automation of the structured

process with a toolset in which the tools and techniques for each phase can be suitably integrated.

Such an integrated toolset can include tools and techniques ranging from reverse engineering tools,

fact extractors, transformation tools, and code generators tools as per requirement. The need for such

automation through the development of tools and techniques to assist phases of legacy to SOA migration

85

is advocated by various researchers (e.g., Lewis et al. [175], Nasr et al. [202]). Additionally, legacy to

SOA migration is not only about a successful technical transformation from a legacy application to a

SOA, but also to determine whether an enterprise benefits from the claimed benefits of SOA and achieves

its business goals. Currently, few case studies are reported in the literature about the post migration

experiences. Hence, we urge that more case studies in collaboration with industries are conducted and

that they report on these experiences.

4.5 Conclusion

In this chapter we present a six-phase structured process that combines migration planning and migration

execution aspects of a legacy to SOA migration. The structured process is divided into two aspects (i.e.,

migration planning and migration implementation & management), and each perspective consists of three

phases. For each phase, we presented a rationale to justify the need of each activity, current practices for

each activity, and challenges that require further attention. The structured process is then evaluated by

migrating features of two simple yet representative applications to SOA. Due to the experimental nature

and small size of those applications, determining the applicability of two of the phases (MFD and CSI)

were not possible. Hence, we further validated the structured process by selecting 17 academic papers

reporting legacy to SOA migration from 2000 to 2011 and mapping the activities of those papers to

the phases of the structured process. Based on our evaluation, we believe that our proposed structured

process is not only successfully fitting to capture the essence of the activities that are performed within

the legacy to SOA migration domain, but also has combined the migration planning and migration

execution aspects. Based on our findings, we make the following contributions:

� a structured legacy to SOA migration process that consolidates migration planning and migration

execution aspects.

� identification of rationale, current practices and challenges for each phase of the proposed structured

process.

As to future work, we have identified several possible directions. One of the future works is to evaluate

the structured process in industrial case studies. Evaluation with industrial case studies will point out

various challenges while executing the phases of the structured process. Furthermore, the structured

process and the activities within each phase can be validated by migration experts from academia and

industry, which can be expected to further enrich the structured process.

86

Part II

Legacy System Modernization in

Practice

87

Chapter 5

Migrating a large scale legacy application to SOA:

Challenges and Lessons Learned

Abstract

This chapter presents the findings of a case study of a large scale legacy to service-oriented architecture

migration process in the payments domain of a Dutch bank. The chapter presents the business drivers that

initiated the migration, and describes a 4-phase migration process. For each phase, the chapter details

benefits of using the techniques, best practices that contribute to the success, and possible challenges

that are faced during migration. Based on these observations, the findings are discussed as lessons

learned, including the implications of using reverse engineering techniques to facilitate the migration

process, adopting a pragmatic migration realization approach, emphasizing the business perspectives, and

harvesting knowledge of the system throughout the system’s life cycle.

89

5.1 Introduction

In the current business environment, enterprises are pressured to respond to changes in the market,

laws and regulations, and to remain efficient and innovative to reap benefits from on-demand and new

business opportunities. In order to manage these changes and remain competitive, flexibility is required

within the enterprise, supported by technology [280]. Technology support itself is constantly evolving

with the advancement of new computing paradigms and improvements in hardware infrastructures.

Enterprise systems should therefore be designed to enable continuous evolution and to remain responsive

to new business opportunities, realizing better re-use and maintainability, and to improve business-

IT alignment to achieve business goals [280]. One of the obstacles to adapt to such changes is the

presence of legacy systems [22]. Despite their well-known disadvantages, such as being inflexible and

hard to maintain, legacy systems are still vitally important to enterprises as they support complex core

business processes; they cannot simply be removed as they implement and execute critical business logic

effectively and accurately. Unsurprisingly, the knowledge contained in these systems is of significant

value to an enterprise. On the other hand, proper documentation, skilled manpower, and resources

to evolve these legacy systems are scarce. Therefore, momentum is growing to evolve those legacy

systems within new technological environments such as Service-Oriented Architecture (SOA) as SOA

facilitates the reuse of existing assets [210]. The SOA paradigm is favored by loose-coupling, flexible

composition of business services, re-usability, and abstraction from the underlying technology platforms.

Hence, migration from legacy systems to SOA enables enterprises to achieve flexibility for collaboration,

agility within a constantly changing environment [210] and thus enabling business-IT alignment. With

these claimed benefits, there has been an increasing interest in academia to investigate approaches for

migrating legacy systems to SOA [145].

This chapter presents the findings of a case study of the migration of a large scale legacy system

from a Dutch bank to a SOA. For reasons of confidentiality, hereinafter the bank is referred to as

“NedBank”. The chapter describes a 4-phase migration process that is used in NedBank. For each

phase, the chapter identifies the benefits of using particular techniques/methods within that phase, best

practices that helped to achieve success, and possible challenges that were faced during migration. Based

on these observations, the chapter presents the lessons learned from the case study. The findings of the

chapter not only emphasize the benefits of using reverse engineering techniques to facilitate the migration

process, but also urges academia to pay attention to business and organizational aspects. The business

and organizational aspects include governance of the migration process, early involvement of the existing

technical staff, and knowledge harvesting of the system.

The chapter is structured as follows: Section 5.2 discusses related work; Section 5.3 explains the

research approach and current technological landscape of the payments domain of NedBank; Section 5.4

presents the migration process and discusses benefits, best practices and challenges faced during the

migration; Section 5.5 analyzes and presents the findings as lessons learned. In Section 5.6, the chapter

concludes with some potential future work.

5.2 Related work

De Lucia et al. [75] describe an approach and tools to migrate legacy applications to web applications.

Sneed [248, 258] has contributed several wrapping techniques to migrate COBOL applications to SOA.

90

A plethora of research has been reported on migrating legacy applications to SOA. They are reflected

in the survey [145]. However, considerably fewer real world case studies of legacy to SOA migration are

reported. Nasr et al. [202] describe two large scale industrial case studies of legacy to SOA migration;

Colosimo et al. [67] present an empirical study of legacy migration in Italian companies; Kokko et al. [157]

report on SOA adoption process in nine Finnish organizations.

The use of reverse engineering techniques in software evolution has been extensively researched.

Various research roadmaps and surveys (e.g., Bennett et al. [23], Muller et al. [195], Canfora et al. [45])

have been presented. As per the interest of this research, extracting program quality metrics has been

reported in [118, 138] and details of use of software visualization in reverse engineering & re-engineering

has been reported in a survey by Koschke [160]. Data-intensive legacy system migration has been reported

by Henrard et al. [119].

5.3 Research Background

The current research has adopted an exploratory case study method [233], primarily reporting on how the

migration is carried out and seeking new insights about which activities are performed during migration.

Data collection in this case study is performed based on the participant observation method [233], wherein

two of the researchers were directly involved in the migration project. The data collection included the

following: (i) consulting documentation to identify the need for and goals of the migration process; (ii)

workshops & informal discussions to discuss the progress of the migration in real time, and (iii) semi-

structured interviews to understand various aspects of the migration process. In total six semi-structured

interviews were conducted. The interviews were conducted in English and lasted between 60-120 minutes.

Prior to the interviews, each expert was introduced to an interview protocol, a document detailing the

objectives of the interview with some sample questions, and a glossary of the technical terms to attain

a common understanding.

Research Context: NedBank is one of the largest banks in the Netherlands with more than 900

branches worldwide. Triggered by the Single Euro Payment Area (SEPA) initiative of the European

Union, NedBank started the migration of its core banking systems under a project that started in 2010

and is expected to end in 2018. The main objective of this project is to renovate and migrate its legacy

systems to SOA. The estimated cost of the project is 600M Euro. The project is subdivided into 6

different portfolios: channel support, payments, current accounts, customer reporting, counter, and sales

& product agreements. After an initial investigation, this research is scoped to the migration of the

payments domain because of the following two reasons: (i) the subsystems within the payments domain

are diverse with respective to programming languages, hardware and operating systems in use, and (ii)

the payments domain is of prime importance in the day-to-day operation of the banking business.

The payments domain is responsible for the overall management of banking transactions including

foreign transactions, and interest & cost calculation per transaction of NedBank customers. The subsys-

tems within the payments domain are considered to have high impact on the business of NedBank and

have a high priority within the banking system. The payments domain was one of the first domains to

adopt automatization in NedBank. Over the years, the subsystems of the payments domain have been

subjected to frequent changes which have resulted in a “spaghetti architecture” [117] posing long-term

problems such as increased complexity, inflexibile to changes and evolution, and increasing maintenance

and running costs. Currently, the payments domain consists of five major legacy subsystems as detailed

91

in Table 5.1.

Table 5.1: Details of the subsystems in the payments domain

Subsystem Language Platform LOC

CalculateInterest COBOL IBM Z/OS 401,761

ForeignAccount COBOL HP Tandem 2,193,570

BalanceCheck COBOL HP Tandem 817,882

AccountAgreement COBOL IBM Z/OS 529,055

ReportCustomer COBOL HP Tandem 587,519

To better understand the basic working principles of and dependencies between these systems, a use

case is described in which a customer is created and (s)he withdraws money from an Automated Teller

Machine (ATM). Figure 5.1 depicts a high level sequence diagram, in which every directed edge between

two subsystems implies a coupling between the two.

Customer AccountAggreement BalanceCheck CalculateInterest ReportCustomer

Open AC

Provide AC no.

Create Aggreement

Update Information

Update Information

Update Information

Withdraw Amount

Check & validate

Return Amount

Batch update

Calculate

SynchronizeSynchronize

Update

Update

ForeignAccount

Calculate

Update Information

Figure 5.1: Sequence diagram depicting coupling within the payments domain

A new contract for opening an account is created in a Siebel-based sales environment in one of the

local branches. During the account opening process, Siebel requests several AccountAgreement services in

order to get an account number and to create agreements for the customer. The account and agreement

creation are processed in real-time. Upon opening an account for a customer, the other four subsystems

(BalanceCheck, ReportCustomer, ForeignAccount and CalculateInterest) are updated accordingly. When

the customer withdraws money from an ATM, initially the request is validated with the agreements stored

in the BalanceCheck subsystem and the withdrawn amount is reserved from the customer’s account.

Such individual banking transactions are stored in a flat file and at the end of the day, the flat file is

updated with the transactional information from the ForeignAccount subsystem: a subsystem responsible

for recording the foreign transactions. Afterwards, the flat file is processed by the CalculateInterest

subsystem that is responsible for interest, commission and cost calculations, and synchronizing the

updated records to the other subsystems.

From the information in Table 5.1, it is obvious that the subsystems of the payments domain are

combined with heterogeneous IT infrastructures with variations in the COBOL dialects used, and the

hardware platforms on which they operate. The subsystems range from internally developed subsystems

like CalculateInterest to third party built-in packaged subsystems such as ForeignAccount. The subsys-

92

tems are efficient in terms of performance, capable of effectively analyzing, processing and synchronizing

millions of records. Nevertheless, to achieve such performance, various features within the subsystems are

duplicated and/or updated in ad-hoc manner, increasing system complexity. The increase in complexity

has now become a bottleneck to the changeability of the subsystems within the payments domain.

Additionally, based on our observations (interview, documentation, workshops and informal discus-

sion), the main business goals of the NedBank upon migrating to a SOA are (i) accelerating time-to-

market, (ii) reducing costs in the payments domain, (iii) transparency in ownership & governance of the

products, and (iv) preventing knowledge erosion.

5.4 The Migration Process

In this section, we explain the legacy to SOA migration process of the payments domain. Due to the

complexity and tight coupling between the subsystems of the payments domain, the activities within

the migration process are performed in a phased, controlled manner based on the business priorities.

The migration approach consists of the following four phases, being: (i) Forming a migration program

management committee, (ii) Developing a logical target-architecture, (iii) Analyzing the gap, and (iv)

Realizing the migration.

5.4.1 Forming a Migration Program Management Committee

The legacy to SOA migration process needs to be capable of addressing various kinds of issues including

business, organizational and technical issues [202]. The migration process involves a long term investment

of resources and is aimed at conducting a large-scale migration by performing activities with minimal

dependencies and maximal parallelization. Thus, to establish a suitable planning and management, a

governing body, the Program Management Committee, was created. It includes various stakeholders

representing senior management officials, business architects representing the different business units,

software architects and technical managers, external consultants and application developers. The com-

mittee is divided into the following teams with specific responsibilities: a Steering Committee to develop

a strategic policy for the migration; a Core Team to develop the business-IT alignment strategy; a

Program Management team to manage the payment portfolio; a Business Change Management team

to ensure proper alignment of business goals with the IT architecture; and an Architecture Board to

develop an architectural governance within the payments domain. The role of the Business Change

Management and Architecture Board is crucial, in particular, in developing and executing the migration

process, aligning the business goals with the architectural requirements, and coordinating architectural

priorities inline with the business goals.

Benefits, Challenges and Best Practices: A legacy to SOA migration is a multifaceted process

that involves technical, organizational and business issues [196]. To manage such a multifaceted process, a

central governing body with suitable governance of the entire migration process is indispensable. Needless

to say, a legacy to SOA migration is a complex and challenging process and any failure can threaten the

success and fortune of an enterprise [55]. In particular, software failures in the financial domain not only

cost millions but also decrease customer confidence27. In this migration process, the formation of the

Program Management Committee has suitably fulfilled the need of such a governing body and hence,

27IT failure of Royal Bank of Scotland (RBS): http://goo.gl/xpDjy

93

contributes towards a successful migration. The teams within the Program Management Committee have

clear responsibilities such that any unpredicted changes were systematically resolved. For instance, any

Request For Change (RFC) is primarily resolved by the Business Change Management and Architecture

Board unless the RFC has high business priority and higher estimated cost than a chosen threshold

value. Then, the RFC is forwarded with recommendations from the Business Change Management and

Architecture Board to the Core Team and to the Steering Committee for further considerations.

Realizing that a large scale migration to SOA is not only a technical endeavour, the existing knowledge

within the technical staff need to be utilized. The involvement of technical staff (legacy system developers

and maintainers) in the committees facilitated the knowledge transfer to the migration team. It is a

recurring phenomenon that the technical staff is hesitant to share knowledge due to the fear that their

expertise may become redundant due to migration. This phenomenon was countered here by involving

the technical staff to actively participate in the migration process.

5.4.2 Developing a Logical Target-Architecture

Initially, a logical target-architecture conforming to the business goals was developed. A logical target-

architecture forms the organizing logic for business processes and IT infrastructure, in which the business

components are contained. Developing a logical target-architecture that conforms to the business goal

was not an easy task. To start with, a group of members from the migration project initially participated

in a workshop to define a functional architecture: an architectural model that identifies features that

contribute to achieving the business goals. The team members included business process analysts and

business architects from the Business Change Management team along with software architects and

application developers from the Architectural Board. Various other external consultants and experts from

financial software vendors also participated in the workshop. Together they provided the initial blueprint

of the functional architecture. Following the first workshop, three more workshops were conducted that

resulted in identifying various business components to realize the initial functional architecture as shown

in Figure 5.2. The identification of the business components, referred to as “componentization”, was one

of the initial activities to realize potential candidate services. The notion of componentization is a way

to construct a business component, which corresponds to a feature contributing towards a business goal.

Previously, such features were scattered over various subsystems. For instance, the “calculate in-

terest” feature was previously found in two subsystems: (i) CalculateInterest and (ii) BalanceCheck.

Earlier, “product agreements” feature was also distributed over various subsystems. In the logical target-

architecture, related features are gathered within one logical unit to ensure that architecture governance

is easy, and to minimize the product gaps within the payments domain.

Benefits, Challenges and Best Practices: Identifying business components representing poten-

tial candidate services in legacy to SOA migration is a challenging task. In this migration process, a

goal-service modeling approach, proposed by Arsanjani et al. [12], is followed. A goal-service modeling

approach is used to componentize the business component because it ties services to the business goals.

Each identified candidate service was prioritized based on its business value. Additionally, a catalogue

for each business component was created, indicating the degree of reusability by other components and

possible functional dependencies (coupling) with other components in the logical architecture. Such a

catalogue provides an overview of components whose migration can be performed independently, prefer-

ably in parallel with other relatively independent components and hence, maximizing parallelization of

94

Channel support functionalityCounter support functionality

Customer Account related functionality

Product

Configurator
Current Account

Payment Facility

Distribution Channels

Number

Pool

Interest Commission Cost

Payment Engine

SEPA

Vere Fens

Product

Agreement

Reporting

Internal

Command

Payment processing functionality

Service Book Entry

Payment

Channel2
Payment

Channel1
Card Issuing Functionality

Figure 5.2: Logical Target Architecture

the migration process. In total, 44 different high level features were identified.

5.4.3 Analyzing the Gap

The third phase of the migration process is to gather and determine the information about the legacy

system features that can contribute to the realization of the logical target-architecture. The payments

domain consists of a mix of many systems ranging from in-built COBOL system such as CalculateInterest

to a third party packaged application such as ForeignAccount. There are not only variations in the

COBOL dialect, but also in the running platform such as IBM Z/OS, HP Tandem Nonstop. Also, the

documentation of most subsystems was outdated. An investigation of the documentation quality of the

CalculateInterest system identified missing technical documentation (TD), limited finalized/approved

documentation, and fairly good functional documentation (FD). However, the details of the TD and FD

for features are still not complete. Furthermore, the technical quality characteristics such as coupling,

maintainability, and duplication within the subsystems were still unknown.

As a starting point, all the subsystems of the payments domain were analyzed using source code

analyzers to determine the program quality in terms of quality metrics including maintainability, module

coupling, duplication and changeability. These quality metrics were derived using reverse engineering

tools. Such quality metrics provided a better understanding of the technical qualities of the subsystems

within the payments domain. Table 5.2 depicts an excerpt of the assessment results of the subsystems

in the payments domain in which Maint. represents maintainability; Coup. represents coupling; Dup.

represents duplication; Change. represents changeability and Test. represents testability metrics. Refer

to [118, 138] for the details and explanations of these metrics.

Furthermore, to have an in-depth understanding of the technical qualities of each COBOL program, a

detailed analysis was carried out for each subsystem using proprietary automated source code analyzers.

Such a detailed analysis provided insights into individual COBOL programs within each subsystem. For

instance, individual programs were categorized into good, bad and average based on their complexity.

Figure 5.3 depicts an excerpt of a detailed program analysis derived from source code analyzers of the

95

Table 5.2: Excerpt of legacy assessment result

Name #prog Maint. Coup. Dup. Change. Test.

CalculateInterest 913 2.10 2.14 1.32 2.06 2.13

ForeignAccount 9249 1.07 2.47 1.24 1.95 1.80

BalanceCheck 2902 2.03 2.70 1.32 2.05 1.72

AccountAgreement 1364 2.45 3.69 1.34 2.33 1.77

ReportCustomer 918 2.25 3.04 1.23 2.24 1.82

CalculateInterest COBOL programs. Due to reasons of brevity, the detailed analysis is not presented in

this chapter, but anonymized reports of the CalculateInterest and the ForeignAccount are available28.

Max Norm
Good

30 0 1000 15% 90 5000

Max Norm
Average

0 ‐30 2000 10% 120 10000

McCabe
Cobol

Program
Lines of
Code
(LoC)

Complexity
v(G)

Maintainability
Index
(MI)

Check
Maintainability
Index

Check
Miwoc

Check
Volume
NCLoC

Check
Comments

Check
McCabe

Check
Metrics

1 RT00000 464 20 53.4951227 Good Good Good Average Good Good
2 RT00100 1120 84 6.5556751 Average Average Good Bad Good Bad
3 RT00200 1273 85 2.7461408 Average Average Average Bad Good Bad
4 RT00400 559 26 38.7093703 Good Good Good Bad Good Good
5 RT00800 505 38 39.2838751 Good Good Good Bad Good Good
6 RT00900 1137 79 6.2149798 Average Average Good Bad Good Bad
7 RT01100 467 20 45.5457803 Good Good Good Bad Good Good
8 RT01200 542 28 40.7082519 Good Good Good Bad Good Good
9 RT01400 1011 67 20.4825089 Average Average Good Bad Good Average
10 RT01500 882 39 31.7499408 Good Good Good Average Good Average
11 RT01600 1853 115 ‐7.6646816 Bad Average Average Bad Bad Bad
12 RT01700 248 6 84.4787602 Good Good Good Good Good Good
13 RT01800 360 11 60.5492274 Good Good Good Bad Good Good

Figure 5.3: Excerpt of a detailed program analysis of the CalculateInterest COBOL programs

As a part of the legacy assessment, a call dependency diagram of the subsystems was generated and

analyzed based upon number of incoming call (NIC) and number of outgoing calls (NOC). As a result,

numerous computationally intensive COBOL programs (with high NIC and high NOC) and core libraries

(with high NIC) within each subsystems were identified, following the work of Van Geet & Demeyer [277].

Such programs were later manually investigated to locate features within the subsystems. Figure 5.4

depicts an excerpt of the generated call dependency diagram of the CalculateInterest subsystem in which

the red-circled programs (RT23N, RT23M, RT20K and RT009), for instance, could potentially be core

libraries of interest.

After the legacy assessment, an inventory of high level features available within the subsystems of

the payments domain was created. The inventory of the features was created by consulting the available

documentation and interviewing the technical staff of the subsystems. The latter method proved to be

very useful and confirms that the knowledge residing within the organization is of the utmost importance.

The inventory of the high level features was then analyzed by the Business Change Management and

Architecture Board to determine the priority and business value. The features were then mapped to

the logical components within the logical target-architecture via the gap analysis method [172]. The

mapping was performed by focused workshops conducted for each subsystem in which business analysts,

application analysts, consultants, developers and lead architects discuss and finalize the mapping of each

28http://goo.gl/bwqnq

96

Figure 5.4: Excerpt of a call dependency diagram of the CalculateInterest COBOL programs

subsystem. This mapping approach was effective such that the migration team not only identified the

mappings, but also the dependencies within the high level features of the subsystems. Table 5.3 depicts

an excerpt of the feature mapping of the CalculateInterest and the AccountAgreement to the logical

target-architecture.

Table 5.3: Excerpt of feature mapping to the logical target-architecture

High Level feature Target Arch. Component Priority Remarks

CalculateInterest

Register data Bank Administration High –

Calculate interest Interest High Merge international interest

Bank guarantee commission Fees Medium –

Checkout coupon Interest Medium To be included in the Interest
logical component

AccountAgreement

Opening accounts/contracts Product Agreement High Merge current agreements in
current account

Account management Number Pool High –

Managing data rate Product Configurator Low Include tariff data from other
components

Benefits, Challenges and Best Practices: The “analyzing the gap” phase enabled the migration

team to catalogue the existing features with the aim to maximize reuse features. In particular, the use

of reverse engineering tools/techniques has facilitated understanding the current legacy assets, their

technical qualities, and identifying the potential features based on call dependency diagrams. The

“analyzing the gap” phase has not only been effective in identifying, prioritizing and determining the

granularity of existing features, but also in determining which feature is to be reused. The legacy

assessment activity contributed to identifying the technical program quality in terms of software metrics

such as maintainability, module coupling, duplication, changeability. Such software metrics have been

extensively used in the software evolution domain, for instance, to determine the reusability factor [248].

To better understand the individual programs within each subsystem, the program level quality metrics

along with the program visualization in the form of a call dependency diagrams were generated using

97

reverse engineering tools. Furthermore, the interview sessions with the technical staff of the payments

domain proved to be extremely important. Needless to say, intimate knowledge of the existing resources

is essential to a successful migration, and necessary steps should be taken to harvest and preserve such

existing knowledge.

5.4.4 Realizing the Migration

The payment domain of the bank has a heterogeneous IT infrastructure with some of the features being

efficient and robust with respect to performance while others being rigid commercial off-the-self (COTS)

applications. In such a scenario, relying on a single approach to realize migration is not a viable solution.

Thus, the migration process made the following four explicit choices for realization:

5.4.4.1 Reuse and/or Upgrade

One of the key performance indicators of a bank is accuracy and efficient processing of voluminous

financial transactions. In the payments domain, some of the features are highly robust in terms of

accurate and efficient processing of transactions. Such features are either reused or upgraded based on

their business value and the program quality characteristics derived in the “legacy assessment” of the

“analyzing the gap” phase. For example, the “calculate interest” feature is reused. With regards to the

CalculateInterest subsystem, one of the business analysts says “The clear separation in the features of

the CalculateInterest subsystem has eased our maintenance. Also, if we consider rebuilding or splitting

the features then the impact will be very high– technically and economically and we are not sure if we

can achieve the current performance. Thus, for the time being we decided to reuse the features of the

CalculateInterest”.

5.4.4.2 Package Replacement

Numerous logical components within the logical target-architecture cannot be directly mapped to existing

features of the legacy applications. Thus, some of the components in the target-architecture are being

replaced by a packaged solution. The decision to replace is reached by assessing the technical program

qualities and economical feasibility of the feature. One of the examples of such a replacement is within the

features of the ForeignAccount subsystem, which in itself is a third party packaged subsystem responsible

for international payments. Thus, the features of the ForeignAccount subsystem are replaced by a

packaged solution. An application architect says “ForeignAccount is a package software with very limited

documentation and reusing its features will lead to long-term maintenance problems in the future. So we

decided to replace it with a packaged solution”.

5.4.4.3 Customized Replacement

With the introduction of the Euro currency, various laws and regulations within the payment domain

have changed in the European Union. The bank has to comply with such changes. One of the business

consultants emphasizes the importance of the SEPA stating that “SEPA is one of the triggers for the

renewal of the whole payments infrastructure. It is also one of the main business drivers for lowering

cost. Such crucial features have to be custom–built so that its maintenance and upgrade in the future will

be easy for us”.

98

5.4.4.4 Outsourcing

The final option is to outsource an entire feature to an external party for development. This option is

chosen only if outsourcing contributes to the strategic objectives of Payments (such as cost reduction)

and must fulfill the requirements as formulated in the outsourcing strategy- guidelines to ensure that

outsourcing is done via strategic partners and only when no other option is viable. A lead architect

explains the need of outsourcing as “Features that are of low business value and can be developed cheaply

are outsourced such as card authorization and card payments. This helps us to focus on the high priority

features.”

The selection of an appropriate realization option is based on various factors such as business value of

the logical component, technical quality of the legacy assets, cost of implementation and the importance

of ease of upgrading/updating.

Benefits, Challenges and Best Practices: Realization of the migration is the starting point

of implementing the logical components. Realization is not only about deciding which programming

language is to be used, but also the associated environment such as hardware and operating system. The

other factor that contributes to the success of realization is the determination of the suitable granularity

of the potential candidate services. In this migration project, there were predefined guidelines provided

by the program management committee on deciding which realization option to use. The guidelines

were developed by considering “external vs internal development” and “adoption of existing vs new

technology”. Figure 5.5 depicts the realization options based on development and technology adoption

criteria.

Reuse and/or

Upgrade

Customized

Replacement

Outsourcing
Packaged

Replacement

New TechnologyExisting Technology

In
te
rn
a
l

E
x
te
rn
a
l

Technology

Development

Figure 5.5: Realization Choices

A crucial criterion to determine the realization option was the business value and priority of the

logical component. For instance, central to NedBank’s business are the calculation of interest, commission

and cost calculation features. The logical components encompassing these features are reused and/or

upgraded from the existing ones. Upon deciding to reuse and/or upgrade, the technical qualities of the

features are examined to estimate the migration time. It was not always simple to reuse or upgrade,

particularly for third party packaged solutions that are not updated or supported by the vendor anymore.

For instance, the vendor who developed COBOL running in HP Tandem Nonstop went through various

mergers and acquisitions such that the infrastructure is hardly updated and maintained. In such cases,

99

a suitable packaged replacement is preferred. Any new logical component with high business value falls

under the “Customized Replacement” option. A low priority logical component is outsourced to a third

party upon strictly fulfilling the “outsourcing” criteria.

5.5 Lesson Learned

5.5.1 Implications of Reverse Engineering Techniques

The reverse engineering techniques that are used in this migration project had a significant role in finding

the facts of the current legacy programs and subsystems. In particular, the use of such techniques in

the “analyzing the gap” phase to obtain various metrics and call dependency graphs not only facilitated

the creation of an inventory of the current assets, but also identified computationally intensive COBOL

programs. In addition to creating an inventory of the current assets, using reverse engineering techniques

has the following two implications:

(i) Assisting in Selecting the Realization Approach: The use of reverse engineering techniques has

strongly facilitated the selection of the realization approaches in the migration process. The migration

team used the program quality metrics generated by the reverse engineering tools to estimate the com-

plexity of the programs. For example, in Figure 5.3, the COBOL program RT01600 has high McCabe

complexity and a negative maintainability index (MI). Hence, RT01600 is a potential candidate of re-

placement unless it has a low business priority. Similarly, programs with good and average index have

potential for reuse. In case of identifying candidate COBOL programs for services, the generation of

call dependency graphs of the subsystems was helpful. For instance, based on the work of Van Geet et

al. [277], the red-circled programs (RT23N, RT23M, RT20K and RT009) of Figure 5.4, were COBOL

programs of interest as they have high number of incoming calls (NIC). Thus, upon generating and

analyzing the call dependency graph those programs were investigated by the existing programmers to

identify their functionalities.

(ii) Knowledge Harvesting : Most of the documentation of the subsystems was either outdated or

incomplete. With the results of the reverse engineering techniques, a considerable amount of new in-

formation about the programs was identified that was even unknown to the current maintainers of the

subsystems. For instance, 599 out of 21085 copybooks are not used by the “CalculateInterest” subsys-

tem. This finding was a surprise to the current maintenance team of the subsystem. Additionally, the

flow graphs were generated to understand the overall flow of the programs within the subsystem. These

artifacts helped to update the documentation.

5.5.2 Adopting a Pragmatic Realization Approach

In the realization phase of the migration process, a pragmatic approach to executing the migration is

adopted in which the choices are based on various factors such as business value, business priority, and

the technical qualities of the features. The initial choice of reusing the existing functionalities is one

of the notable benefits claimed by the proponents of SOA for leveraging existing assets. However, in a

large scale legacy application, reuse is not always feasible. Therefore, the migration process of NedBank

suitably adapted other possible realization methods for a successful migration. Additionally, for large

scale legacy applications that include heterogeneous IT infrastructures (diverse programming languages,

100

various hardware and operating systems) there is no silver bullet solution to realize the migration process.

For a successful migration process, any approach can contribute to the success of the migration, provided

that the approach is well defined, and suited for the enterprise.

5.5.3 Emphasizing Organizational and Business Perspectives

Migration from legacy to a SOA environment is not only a technical endeavor, but also involves significant

issues from the organizational and business perspective. Particularly in the case of legacy systems having

no or outdated documentation, early involvement of existing technical staff in the migration process is

proven to be useful. The involvement of the technical staff facilitates the knowledge transfer to the

migration team. The synergy between the technical staff and the migration team that was observed

in this migration process was one of the key factors contributing towards the success of the migration.

Equally important is the focus of the “Program Management Committee” in the business-IT alignment

that facilitated the migration to achieve the business goals. An important lesson learned is that technical

staff tends to resist change because they fear that their expertise and professional experience with legacy

systems may become redundant due to the introduction of SOA. Therefore, it is important to involve

the technical staff from the start of the migration process and provide necessary training to adapt to

new technology. In the current migration process, the formation of various teams under the “Program

Management Committee” has actively involved the technical staff whose knowledge about the legacy

systems have proven to be of significant importance.

5.5.4 Harvesting Knowledge to Prevent Knowledge Erosion

Apart from available documentation, existing knowledge in the form of skills and experience within the

technical staff is one of the most important assets. Over the years, such knowledge and skills become

scarce resulting in knowledge erosion due to factors such as ageing, and staff changing jobs. Hence, suit-

able strategies such as conducting and archiving interviews, and initiating knowledge transfer programs

via training should be undertaken to harvest and preserve such existing knowledge. In the migration pro-

cess of NedBank, the involvement of the technical staff in the migration process has significantly helped

in knowledge harvesting and preservation while creating inventories of the high level functionalities of

the subsystems. Some of technical staff were interviewed and focused training programs were organized

to facilitate knowledge transfer. Additionally, the existing documentation was updated or created in case

no documentation existed.

5.6 Conclusion

In this chapter, we presented the findings of a case study of a large scale legacy to SOA migration process

within the payments domain of a Dutch financial institution. The chapter presented the business drivers

that initiated the migration, and describes a 4-phase migration process. The migration process equally

focuses on the technical and the business & organizational aspects of the migration. The migration

process starts by forming a “Program Management Committee” for proper governance. Then, a logical-

target architecture is developed based on the concept of componentization. The business components

within the logical target-architecture are aligned to support the business goals. The logical target-

architecture is then mapped to the existing legacy features using a gap analysis method. Such a gap

analysis suitably supports the potential of reusing the legacy features without significant changes to the

101

legacy systems itself– one of the key promises of the SOA. The migration is then realized following the

pragmatic realization options of the migration process.

The chapter presented an industrial report detailing how reverse engineering techniques were em-

ployed to facilitate a large scale legacy to SOA migration process. It illustrated the pain of the prac-

ticalities and under-emphasized aspects of a large scale migration project, and should be considered

a call-to-action for computer scientists to study the project environment, both from a business and

organizational point of view, as much as they study the technical aspects of migration.

As to future research, we aim to exploit model-driven modernization approaches to extract features

from the subsystems. Another interesting research area is to investigate how to automatically translate

legacy applications to a modern language.

102

Chapter 6

How Do Professionals Perceive Legacy Systems and

Software Modernization?

Abstract

Existing research in legacy system modernization has traditionally focused on technical challenges, and

takes the standpoint that legacy systems are obsolete, yet crucial for an organization’s operation. Nonethe-

less, it remains unclear whether practitioners in the industry also share this perception. This chapter

describes the outcome of an exploratory study in which 26 industrial practitioners were interviewed on

what makes a software system a legacy system, what the main drivers are that lead to the modernization

of such systems, and what challenges are faced during the modernization process. The findings of the

interviews have been validated by means of a survey with 198 respondents. The results show that practi-

tioners value their legacy systems highly, the challenges they face are not just technical, but also include

business aspects.

103

6.1 Introduction

A legacy system is any business critical software system that significantly resists modification and their

failure can have a serious impact on the business [22, 32]. Software modernization is the process of evolv-

ing existing software systems by replacing, re-developing, reusing, or migrating the software components

and platforms, when traditional maintenance practices can no longer achieve the desired system proper-

ties. The primary aim of software modernization is to reduce maintenance cost and increase flexibility.

After three decades of legacy system modernization research, it may come as a surprise that many legacy

systems are still in daily operation. Most of these systems were developed years ago, and have continued

to evolve. New requirements have led to frequent modifications of these legacy systems resulting in un-

structured source code that is difficult to maintain. Furthermore, knowledge about the legacy systems is

scarce as original programmers leave the company or retire, and documentation is usually lacking [283].

These issues have been recognized by the software engineering community and a plethora of legacy

system modernization approaches have been proposed (cf. Section 6.5). Despite the problems introduced

by legacy systems, and the acclaimed benefits of legacy system modernization, technology consulting

firms estimate that 180-200 billion lines of legacy code are still in active use [11, 265, 283]. This fact

has triggered us to investigate how legacy systems and their modernization are perceived in industry.

Specifically, we aim to identify the perceived benefits of legacy systems, the main drivers for legacy

system modernization, and the challenges professionals face with the modernization of legacy systems.

We have set up our research as an exploratory study, aiming to discover new perspectives and insights

about legacy systems in the industry. Accordingly, we adopted the grounded theory approach [103],

an increasingly popular method to conduct empirical software engineering research [3]. We designed,

conducted, and analyzed semi-structured interviews with 26 industrial practitioners. The findings of the

interviews were then validated through a separate structured survey, in which 198 professionals expressed

(dis)agreement with the results of the interview.

Our study makes the following contributions:

� We document the industrial perception of legacy systems and their modernization.

� We identify the perceived benefits of the legacy systems, drivers of modernization, and challenges

that the industry faces during modernization.

� We report the differences in perception of legacy systems between the industry and academia.

The chapter is structured as follows. In Section 6.2, we describe our study design. In Section 6.3 we

detail the key findings. Subsequently, in Section 6.4 we present the confirmation/contradiction of the

findings and address threats to the validity. In Section 6.5 we discuss related work. Finally, in Section 6.6

we conclude our research and propose future research directions.

6.2 Study Design

We employed two different research techniques to conduct our study. We started with semi-structured

in-depth interviews, a qualitative technique, to identify how legacy systems and their modernization are

perceived in industry. We followed a Grounded Theory (GT) approach [103] to analyze 26 in-depth

semi-structured interviews. To further validate the findings of the GT, we used a separate structured

survey– a quantitative technique. In an empirical study such as this, the use of multiple research

104

techniques (qualitative and quantitative techniques in our case) increases the confidence that the results

are reliable.

GT is an explorative research method that aims at discovering new perspectives and insights, rather

than confirming existing ones [103]. We started with a series of interviews conducted with 26 practition-

ers (identified as P1-P26 in this chapter), each lasting 1-2 hours. The informants were selected based

on the two criteria that they have experience with legacy systems, and with legacy system moderniza-

tion projects. The informants were identified opportunistically via industrial collaborators, followed by

snowball sampling [155], in which the first generation informants helped us to identify other informants

who fulfilled the criteria. In total, 23 interview sessions were performed. In three of the interview

sessions, the interview was conducted with two informants from the same organization. Furthermore,

two practitioners were from the same organization and this reduced the sample size of the participating

organizations to 22. The sample is arguably broad enough to well represent the software engineering pro-

fessionals. Moreover, the sample shows diversity in the industry domain, and the roles and experiences

of the participants. Table 6.1 provides the details regarding the domain of each informant’s company.

With respect to size, the companies range from small consulting firms to global corporations such as

IBM, Deloitte, and Capgemini. The variation among the informants’ roles is also broad, ranging from

software developers to system analysts, consultants, software architects, business architects, research

and development managers, and Chief Information Officers (CIOs). The experiences of the informants

range from 5 years to 43 years, with 19 years as an average experience of the sample and cumulatively,

the informants have 490 years of experience in information technology. Additionally, the interview data

totaled more than 25 hours of recorded data. We conducted semi-structured face-to-face interviews in

Table 6.1: Details of the informants

Participants Domain

P2, P11, P12, P20, P21 Information Technology Services

P1, P15, P17, P22 Financial Service Providers

P4, P5, P25, P26 Government Organizations

P7, P8, P18, P19 Software Development Company

P6, P10, P24 Consulting Company

P3 Aviation Industry

P9 Manpower (Security) Company

P16 Flower Auction Company

P13 Food & Dairy

P23 Machinery Production

P14 Poultry

English, which were recorded. Prior to the interview session, informants were provided with an interview

protocol that consisted of sample questions to be discussed during the interview sessions. The inter-

view session has three categories of questions: about characteristics of legacy systems, drivers for legacy

system modernization, and challenges faced during modernization. Afterwards, the recorded interviews

were transcribed and each interview transcript was analyzed through coding : a process of breaking up

the interviews into smaller coherent units, and adding codes to these units. Subsequently, a process of

writing down narratives that explain the ideas of the evolving theory, known as memoing, was used to

develop the coding. These coherent units represent key characteristics of the interview being analyzed.

Later, the codes were organized into concepts, which in turn were grouped into categories. As the in-

terviews progressively provided answers similar to the earlier ones, a saturation stage [3] was observed.

To confirm the saturation stage, we conducted two more interviews and found that the analysis resulted

105

in similar responses to the earlier ones. We used Nvivo 1029 as an instrumentation tool to facilitate the

interview analysis process.

In the second and final phase of this research, we adopted a structured survey as a data triangulation

process in order to validate the findings of the interview results. A data triangulation process– a method

that uses more than one data source, or collects the same data at different occasions– is typically used

to increase (decrease) confidence in a finding by providing confirming (contradictory) evidence [80, 233]

and helps to improve validity of the findings of an empirical study such as this [107]. The survey

was public and announced via mailing lists, social media such as Twitter, Linkedin, Facebook, and via

personal referrals. In the end, 198 participants responded to the survey, originating from more than

30 different countries. We performed sampling to exclude responses having no experience with legacy

systems. In total, 22 out of 198 were excluded, leaving 176 valid responses. The respondents have an

average experience of 13.5 years with legacy systems. Developers formed the largest group of participants

(22%), followed by IT Managers (14%) and researchers (12%); they come from various domains such

as software development companies (28%), consulting companies (21%), service providers (11%), and

financial institutions (9%).

In the subsequent sections, we present the results of our research, categorized over the four themes:

legacy systems, perceived benefits of legacy systems, drivers of legacy system modernization, and chal-

lenges of legacy system modernization. For each theme, we provide relevant “quotes” from the practi-

tioners and the results of the survey.

For further details of the research, we refer to our technical report [17], in which we provide additional

data to support our analysis. In the technical report, we provide the coding process, consisting of 44

different codes within 19 categories. For each code, we give a short working description. In addition, we

detail key quotes of all the informants (P1–P26) to illustrate how the codes are derived. Furthermore, the

technical report also presents the survey with final results along with response counts and percentages.

The report also describes statistical analysis, particularly, multiple regression analysis to identify the

relationships among the drivers of legacy system modernization and use the results in this chapter

to support our findings. To increase transparency of the data analysis process, we publicly provide

anonymous interview transcripts, the Nvivo 10 project file of interview analysis, and the survey data in

excel format30.

6.3 Findings

In the following subsections, we present the results of the analysis of the interview sessions and the re-

sults of the survey. For each interview, we started asking questions regarding their personal information

and experiences with legacy systems. Subsequently, the informant was asked to give a definition for a

legacy system based on his/her opinion and the findings are discussed in subsection 6.3.1. The discus-

sion then proceeded by asking questions about perceived benefits of legacy systems; these findings are

presented in subsection 6.3.2. Furthermore, the informants were asked about the issues associated with

legacy systems, which are the drivers for legacy system modernization and such drivers are discussed in

subsection 6.3.3. Moreover, the discussion proceeded to investigate the challenges faced during legacy

system modernization; these findings are presented in subsection 6.3.4.

29www.qsrinternational.com/
30http://www.servicifi.org

106

6.3.1 Legacy Systems

The interview sessions started by asking a definition of a legacy system from the informants. Most of the

informants agreed that legacy systems are “old” systems. Additionally, the informants pointed out that

legacy systems are “core” systems that have been proven to work correctly in a production environment

for decades. P1 said: “Most of the legacy systems are older than 20-30 years..[] Most of the systems

of the legacy systems are the core system”. P11 agreed with P1 by stating: “It [Legacy system] is an

old system; ... a lot of legacy system is the core system”. Interestingly, most of the informants related

legacy systems as systems that do not fit with the future IT strategy of the organization. P19 expressed

this as “My definition of a legacy system is systems and technologies that do not belong to your strategic

technology goals”.

To investigate further, the informants were asked if programming language is a determining factor

for a system being legacy, we obtained a mixed opinion. More than half of the informants do not agree

that the programming language is a determining factor for a system to be legacy, while the rest were in

agreement. Such a mixed opinion is also observed from the results of the survey. Around 50% of the

respondents agreed that the programming languages do determine if a system is legacy. The top five

languages that these informants indicated as legacy are depicted in Figure 6.1.Programming Languages

Visual Basic
12%

RPG
10%

COBOL
47%PL/I

12%

Assembler

PL/I
14%

Assembler
17%

Figure 6.1: Legacy languages by as per the informants

6.3.2 Perceived Benefits of Legacy Systems

6.3.2.1 Business Critical

The interviews reveal that the practitioners view legacy systems as business critical. As per the infor-

mants, legacy systems are the core systems of the organizations and their failure can result in serious

consequences for daily business. P11 argued that legacy systems are significant to business, taking an

example of a financial organization. He expressed his opinion as “It is very useful and has a business

impact still and generates a lot of revenue for banking and their clients”. P14, a 20 years experienced

IT director of a poultry company, simply stated that “Legacy for me is let’s say business critical”. P24

explained that legacy systems are old and business critical as: “Because they [Legacy systems] have been

there for 30 years, so they really are the foundation for the survival of the organization”. These opinions

clearly indicate that legacy systems support core business processes of a business and their failure can

have significant impact on an organization.

107

The results of the survey also strongly support that legacy systems are business critical. 76.7% (cf.

Figure 6.2) of the respondents indicated that legacy systems are typically business critical. One of the

respondents with 28 years of experience gives his strong opinion through an open question of the survey

as: “By definition a legacy system is business critical. A system that is old and obsolete and is not

business critical would never reach the status of legacy”.

6.3.2.2 Proven Technology

Informants have frequently expressed that legacy systems are old and have been developed, tested and

have been in production environment for years. Hence, it is an indication that legacy systems are of a

proven technology that still remain as the core systems of many organizations. P17 explained the proven

technology characteristics with an example of AS400 as: “Most of the time it’s [a] proven technology.

AS400 is stable, it always works [24/7] and is quite good. So, it’s proven technology and normally it’s

stable, [which] is a good thing”.. In our discussion with P4, he expressed: “Proven technology is often

the reason why they are still in use”. P11 associated “Availability” with the “Proven technology” and

said: “They are available, and they are more less 24/7 up and running”.

In the survey, 52.8% (cf. Figure 6.2) of the respondents indicated that legacy systems are proven

technology.

6.3.2.3 Reliable Systems

The definition of reliability is adopted from ISO/IEC 25010 standard [262] as “degree to which a system,

product or component performs specified functions under specified conditions for a specified period of

time”. This definition was provided to the participants of interview and survey. Based on the interviews,

the practitioners indicated that legacy systems are reliable systems, primarily, because they are running

in a production environment for decades. P18 supports this statement and said: “It is reliable...people

know how to use it. All the problems have been fixed over the years from it. So technical problems

are usually not there”. Other informants also share P18’s opinion as P1 stated: “The system has been

around for a long time and has been tuned to stability, robustness, availability and so on. So they’re well

performing and stable. Functionalities [Quality attributes] that count are stability, robustness, reliability

and availability of this system”. In general, legacy systems are perceived as reliable systems in industry

because of the fact that they have been in production for years and possible bugs and errors are already

fixed in the past. P12’s opinion is also in-line with the others and he said: “They have been around for

many years and during this period they have been stabilized”.

The findings of the survey are in agreement with the opinion of the practitioners regarding legacy

systems being reliable systems. 52.3% (cf. Figure 6.2) of the respondents indicated that legacy systems

are reliable systems.

6.3.2.4 Performance

With regards to performance, the interview revealed a mixed opinion. Some of the informants (e.g., P3,

P10, P24) strongly emphasize on the high performance characteristics of legacy systems. P3 expressed:

“It’s [Performance] enormous. Enormous quick. So the old system itself didn’t have [performance is-

sues]...I don’t think the performance is a problem”. P24 agreed with the opinion of P3 and further added:

108

76 7%

52.8%

52.3%

24.4%

Business Critical

Proven Technology

Reliable system

Performance

76.7%Business Critical

0 10 20 30 40 50 60 70 80 90

Figure 6.2: Survey responses for perceived benefits of the legacy systems

“I think ten thousand people are doing airlines booking with this little processing power. So performance

is never an issue in legacy system, at least I’ve never seen it”. In contrast, P9 and P18 perceive that

legacy systems do not have high performance. P9, with reference to a real time system that is being

used in his Manpower (Security) Company, referred: “It [performance] is very poor”. P18, a software

developer, agreed with P9 “The performance is not really good”. There are informants (P13, P14, P9,

P16, P26) who consider that performance of legacy systems as “Ok or enough”.

In the survey, 24.4% (cf. Figure 6.2) of the respondents indicated that legacy systems are of (high)

performance, which is comparatively low with respect to other characteristics. One of the plausible

reasons could be the fact that legacy systems get their job done and operate at good/enough (satisfactory)

speeds in many cases.

6.3.3 Drivers for Legacy System Modernization

The informants not only expressed their opinion about perceived benefits of the legacy systems, but also

explained about issues related to the legacy systems.

6.3.3.1 To Remain Agile to Change

In current dynamic business environment, organizations have to quickly adapt to various changes, in-

cluding intra-organizational changes, changes in laws and regulations, changes in business collaboration

(mergers and acquisitions), and faster time-to-market [280]. Despite the fact that legacy systems are

business critical and reliable systems, the informants expressed that legacy systems are inflexible to sup-

port changing business requirements. P20 explained how the inflexibility to adapt to new changes has

enabled him to modernize legacy systems. He said: “Other point is that my costumer wants flexibility,

and a short time-to-market, then you have to get rid of your legacy. Because legacy is rigid, and it is

not flexible”. P25, an IT architect at the tax office, agreed with P20 and said: “We had a lot of systems

before, and they were built in CICS, COBOL, DB2 and were not flexible. So they needed to be modern-

ized to get more flexibility”. The informants identified faster time-to-market as one of the drivers for

legacy system modernization because legacy systems are rigid, which increases the difficulty in promptly

addressing the market demands. P22 expressed this as: “We need a faster time-to-market, and we are

not able to do that in COBOL environment”.

The findings of the survey are in-line with the opinions expressed by the interview respondents,

in which respondents have strongly expressed that the need of flexibility to comply with the changing

business requirements and rapidly evolving future technologies do cause organizations to initiate legacy

system modernization projects. For the “Flexibility to change” driver, we depict the contributing drivers

109

(i.e., “Become flexible to change”, “Create business opportunities via mergers/acquisitions”, and “Faster

time-to-market”) in Figure 6.3, as presented in the online survey. It is interesting to observe that 85%

(38.1% for “Strong” and 46.9% for “Very Strong”) of the respondents of the survey have indicated

“Become flexible to change” a major driver. Similar observation can be noticed with “Faster time-

to-market”, for which 71.1% of the respondents indicated as a driver of legacy system modernization

(39.6% for “Strong” and 31.5% for “Very Strong”). But in contrast, the “Create business opportunities

via mergers/acquisitions” driver is indicated as a medium driver by 43.5% of the respondents.

18 4% 15 9% 15 2%
6.8%

100%
Very weak Weak Strong Very Strong

27.6%

18.9%
46.9%

37.2% 31.5%
18.4% 15.9% 15.2%

70%

80%

90%

43.2%
39.6%

50.3%

.6%

44.1%

50%

60%

70%

39.3%

32.4%

38.1%
43.2%

30%

40%

4.8% 5.4% 9.4% 6.1%
17.2%

8.3%

31.1%
10.2% 14.2%

19.5% 25.2%

0%

10%

20%

0%
Flex. Maint. FTTM Exp./Doc. Opport. Supp. Fail.

Figure 6.3: Drivers for Legacy System Modernization (Legends: Flex.:–Become flexible to change;
Maint.:–High cost of maintenance; FTTM:–Faster time-to-market; Exp./Doc.:–Lack of experts/docu-
mentation; Opport.:–Create business opportunities via mergers/acquisitions; Supp.:–Lack of supplier-
s/vendors; Fail.:–Prone to failure)

6.3.3.2 High Maintenance Cost

The interviews revealed that one of the significant drivers of legacy system modernization is high main-

tenance cost. More than half of the informants strongly argued that the cost involved in maintaining

the legacy systems is high. One of the most common motivations to modernize the legacy systems is

to reduce maintenance cost. P17 explained: “[With legacy systems] the cost is getting higher because

maintenance is getting more expensive, [then] maybe you should think of modernization”. Often par-

ticipants such as P12, P13, P14 argued that maintenance cost could be lowered if the legacy systems

were modernized to standard software products. For instance, P12 mentioned: “But if you can move

to standard product, then it could be usually an advantage because the maintenance cost for standard

product is usually lower”. P14 expressed: “if you look at the [maintenance] cost, I’m quite sure I can

run a similar environment against lower cost, if I would use a standardized product. Let’s say state of

the art ERP environment...because I don’t need somebody to maintain”.

From the survey, we observed that respondents (80.4%) strongly indicated (43.2% for “Strong” and

37.2% for “Very Strong”) that the high maintenance cost of legacy systems is one of the major drivers

behind legacy system modernization (cf. Figure 6.3).

110

6.3.3.3 Lack of Knowledge

As per the participants, one of the most significant drivers of legacy system modernization is a lack

of knowledge, particulary scarcity of experts, unavailability of (up-to-date) documentation and limited

number of suppliers/vendors of the legacy system. More than 90% (24/26) of the informants pointed out

that lack of resources of the legacy systems causes organizations to modernize their legacy systems. P10

argued that: “I think the big problem is that you can’t find people to understand them [legacy systems] and

understand the technology”. P11 not only indicated lack of experts, but also pointed out the outdated

documentation and explained: “The issue is that there is less knowledgeable people [experts] are available

in the organization because the [knowledgeable] people of the system are already gone [left job]. The [other]

characteristic of legacy systems is the lack of documentation”. Some informants (P1, P2) expressed a fear

that in future the scarcity of the experts of legacy systems will be a severe problem. As to the limited

number of suppliers/vendors, 12/26 informants indicated it as a problem. P17 expressed: “There’s no

patches. If suppliers stop their product, organization needs to find another way to keep supporting their

system”.

In Figure 6.3, we depict the “Lack of knowledge” driver comprising of “Lack of experts/documen-

tation”, and “Limited suppliers/vendors”, as presented in the online survey. Almost 60% (44.1% for

“Strong” and 15.2% for “Very Strong”) of the respondents indicated that “Lack of suppliers/vendors”

is a strong driver for modernization. Furthermore, 68.7% of the respondents indicated “Lack of ex-

perts/documentation” as a “Strong” (50.3%) and “Very Strong” (18.4%) driver for modernization (cf.

Figure 6.3).

6.3.3.4 Prone to Failures

Although “Reliable system” is one of the perceived benefits of the legacy systems, there is a fear shared

by most informants that the legacy system might fail due to lack of experts and suppliers/vendors.

Informants have identified that “Prone to failure” as a driver of legacy system modernization. Legacy

systems are “business critical” and organizations cannot afford their legacy systems to fail. P13 expressed

this as: “We have an old ERP system, old almost 10 years old. And it drives the production in the plant

and also the logistic and warehouse and also the order towards the customers. If that system stops, the

plant stops, the warehouse stops”. Often, the informants indicated that risk of failure can be the result

of other drivers such as limited suppliers/vendors, and lack of experts. Such opinion is shared by P2 as:

“So when your environment [legacy systems environment] runs out of support then it is really dying and

if that’s true then you are already late”.

In comparison with other drivers, “Prone to failures” is indicated as the weakest driver by 25.7% of

the respondents (cf. Figure 6.3). One of the plausible reasons for this could be the fact that the “Prone

to failure” issue is countered by the “Reliable system” perceived benefit of the legacy systems.

6.3.4 Challenges of Legacy System Modernization

Upon identifying the drivers of legacy system modernization, the study focused on identifying what

challenges are faced by practitioners while modernizing legacy systems. Based on the interviews, the

following challenges were identified.

111

6.3.4.1 Time Constraints to Finish Modernization

The interviews revealed that finishing any legacy system modernization on time is the biggest challenge.

The timing constraint is influenced by other existing issues of legacy systems such as scarcity of resources

such as experts and documentation. P1 expressed the challenge as “They run out of budget.. they run

slightly out the time. [...] that’s mainly to do with scarcity of people on the legacy system”. P13 also

agreed with P1 and stated that the time constraint to finish modernization project is influenced by lack of

resources. He expressed this as: “Your biggest problem is an availability of resources [documentation and

experts] and availability of money and [to some] extent availability of time”. Due to the long duration of

the legacy system modernization projects, many earlier plans regarding the modernization change and

this further delays the projects. P7 shared his experience as: “Legacy modernization project lasts too

long. We plan modernization for 3 years, and after 5 years we stop the whole modernization, and start it

over”. Some of the respondents indicated that lack of resources is also one of the factors of not finishing

legacy system modernization projects on time.

Interestingly, by far the largest percentage (63.6%) of the respondents indicated that legacy system

modernization projects frequently face time constraints to finish (31.8% for “Challenging” and 31.8% for

“Very Challenging”).

29 0% 28 2% 27 5% 23.8% 23.5% 19.6%
14.9% 10.9%

90%

100%
I don't know Not Challenging Less Challenging Quite Challenging Challenging Very Challenging

22 8%
25.7%

25.7%
23.8%

31.8% 30.9% 30.1% 29.7% 29.0% 28.2% 27.5%

70%

80%

29.1%

22.4%31.8%
26.2% 29.5% 32.4% 31.7%

28.2%
21.5% 26.5%

22.8%

50%

60%

16 1%

26.5%
19.6%

22.1% 19.9% 17.6% 18.6%
21.5%

20.8%
22.4%

24.8% 27.7%

20%

30%

40%

0.7%
6.0%

0.7% 1.4% 1.4% 4.7%
0.0% 0.7% 1.3% 0.0%

5.4% 4.8%3.4%

4.0%
5.5% 6.1%

1.4%
3.4%

4.7%
7.5%

11.4%
7.4%

4.1%
11.6%12.8%

10.7%
14.4% 12.8%

17.9%
14.1%

25.5% 19.0%
16.1%

19.6%
20.9%

0%

10%

20%

% % 0.0% % 0.0%0%
TC PROI DM FLM LK DT ResS. DBL Narch. DCC DPF CR

Figure 6.4: Challenges of Legacy System Modernization (Legends: TC:–Time constraint to finish mod-
ernization; PROI:–Predicting ROI; DM:–Data Migration; FLM:–Funding modernization project; LK:–
Lack of knowledge; DT:–Difficult to test; ResS.:–Resistance from staff; DBL:–Difficult to extract busi-
ness logic; Narch.:–Non-evolvable system architecture; DCC:–Difficult to communicate the consequences;
DPF:–Difficult to prioritize the functionality; CR:–Cultural resistance from organization)

112

6.3.4.2 Data Migration

The informants also revealed that data migration in legacy system modernization project is also challeng-

ing. P11, who was conducting a modernization project in an insurance company, stressed the importance

of the data migration as: “The main risk in modernization is that the data migration, which cannot be

done perfectly. Errors are made and you have some risk that your new system is disturbed after mod-

ernization”. Some of the informants indicated that the difficulty of data migration is due to the old

databases that the legacy systems use. P17 explained this as: “Data migration is really difficult because

legacy system doesn’t support modern databases or doesn’t have relation database model”. To mitigate the

risk of legacy system modernization project failure, P14 suggested planning for data migration upfront.

He said: “If you are doing migration of your legacy, you have to prepare a good data migration strategy”.

59.6% of the respondents of the survey agreed that data migration is one of the challenges of legacy

system modernization projects in industry (cf. Figure 6.4).

6.3.4.3 Complex System Architecture

Dealing with the complex system architecture of legacy systems is one of the important challenges that

the practitioners face while modernizing legacy systems. In the interviews, the informants used “Poor

architecture”, “Monolithic architecture” or “Ill–designed” to express complex architecture. P1 expressed

his opinion about system architecture as: “If you have ill-designed legacy system or old fashioned design

as a monolith system, that might still be a challenge”. The informants frequently expressed that the

complex architecture is a result of ad-hoc maintenance/upgrade of the past. P9 explained this as: “Not

only the development part, we have to think about the architecture of the system also. Because if people

are bumping against architecture, changing the earlier architecture”. P2 further illustrated the challenge

as: “And what you also find is that one application is developed that it uses also the database of another

one. And it’s not through a normal interface but it’s via back door to get some data over there”. P18

said: “Because the program is really hard-coded, it is not configurable that makes modernization difficult”.

Furthermore, the result of such complex architecture has an impact on testing during modernization.

P12 argued that testing is challenging during modernization because: “It can be difficult to extract all

the use cases to test. It also requires a lot of work to compare functionality from legacy system to the

new application. It can be time consuming and difficult work”.

In Figure 6.4, we represent the two contributing challenges of “Complex system architecture” (i.e.,

“Non-evolvable architecture”, and “Difficult to test”) individually, as presented in the online survey. Cu-

mulatively, “Non-evolvable architecture” is perceived as a serious challenge by 46.3% of the respondents

while 56.4% expressed the same for “Difficult to test”.

6.3.4.4 Lack of Knowledge

The informants from the interview perceived lack of knowledge of the legacy systems as one of the impor-

tant challenges. P11 explained this as: “It is complex, because you have a lot of different expertise needed

to modernize such as people who understand database environment and operating systems, middleware,

enterpriser services bus of architecture. You also need people who understand business functionality to

transform business functions from legacy systems to another system”. Additionally, lack of knowledge,

particularly documentation can be a big risk in legacy system modernization as P20 said: “If documen-

113

tation is lacking then it is a bigger risk to migrate. Because you don’t know what is going on in the old

system and the risk to migrate is bigger”. Nevertheless, P18 indicated the use of reverse engineering

techniques to mitigate the lack of (up-to-date) documentation challenge. He explained “For the old

systems, we reverse engineer the old system and document them well so we know what the requirements

are and can help to build new system”.

As per survey results, 60.7% of the respondents have indicated that lack of knowledge is either

“Challenging” or “Very Challenging” for legacy system modernization.

6.3.4.5 Difficult to Extract & Prioritize Business Logic

As an effect of lack of knowledge, identifying business logic within legacy systems becomes more chal-

lenging. The informants revealed that extracting business logic is one of the challenges in legacy system

modernization. P20 expressed this as “To extract all the rules and details in there [legacy systems] is

really difficult”. P12 expressed his experience as: “The company or the project team has to extract exactly

the internal functionality of this legacy application. It can be difficult to extract, to document, and to

implement it [business logic] properly”. P12 further suggested using automated techniques to initially

extract diagrams to better understand the business logic. He explained this as: “So I think it [business

rules] can be really helpful to provide insight into the internal working of the system, to extract it to a

human readable diagrams or documentation”. Additionally, P18 said: “Yes, you can only do that if you

know exactly what the thing does. That is [business logic extraction] is the hard part”. Within the critical

business processes supported by the legacy systems, prioritizing the extraction of such business logic is

also equally important.

Note that, we depict the “Difficult to extract & prioritize business logic” challenge comprising of

“Difficult to extract business logic”, and “Difficult to prioritize the functionality”, as presented in the

online survey. As per the results of the survey (cf. Figure 6.4), 50.3% of the respondents agree that

extracting business logic from the legacy systems is an obstacle (26.5% for “Challenging” and “23.8% for

“Very Challenging”) and 40.6% agree that prioritizing the functionality (25.7% for “Challenging” and

“14.9% for “Very Challenging”).

6.3.4.6 Resistance from Organization

Resistance to change from the organization (including users and technical staff of legacy systems) towards

a new technology is a well-documented phenomenon as they fear that their expertise and professional

experience with legacy systems may become redundant due to modernization. Surprisingly, not only is

there resistance from technical staff, but the informants also reported that cultural resistance to adapt

to new technology is another challenge in legacy system modernization. P12 explained the resistance

from staff as: “Sometimes they see legacy systems as their baby and they tend to know every aspect of

it. Sometimes it is difficult to work with them while modernizing because they might not share their

knowledge”. Most of the informants observed that the resistance of the existing technical staff is due to

job security. P6 explained this as: “Because what is our need if we have a new system, which is working

not with COBOL. Who is gonna [going to] need me anymore, so they ditch me after it [modernization]

is done. So, why should I cooperate?” Regarding cultural resistance, informants identified that adapting

to new technology is difficult for the staff. P11 strongly emphasized that cultural adaption is one of

the serious challenges. He stated: “Sometimes people do not like changes. Not only in the business

114

organizations, but also in IT organization. So you need to persuade them for the need of transformation

[modernization]”.

For the “Resistance from organization” challenge, we depict the challenges individually (i.e., “Re-

sistance from staff”, and “Cultural resistance of organization”) in Figure 6.4 as presented in the online

survey. 49% of the respondents indicated that “Resistance from staff” is a challenge (21.5% for “Challeng-

ing” and 27.5% for “Very Challenging”). Similarly, “Cultural resistance from organization” is indicated

by 34.7% of the respondents with 23.8% for “Challenging” and 10.9% for “Very challenging”.

6.3.4.7 Addressing Soft Factors of Modernization

In this study, we adopted the concept of soft factors in modernization from Murer et al. [196] that con-

siders non-technological factors such as people, communication, and business values of organization. The

practitioners identified three soft factors as challenges. First, communicating the reasons/consequences

of legacy system modernization, followed by securing funding from the top management. Often the

informants indicated that the earlier challenge has an implication on the latter. P10, a legacy system

modernization consultant, expressed his view as: “I think top management doesn’t understand the issue

and they don’t give budget for it [legacy modernization]”. Additionally, the informants indicated that

communicating the consequences of the modernization is also a challenge that is often centered on the

return on investment (ROI). P20 explained the difficulty of predicating ROI as: “They [Top manage-

ment] are always looking for a short term Return on Investment. Once you put the money in, they want

to earn it back”. An effective way to convince the top management is to identify appropriate business

cases and explain the need/consequences of legacy system modernization. P19 explained the need to use

business cases as: “You have to somehow come up with the business case that says what is my current

cost, what is the cost of migration, what the new total cost of ownership, and that you have to predict the

Return of Investment. A business case can have soft components like improve maintenance or improve

performance because they represent business value”.

For the “Addressing soft factors of modernization” challenge, we depict the contributing challenges

individually (i.e., “Predicting ROI of modernization”, “Difficult to communicate consequences of mod-

ernization”, and “Funding modernization projects”) in Figure 6.4 as presented in the online survey.

57.1% of the respondents indicated that “Predicting ROI of modernization” is a challenge (26.2% for

“Challenging” and 30.9% for “Very Challenging”). Similarly, “Difficult to communicate consequences

of modernization” is indicated as a challenge by 45.3% of the respondents with 25.7% for “Challeng-

ing” and 19.6% for “Very challenging”. 62.1% of the respondents expressed that securing funding for

modernization is a challenge (32.4% for “Challenging” and 29.7% for “Very Challenging”).

6.4 Discussion

A number of pervasive findings have emerged from the current research regarding legacy systems and their

modernization, many of which are new and surprising while some resonate with the findings of other

researchers. This section discusses the confirmation/contradiction of the findings with the academic

research and reflects on threats to validity of this research.

115

6.4.1 Core System vs. Obsolete System

Evidence from current research indicates that practitioners perceive legacy systems as core systems,

rather than obsolete systems– as generally perceived in academia. Practitioners do agree that there exist

many problems with legacy systems such as that they are inflexible, and costly to maintain. Notwith-

standing these issues, legacy systems are crucial to the execution of day-to-day business processes of

organizations whatever the business domain they operate in. Legacy systems are often the “back office”

systems, which are rigid and inflexible compared to the “front office” systems. For instance, in financial

business, COBOL is predominantly used as “back office” systems to process millions of batch transac-

tions per day, which is crucial to any financial institution. The practitioners perceive legacy systems as

crucial systems as they are business critical, reliable, and have been running in production for decades.

Within the life cycle of the legacy systems, they have been well tested and practically run without errors

to execute business processes.

Surprisingly, the main consideration for practitioners to determine if a system is legacy depends on

whether the functionalities of the system are still in-line with the business-IT alignment of the organiza-

tion. This finding contrasts with the observations made in academia, in which factors such as inflexibil-

ity [32, 43], expensive to maintain [32, 22], and even use of obsolete programming languages [22, 41] are

frequently used to decide if a system is legacy. However, the findings of this study stand in contrast with

this. We observed mixed results from the interview (53%) and survey findings (54.1%) who agree that

programming language is one of the factors to determine if a system is legacy. Such a mixed observation

has led us to further investigate if there is any interesting correlation. Consequently, we performed a

Pearson Chi-square test to check if there exists any association between the role of the respondents (7

different categories) and the choice of programming language as a deciding factor for a system being

legacy. The analysis with (ρ= 2.9), which is far less than the critical value (α= 12.59), revealed that

such an association does not exist. Further, it is interesting to observe that the practitioners could

not formulate a concrete definition for a legacy system– a frequently observed issue in academia (e.g.,

Alderson & Shah [7], Cornelissen et al. [71]).

6.4.2 Legacy System is a Cash Cow

As identified by Adolph [4], the findings of this study justify the notion of cash cow used for legacy system–

systems that have been bringing in revenue for years for organizations. Despite various problems, this

study revealed that practitioners perceive legacy systems as critical systems that execute the day-to-day

business processes. One of the findings with respect to the “business critical” characteristic conforms

with the observation made by Brodie [41]. However, other characteristics such as “reliable system”,

“proven technology” are merely discussed in academia. In general, legacy systems are presented as a

quagmire in academia, often reporting about the problems associated with them and hence, urge for

their modernization. But, in industry the legacy systems are still perceived as the “backbone” system

of organizations. These systems are developed, tested and have been processing millions of records for

decades on a daily basis. Apart from the “business critical” characteristic, the reliability of the legacy

systems is the other predominant factor that keeps legacy systems still alive in industry. Frequently, the

informants of the interviews indicated that legacy system are cash cows as: “generate a lot of revenue

for banks”– P11, “the most profitable systems”–P7, and “great business value”–P10.

116

6.4.3 If It Ain’t Broken, Don’t Fix It

The aphorism “If it ain’t broken, don’t fix it” suitably captures the belief among practitioners. Not only

in the interviews, but the respondents of the survey also stated in the “Others” section of the survey

that if the legacy systems are working “well”, then legacy system modernization projects are unlikely

to be initiated despite various problems. Some of the responses include “they have been working- why

fix it?” by a developer with 17 years of experience with legacy system, and “we didn’t fix it last year,

and survived. Why should this year be different?” by a chief technical officer of a software development

company.

One of the most significant problems raised by the practitioners is scarcity of knowledge, including

legacy experts and (up-to-date) documentation of the legacy systems. Evidence in academia shows that

lack of knowledge is one of the enablers for legacy system modernization [32, 147, 7, 22]. Apart from

issues with documentation, erosion of soft knowledge [196]– existing knowledge in the form of skills and

experiences within the technical staff (original developers, maintainer, users)– is also another problem

that has triggered legacy system modernization in industry. Over the years, soft knowledge has become

scarce resulting in knowledge erosion due to factors such as ageing, retirement, and staff changing jobs.

Furthermore, Khadka et al. [147] report on how various mergers and acquisitions of the supplier of

Tandem NonStop based COBOL has triggered legacy system modernization in a bank. Additionally, the

other significant driver for legacy system modernization identified by practitioners is “high maintenance

cost”– a well reported issue of legacy systems in academia [43, 32, 22, 283].

With respect to drivers of the legacy system modernization, the findings of our study are in-line with

the problems reported in academia.

6.4.4 Business vs. Technical Aspects: A Tale of Two Perspectives

Surprisingly, the study findings reveal that the challenges of legacy system modernization in industry

largely emerge from the business perspective and also complements most of the technological challenges

reported in academia. Challenges such as “Funding modernization projects”, “Resistance from organi-

zation”, “Predicating ROI”, “Timing constraints to finish” strongly relate to business perspectives of

legacy system modernization. This observation also holds true for the drivers of modernization. In par-

ticular, the “Become flexible to change” driver is identified by 85% and the “Faster time-to-market” by

68% of the respondents in the survey reflect the importance of the business aspect of legacy system mod-

ernization. Furthermore, the need for a business case to communicate the necessity and consequences of

modernization to the top management also reflects the importance of business aspects of modernization.

Such evidence clearly indicates that legacy system modernization is not just a technical endeavor, but

also a business endeavor. Lately, legacy system modernization research has also focused on considering

the business and organization aspects together with the technical aspects (e.g., Murer et al. [196], Nasr

et al. [202]).

6.4.5 Limitations and Threats to Validity

Adolph et al. [3] argue that explorative qualitative research is often viewed with discomfort in software

engineering with regards to research validity, and verification as assessing the validity of qualitative

research is a challenging task [107]. In the following subsections, the most relevant threats to validity

117

are discussed.

6.4.5.1 Credibility

Credibility refers to the fact that the findings of the research are free from any potential research bias.

To mitigate the internal validity and to strengthen the credibility of the research, various measures have

been adopted. To start with, sampling of the informants for the interview and survey was performed

in which only the informants having experiences with legacy systems and legacy system modernization

were included. Furthermore, the research closely followed the GT guidelines, including careful coding,

memoing and categorization. Each coding and categories were cross-validated with the other researchers

in the process of developing. Additionally, the results of the interviews were triangulated with an online

survey filled in by 198 respondents. To increase the transparency of the research, various artifacts such as

interview records, interview transcripts, interview protocol, details of the coding process and the results

of the survey are made available31.

6.4.5.2 Generalizability

Generalizability is concerned with to what extent the findings can be generalized. One of the potential

threats to the external validity is the fact that all the interview informants are from the Dutch industry.

This choice may somehow bias the results. However, the distribution of the informants includes different

company sizes, different level of experience, different roles, and variation in the domain of the companies

(refer Table 6.1) arguably increases the generalizability of the findings. Furthermore, the findings of the

research have been validated by respondents from more than 30 different countries in the survey, which

also increases the confidence of generalizability.

6.5 Related Work

This section describes related work aimed at assessing legacy systems and legacy system modernization

along with empirical legacy system modernization research.

6.5.1 Legacy Systems and Their Characteristics

Legacy systems have been researched over the past three decades. The seminal work in this area is

the first law of continuing change by Belady & Lehman [19], followed by the concept of preventative

maintenance [180]. Both of these works put emphasis on addressing changes to make software systems

more maintainable. Following the concepts of software evolution & maintenance, Brodie & Stonebraker

describe legacy systems as “any systems that cannot be modified to adapt to constantly changing business

requirements and their failure can have a serious impact on business” [43]. Brodie [41] mentions various

characteristics of legacy systems such as mission critical, hard to maintain, inflexible and brittle. Bisbal et

al. [32] listed problems of legacy systems such as legacy systems run on obsolete hardware, are expensive

to maintain, suffer from lack of documentation and understanding of system, and are difficult to extend

and integrate with other systems. Alderson and Shah [7] describe the issue regarding the lack of legacy

experts/resources. From the aforementioned definitions and characteristics of legacy systems, it is evident

that legacy systems are perceived as a serious problem in academia. The current study, in contrast, takes

31www.servicifi.org

118

a different approach in identifying the characteristics that still keep them operational in the industry.

Nevertheless, the study also explores various issues of the legacy systems that are in-line with the issues

identified in the academia. In fact, we explicitly identified overlaps between the issues of legacy systems

as observed in academia and in industry such as high maintenance cost, lack of resources, inflexibile

systems. In this research, we have presented these issues as drivers for legacy system modernization.

6.5.2 Legacy System Modernization and Challenges

A plethora of legacy system modernization approaches have been reported. Brodie & Stonebraker pre-

sented the DARWIN method [42] as an incremental approach for migrating legacy systems. The RE-

NAISSANCE approach [286] delivered a systematic method for legacy system modernization. Wu et

al. [296] described the Butterfly method that uses a gateway-free approach unlike Brodie & Stone-

braker’s gateway approach [43]. Weiderman et al. [289] presented a system modernization approach that

leverage middleware and wrapping technology. The use of reverse engineering techniques in legacy sys-

tem modernization has been reported by Quilici [217] and Weide et al. [288]. Bisbal et al. analyzed the

existing legacy system modernization approaches in their survey [33]. Seacord et al., in their book [241],

presented a risk-managed approach to legacy system modernization. Various methods/techniques have

been used to modernize legacy systems such as architectural pattern languages [106, 116], feature mod-

eling [187, 181], iterative engineering [29], wrappers [268, 289], and aspects [193]. In the last decade, the

advancement of web-based technologies has fostered legacy system modernization (e.g. [264, 164, 44, 75]).

In particular, the service-oriented architecture (SOA) has been a popular target architecture for legacy

system modernization and various legacy to SOA modernization approaches have been reported (e.g.,

Khadka et al. [145], Razavian & Lago [222], Almonaies et al. [8]).

With respect to legacy system modernization challenges, Brodie [41] listed various technical chal-

lenges of legacy system modernization that are more influenced by academic research experiences.

Sneed [254] discussed recurring risks such as performance loss, architectural mismatch, testing bottle-

neck, current staff’s rejection that are associated with a reengineering projects. Van Deursen et al. [276]

presented an overview of techniques to facilitate legacy system modernization and the issues of modern-

ization, particularly aiming at identifying objects. In a research roadmap, Bennett & Rajlich [23] argued

to generalize the legacy system modernization approaches beyond source code, and to include data and

objects of the current legacy systems.

The legacy system modernization research and the challenges identified in the academia are largely

technology-oriented. They provide different techniques/methods to facilitate legacy system moderniza-

tion and point out various challenges faced in the course of applying those techniques/methods. Our

research not only identified various business and organizational issues, but also confirmed the technical

observations made by researchers.

6.5.3 Empirical System Legacy Modernization Research

Sneed [250] reported a case study of modernization of a commercial application system for distributing

books and other publications. Colosimo et al. [67] performed two controlled experiments to evaluate

migration of COBOL-based system to a J2EE, web-based system. Murer et al. [196] presented their

experience with an evolutionary approach to migrate legacy software of Credit Suisse Bank. Their

findings largely complement our results as they focus not only in technical details of the modernization,

119

but also on the business and organizational aspects. Apart from technical issues, the authors in particular

identify the importance of knowledge existing within the technical staff, role of cultural values of the

organization in the modernization process. Nasr et al. [202] present their experience with realizing two

SOA migration case studies in which they identify various business issues such as resistance to change from

the organization, time constraints to finish modernization along with technical issues such as lowering the

maintenance cost, and increased flexibility. From an industrial perspective, Torchiano et al. [271] surveyed

59 Italian companies to identify the state-of-the-practice in software modernization and explained that

the main factor influencing the modernization process is human factor followed by technological factors

and issues related with data inconsistency. Razavian & Lago [223] conducted interviews to understand

how legacy to SOA migrations are conducted in industry aiming at identifying which modernization

activites/processes are prevalent in industry. In a report published by NASCIO [198], a survey of 29

states in the US is reported with the aim to identify the state-of-art of legacy systems, and the challenges

faced during their modernization.

The findings of these studies resonate with the results of our study. The findings of this study

undoubtedly support the results of these studies, yet we have employed different research methods

(qualitative and quantitative methods) to further increase the reliability of the findings. In most of the

aforementioned studies such as [222, 198, 271], a single research method is used. With respect to the

observational studies [202, 67, 250], we refer to future work to validate our findings.

6.6 Concluding Remarks

Although legacy systems and their modernization have been extensively researched, this chapter ad-

dresses the relative absence of empirical studies of industrial perception of legacy systems and their

modernization. To the best of our knowledge, this is the first attempt to empirically investigate the per-

ceived benefits of legacy systems, problems associated with legacy systems that initiate modernization,

and the challenges faced during modernization from an industrial perspective. With the current status

of our research some of our findings provide empirical evidence for existing hypothesis from the literature

while others provide new insights that extend the body of knowledge on software modernization.

What this study adds to the discourse is evidence that legacy systems are not necessarily a quagmire,

but are business critical, reliable and proven systems that effectively execute the day-to-day business of

organizations. Such perceived benefits of legacy systems are the factors that keep them alive in industry.

Not to mention that the practitioners are largely motivated by the “If it ain’t broken, don’t fix it”

aphorism towards legacy system modernization. In addition, the study identifies drivers of and the

challenges for legacy system modernization. The drivers of the legacy system modernization in industry

confirm the observation made such as lack of knowledge, high maintenance costs, and achieving flexibility.

However, the challenges of legacy system modernization faced by the practitioners are not just technical,

but also organizational and highly motivated by business considerations.

In summary, this study documents the following contributions:

� We document the industrial perception of legacy systems and their modernization.

� We identify the perceived benefits of the legacy systems, drivers of modernization, and challenges

that the industry faces during modernization.

� We report the differences in perception of legacy systems between the industry and academia.

120

The findings reported in this study are the outcome of an empirical research. We, therefore, want to

convey that the findings and the conclusions drawn are suggestive, rather than conclusive. We do not

claim to have comprehensively addressed all the perceived benefits and the drivers of legacy systems, and

the challenges faced during legacy system modernization in the industry. However, the detailed grounded

theory approach that we have adopted for analyzing the interview data, followed by the validation of the

findings via an online survey, increase our confidence to claim that the findings and conclusions drawn

represent a significant view.

The findings have the following implications: with these findings in hand, academics can (re)focus

their efforts in legacy system modernization to include, besides the technological scope, the organizational

issues, and business drivers for modernization, and in order to benefit from academic research results,

practitioners should examine the academic tools, techniques, and methods developed for legacy system

modernization, and initiate collaborations.

As to future work, we aim at validating the findings of the current study using observational partici-

pating research in a number of real world modernization scenarios. In addition, we believe that this study

has highlighted “practitioners’ issues”, which the research community can address in order to facilitate

technology and knowledge transfer.

121

122

Chapter 7

Post Migration Analysis of Legacy System Modern-

ization

Abstract

Software modernization has been extensively researched, primarily focusing on observing the associated

phenomena, and providing technical solutions to facilitate the modernization process. Software modern-

ization is claimed to be successful when the modernization is completed using those technical solutions.

Very limited research, if any, is reported with an aim at documenting the post-modernization impacts,

i.e., whether any of the pre-modernization business goals are in fact achieved after modernization. In

this research, we attempt to address this relative absence of empirical study through five retrospective

software modernization case studies. We use an explanatory case study approach to document the pre-

modernization business goals, and to decide whether those goals have been achieved. The intended benefits

for each of the five cases we considered were all (partially) met, and in most cases fully. Moreover, many

cases exhibited a number of unintended benefits, and some reported detrimental effects of modernization.

123

7.1 Introduction

In the software engineering, it is widely accepted that real world software must be continually adapted

or enhanced to remain operational [19]. The need for constant adaptation or enhancement within an

operational software system is triggered by various factors such as adapting to new business requirements,

changes in legislation, advancement in technology [218]. Lehman’s laws of software evolution suggest

that operational software systems must often reflect these changes, otherwise they become progressively

less useful to the stakeholder [19]. Hence, evolving these operational software systems by constantly

adapting to changes is critical and requires significant resources [188, 23]. Failure to take remedial

changes gradually makes them costly to operate and maintain, thereby turning them into legacy software

systems– systems that significantly resist modification and are less maintainable [22].

In terms of the software life cycle, Comella et al. [68] categorize software evolution into three activities:

maintenance, modernization, and replacement. Despite the fact that some researchers and practitioners

use software evolution and software maintenance interchangeably [23], this research distinguishes these

two terms and instead adopts the categorization (i.e., maintenance, modernization, and replacement)

proposed by Comella et al. [68].

Software modernization has been extensively researched in academia, primarily to increase maintain-

ability, increase flexibility and reduce costs [23]. Hence, a plethora of software modernization methods

exist. The majority of these aim to address technical aspects of modernization, i.e., providing technical

solutions to perform or to facilitate the software modernization process [143]. Furthermore, these tech-

nical solutions of software modernization are labeled as “successful” once the modernization process is

proven to be technically feasible. As per our knowledge, very limited, if any, (empirical) assessments of

the impact of software modernization in terms of business goals exist. Nasr, Gross & van Deursen [202]

indicate the need for a distinction between the technically feasible outcome and the impact of soft-

ware modernization. Lack of empirical evidences of impact software modernization can contribute to

different expectations and wrong estimations of resources. This knowledge gap can potentially lead to

delays or even failures of software modernization projects. However, measuring the impacts of software

modernization is not trivial.

In this chapter, we present five retrospective case studies of software modernization with the aim

of documenting the impacts of modernization. We adopt an explanatory case study research method

(seeking an explanation of a situation or problem for pre- and post-event studies [233]) to explore the

pre- and post- modernization situation. The contribution of this research is two-fold: first, it documents

the expected benefits and the impacts of software modernization by analyzing pre- and post- modern-

ization situations, and second, it compares the post modernization impacts with the benefits of software

modernization as claimed by academic research.

Section 7.2 of this chapter reviews related work. Section 7.3 presents the case study setup and

research method used for this research. Section 7.4 provides the five case study reports. Section 7.5

presents the findings of the cases. Section 7.6 discusses the threats to validity of the research. Finally,

Section 7.7 provides concluding remarks and relevant future research directions.

124

7.2 Related Work

7.2.1 Software Evolution and Software Modernization

Software evolution and software maintenance are mature research domains in software engineering. De-

spite, several researchers and practitioners use software evolution as a preferable substitute for software

maintenance [23], this chapter distinguishes these two terms. Godfrey & German [104] provide a distinc-

tion between software evolution and software maintenance; the former is used to describe the phenomena

associated with modifying existing software systems, whereas the latter describes the activities to make

the existing software systems easier to manage and change. Adhering to this distinction between software

evolution and software maintenance, we adopt the concept of software evolution discussed by Comella

et al. [68] in terms of the software life cycle. They categorize software evolution activities into three:

maintenance, modernization, and replacement. When a software system is deployed, maintenance ac-

tivities are used to keep it operational. But, as the software system becomes increasingly outdated,

maintenance becomes too challenging and costly, thereby requiring a modernization effort to do exten-

sive changes rather than maintenance. Finally, when the old system can no longer be evolved, it is

then replaced. Hence, software modernization is the process of evolving existing software systems by

replacing, re-developing, reusing, or migrating the software components and platforms, when traditional

maintenance practices can no longer achieve the desired results [142].

Research within software evolution and software maintenance has primarily focused on building an

understanding of software evolution and maintenance by (empirically) observing the phenomena [104].

Such observations include studies of large scale industrial software systems (e.g., Belady & Lehman et

al. [19], Gall et al. [94]), and open source systems (e.g., Godfrey & Tu [105], Koch [156]). Furthermore,

empirical methods such as surveys (e.g., Kemerer & Slaughter [140], Kagdi et al. [136]) have been used

to understand software evolution. A summary of empirical studies performed to understand open source

software evolution is reported by Fernandez-Ramil et al. [88]. Various methods and techniques have been

used to understand software evolution such as a change-based approaches (e.g., Robbes & Lanza [230]),

software visualization techniques (e.g., Lanza [163]), program transformation (e.g., Baxter [18]), mining

software repositories (e.g., Kagdi et al. [136]). Similarly, numerous (empirical) studies have been reported

to understand the software maintenance phenomenon (e.g., Singer [243], Bianche et al. [28]). A plethora

of software modernization approaches have been published, including literature reviews. For instance,

Comella et al. [68] reported black-box modernization approaches; Razavian & Lago [222], Almonaies et

al. [8] published reviews on migrating legacy systems to SOA; and recently Jamshidi et al. [129] reported

legacy to cloud modernization approaches.

Despite this large number of (empirical) research, efforts have been focused on observing the phe-

nomena [104] [218], and addressing technical aspects to facilitate software evolution, maintenance and

modernization [143].

7.2.2 Benefits of Software Modernization

For the past three decades, the software evolution community has proposed several methods to modernize

legacy software systems. These modernization methods aim at helping organizations achieve various

benefits such as reduced costs, increased flexibility, and improved maintainability. To get a systematic

125

overview of such benefits as suggested in academia, we conducted a literature review using a backward

snowballing approach [128], i.e., using the reference list of a paper to identify new papers to include.

Table 7.1 depicts a non-exhaustive list of benefits, referred to as “claimed benefits” hereinafter, as a

result of backward snowballing. We have observed that there is a clear absence of empirical research

that measures these benefits, although limited research has been validated with industrial case studies

to assess the applicability.

Table 7.1: Claimed benefits identified in the literature

Claimed Benefits Research Paper

Cost reduction [202, 8, 143, 142, 246, 21, 32, 85, 41, 44, 95,
161, 34, 23, 42, 296, 250]

Increased reusability [202, 8, 32, 85, 161, 34, 296, 276]

Increased agility [202, 8, 222, 32, 85, 187, 34, 276]

Increased flexibility [202, 8, 222, 142, 21, 44, 296]

Improved performance [32, 187, 4, 95, 161, 34, 296]

Increased maintainability [21, 85, 41, 193, 42, 250]

To remain competitive [129, 85, 75, 95, 161, 296]

Increased availability [142, 129, 85, 41, 95, 42]

Faster-time-to-market [222, 142, 187, 23, 42]

Increased interoperability [143, 129, 85, 41, 172]

To summarize, there has been a very limited, if any, research assessing the post-modernization

situation and there is a need for empirical research in collaboration with industry to assess whether

any of the claimed benefits are met [202]. In this chapter we address the two key gaps in current

understanding: the lack of empirical case study research documenting the claimed benefits as established

in the pre-modernization phase, and to which extent those benefits were in fact met after modernization.

7.3 Case Study Design

We report on five retrospective case studies of software modernization. We chose retrospective cases for

several reasons. First, the objective of this research explicitly requires successful software moderniza-

tion cases that have been performed in the past. Second, the retrospective nature makes it possible to

get an in-depth understanding of a contemporary phenomenon where the investigator has little control

over events, thereby reducing research bias [297]. We have adopted an explanatory case study research

method, primarily seeking the rationale for initiating software modernization and documenting the im-

pacts of software modernization. Despite the fact that case studies are originally used primarily for

exploratory purposes [91], Runeson & Host [233] argue that explanatory case studies are more suit-

able for investigating the pre- and post-event situations. Our research aims at documenting pre- and

post-modernization situations, and thereby fits well with the latter.

Data collection in this case study is performed by: (i) consulting documentation to identify the need

for and goals of the software modernization, and (ii) semi-structured interviews to understand the ratio-

nale and impacts of software modernization. To identify the objectives of the modernization, we started

with consulting project documents including, but not limited to, project initiation documents (PIDs),

business cases for modernization, modernization strategy documents, project management reports, and

intermediate milestone deliverables, whenever available. As for semi-structured interviews, we conducted

nine interviews. The interviews were informal and, whilst grouped around three themes, were designed

126

to allow the conversation to follow the respondents’ interests. The interviewees typically included a

project manager and/or a technical manager. In one of the cases, we also interviewed an IT director

and a finance manager. We decided to involve people with different roles to obtain a varied outlook

on the situation. For instance, an IT Director potentially provides a better rationale/business case for

software modernization while a technical manager can elaborate on the technical issues and impacts

of modernization. Prior to the interviews, each interviewee was introduced to an interview protocol, a

document detailing the objectives of the interview with relevant questions grouped into themes, and a

glossary of the technical terms to attain a common understanding. The interview protocol included a

brief introduction to the research, questions regarding personal background of the interviewee (name,

current role and responsibility, expertise, and experience), and interview questions categorized into three

themes: pre-modernization situation, modernization process, and post-modernization situation.

Table 7.2: Details of the interviewees

SNo Role Experience Company

P1 Technical Lead 34

Infra Co.P2 Developer 29

P3 Finance Manager 28

P4 ICT Business Coordinator 13

Aviation Co.P5 Business System Analyst 34

P6 IT Director 30

P7 Project Manager 10 Public Service

P8 Migration Lead 24 Gov. Office

P9 Project Manager 20 Finance Co.

All the interviews were conducted in English and lasted between 60-120 minutes, except one that was

conducted in Dutch and later translated to English. All the interviews were conducted either in-person

or via skype (for the international case studies). These interviews were recorded and then transcribed.

In case more information or clarifications were needed, the interviewee and/or relevant sources identified

by the interviewee were consulted in-person or via email. Table 7.2 depicts the anonymized details of the

interviewees with role, years of IT experiences, and the domain of the company. Nvivo 1032 is used as an

instrumentation tool to facilitate the interview analysis process. After the individual case studies were

analyzed, we used cross-case analysis (CCA) [297, 242], a data analysis method that analyzes multiples

cases studies seeking for empirical evidence on a specific fact, synthesizing data, drawing inferences, and

providing recommendations [297, 81]. In this research, CCA is used to identify similarities and differences

among the case studies to develop concrete findings based on them.

7.4 Case Studies

We analyzed five software modernization cases within Europe that were completed at least two years ago.

Four of them are based in the Netherlands and one in Portugal. The case companies come from different

domains: two are from the public sector (Government organizations), two are industrial companies, and

one is a financial company. We start with identifying the pre-modernization business goals, referred

to as “expected benefits” hereinafter and then document the impact after modernization, referred to as

“observed benefits”. We do not focus on the modernization process itself. For each case study, we provide

a brief summary of the case company and the pre-modernization scenario, list the expected benefits, and

32www.qsrinternational.com/products_nvivo.aspx

127

describe the impacts after modernization. The documented benefits are supported by relevant data

i.e., interview quotes and relevant texts from the documentation. To anonymize the products, [legacy

system] and [modernized system] are used in the quotes and some textual corrections are made

within [], whenever necessary to increase understandability.

To provide an impression of the size of the legacy systems prior modernization, Table 7.3 depicts

some of the available details. For the “Public Service” case, details of the system were not available.

Table 7.3: Details of the legacy systems

Company
Language

Name Size (LoC) # Module

Infra Co. Progress over 50K Not Available

Aviation Co. Progress 51370 1803

Public Service COTS Not Available Not Available

Gov. Office COBOL over 1 million 2500

Finance Co. COBOL 9.289 millions 3548

7.4.1 Case I: The Infra Co. Case

The Infra Co. is a company based in the Netherlands that develops innovative solutions for the consumer

market, in particular, installation, construction and special products. The company had a COBOL-based

legacy information system (IS) that was migrated to Progress33 in 1990. The Progress-based IS was a

highly performant character-based application with sales order, purchase order, warehouse management,

financial management and marketing management modules. The IS was a client-server based application

running on SUSE Linux on HP hardware. In 2007, Infra Co. started a project to modernize the existing

Progress-based IS from console-based to GUI and to re-host the IS in VMware-based virtualized servers.

The modernization project lasted for around 12 months. This case description is based on the latter

modernization project.

7.4.1.1 Enhance Usability

The primary objective was to modernize the existing character-based user interface system. Further-

more, incremental development with different departments led to 3 different user interfaces for the same

backend. Aiming to improve the user interface, the case company initiated the modernization process.

P1 expressed this as “In our case the modernization was mainly the modernization of user interface

because we are thinking for 90% we could re-use the code which was behind the user interface.” P2

emphasized the need of modernization as “We encountered many problems so we decided to modernize

our [applications] which were reliable character user interface. And [we] modernize it into [modernized

system].”

With the modernization, the company transformed their character-based application to [modernized

system] based GUI. P2 mentioned “The goal was to get one interface that succeeded. Flexibility is good

because it is easy and fast to change anything within [modernized system]. So that’s easy. [..] I think

we have reached what we wanted, I think. I think the users are happy with the programs.” P1 expressed

the impact of enhanced usability. For instance, he stated “But users got used to it very quickly [..] It’s

nice to work with [...] I think much more user friendly [...] key of F1 was same everywhere, the buttons

33Currently known as ABL–www.progress.com/openedge/features/abl

128

were with same functions and they got used to it very quickly.” P2 supported P1 as “After working few

weeks with new system, it gets easy [..] started getting used to the system very fast.”

7.4.1.2 Product Consolidation

The Infra. Co. has a subsidiary in Belgium that has its application portfolio. Historically, the applica-

tions were the same but over time incremental developments in the Netherlands and Belgium resulted in

diverse applications accessing the same data. The company used this modernization to consolidate these

applications into one. P1 expressed this as “We started with this character [based] system and then [..]

we started to program with the [legacy system] in windows environment and again 5 years later we started

with [modernized system] but we never converted old software with [to] the new one. So we ended up

with 3 systems next to each other and they all have different functions while they use the same database

and you can say that programs used for finances were character interface programs, programs used of

sales department were [legacy system] tools [..] and the programs for purchase department were created

in [different platform].” P2 indicated that it was important to consolidate those applications as “of

course it was different environment, [we want to] bring it back to one environment. [legacy system] has

its own databases, [different platform] has own, we have our own database. So that is also an important

issue [..] and for maintenance, updates; it is easier to have one rather than 3 environments.”

After modernization, the company has now consolidated the application into one with new interfaces,

a separate business logic layer and a database layer. P1 mentioned that with the product consolidation,

the development team has benefited “Well it [Legacy application] was bit messy for users so [we] cleaned

up and [now we have] one nice system in which we could develop more programs.” He also indicated

that testing of application has become significantly easier as “So testing is far more easy.”

7.4.1.3 Increase Maintainability

Maintenance of the legacy system was difficult as mentioned by P1 as “the [legacy system] software,

maintaining was very very hard for us, for development point of view.” The difficulty to maintain the

legacy systems was due to the fact that individual sister companies were running their own silo systems.

P1 expressed that as “we had 3 companies with 3 different environments and also with also different

Progress version, it was very hard to maintain.” P2 further explained “So we had 3 interfaces and some

people had 3 buttons in[on] screen and they have to open all 3 to use all the programs they have. That

was not easy for maintenance.”

The new system turned out to be highly maintainable as compared to the legacy application. P2

mentioned this as “It is easier to maintain programs, biggest advantage I mean.” The impact of mod-

ernization on increased maintainability was expressed by P1 as “so we had to get all things in one table

as this was not easy to maintain 2 tables for the same thing. That was difficult in the beginning.” With

the new system, modification of the programs for end users was simple to achieve. P1 expressed this

as “About maintainability, [it] is quite easy. We did a lot of work on, it’s a one second [one second of]

work, if he needs [an] extra right, it’s very easy to do.”

129

7.4.1.4 Unintended Benefits and Detrimental Effects

After modernization, transparency in the organization has increased. End users are more clear on what

their daily job is, and collaboration has been on the rise. P1 mentioned “For users, it doesn’t become

more flexible but more clear.” and P3 as “departments are using the same system to collaborate and

it is much better than before. Yes, for more transparency.” Furthermore, the company has achieved a

maintenance cost reduction by reducing the number of programmers from 5 to 2 and lower maintenance

activities. P1 expressed this as “So there were 5 persons who could develop on that system and now we

are only 2 [...] So the cost reduction is mainly in less time we spent on maintenance of the system.”

When it comes to detrimental effects, the company did observe some user resistance in the initial

stages. The users were used to the character-based interface. P2 indicated this behavior as “Most users

were not really happy when going to the Windows [modernized system] surroundings [environment].

Because they were so used to those [character-based] screens.” P1 raised concerns over performance and

mentioned that the new system was not as performant as the legacy system and said “About performance,

well it’s not really bad but its not really fast but fast enough [..] Because it’s [legacy system is] a

character interface the performance is good and per definition faster than windows. And that was the

biggest advantage.”

7.4.2 Case II: The Aviation Co. Case

The Aviation Co., headquartered in the Netherlands, excels in the aerospace market with over 50 years

of experience in selling aircraft parts to customers in more than 100 countries. The company had a

“Quotation Management” application built around 2001 that was running on the three continents where

the company has branches. The application used a Progress database and was coupled with three other

information systems within the company. The modernization project lasted for around 11 months.

7.4.2.1 Increase Flexibility

The primary goal of this modernization was to enhance flexibility by decomposing the monolithic legacy

system, in order to increase the possibilities of reuse of system modules. P5 expressed this as “So

breaking up into reusable modules, and splitting layers like user interface, business logic, database access.

[..] and in separate re-usable modules as well, so we can interchange and allowing business logic which

is proprietary to the business systems to be accessed by outside parties like customers or suppliers.” P5

sees this as an opportunity to expand their business by making the existing landscape more flexible.

He says “Before, we were combining business logic, screens and database layers to the same setup code,

[...] or when you develop a new application we can reuse the business logic layer in the form of a black

box and also consuming from another application so we made our software also more flexible for future

developments.”

After successful modernization, the company not only decomposed their legacy landscape but also

started offering their modules as services (i.e., Software-as-a-Service). P4 mentioned that the new system

is able to provide services as “[...]one case where we have to use modernization also[is] to package the

application to provide it as a service to one of our customers. Before we were the only user of it. And we

had developed an in–house inventory tool but now we were selling it as a service, Software-as-a-Service

also to one of our customer.”

130

7.4.2.2 Increase Maintainability

One of the key business goals was to increase maintainability of the legacy systems. The legacy systems

were running independently in three geographical locations (the US, Hong Kong and the Netherlands)

creating maintainability problems. P5 mentioned “And where modifications have to be made on several

locations because the software is not modularized.” He further detailed that the applications have evolved

independently “[..] sources are copied and modifications are built into the copied files and where that leads

to [independent evolution] when a problem appears in regular process and sources are modified because

and this modification is necessary in other files as well.”.

Modernization provided a completely new framework and standard ways of developing applications,

thereby enhancing maintainability. P4 explained this as “The programming standards over time have been

documented and is now a formal document which is also shared with the vendors, so they start working

from that.” He further added: “What is interesting is that, after the modernization making simple

changes has become little easier than before [...] Because people know the code, know the processes, use

cases are defined after the modernization so it is easier to maintain.”

7.4.2.3 Increase Usability

With this modernization, the company aimed to improve user-friendliness. P4 highlighted this business

goal as “While in modernization phase we were able to also think of the easiness of working, accessibility

of the application, usability of the application.” He expressed that the business needed to be more

competitive and indicated that there is a need to have a “smart” looking new application as: “You

wanted to look smart. Business software is always ugly, very annoying to use and that to has become one

of my targets when I was managing sales. I was one to have applications which look smart.” P6 stated

that “That was the first decision where modernization took place. I think what influenced modernization

is [that] end user experience becomes key in applications.”

During software modernization, the Aviation Co. made architectural changes transforming mono-

lithic legacy code to a layered architecture, including a presentation layer to represent the user interface.

P4 expressed “User experience has become more and more topic. Therefore our decision to come up with

multi-layer applications” He further firmly stated that the usability has increased after modernization

by stating “Modernized system was more user friendly than the old one.”

7.4.2.4 Unintended Benefits

Several unintended benefits were reported by the interviewees. One of them was indirect maintenance cost

reduction, which was never their main business goal, yet it was achieved. P5 highlighted this as “Cost

reduction [was] not a business goal. It is a side effect because we have less overhead in maintenance

but it’s not a business goal to have ICT shrink because we have one source instead of.” Similarly,

the company observed increased availability of the new application as compared to the older one. P4

expressed this as “[...] there is a separate database for intermediate storage and actual data like stock

data, part information there is an exchange with core database with messaging files, which makes front

end 24/7 available. Independent of availability of the backend system.”

From the organizational perspective, the company has observed organizational flexibility. P5 men-

131

tioned that the behavior of the organization has also changed. P6 supported P5’s observation as “Mod-

ernization is not only the technical part but it is also the adoption in your organization”. Similarly, better

transparency was also observed in that users were better able to diagnose problems within the new ap-

plication. P4 commented on this as “In a later stage we noticed that the new system was working better

than the old system and even later stage it was obvious that errors that were reported from the application

appeared to be master data errors [rather] than application errors. So, [yes] that was transparent.”

7.4.3 Case III: The Public Service Case

The Dutch public service office initiated a project in 2010 to modernize its legacy commercial-off-the-

shelf (COTS) application. Due to high maintenance cost and limited vendor support, the public service

office decided to modernize the COTS application to an Oracle platform. The legacy application was

a heavily customized COTS package and was responsible for managing finances of the office. After

successful modernization, the new Oracle-based software system is built upon an enterprise service bus

(ESB) that facilitates easy integration of software applications from different government agencies. The

project lasted for three years.

7.4.3.1 Reduce Maintenance and Operational Cost

One of the expected benefits is to save cost as mentioned by P7 “From business perspective they were

looking for integration and the cost and time saving of this.” Also from a licensing perspective, the

organization was searching for a cheaper option as stated by P7: “But [new system] was cheaper [..] it

will almost likely to be quite [a bit] cheaper because the licenses per user was cheaper in this case. That’s

why they chose [new system] in first place.”

After modernization, there was a reduction in maintenance and operational cost. This was achieved

with significantly lower licensing cost from Oracle as compared to the cost of running [COTS]. The

interviewee confirmed that significant savings were achieved after modernization by indicating that the

licenses per user was cheaper. The other factor that contributed to cost saving was by reducing number

of manpower. P7 mentioned this aspect as “cost saving, efficiency and number of employees, that if you

have a new process that is smoother easier and quicker than you don’t need that many employees.”

7.4.3.2 Phase out Legacy Technology

The existing system was a heavily customized [COTS] system, incrementally customized for more than

6 years. With all these customizations, the legacy systems was fit for purpose but required significant

efforts to integrate with new systems. P7 expressed this as “This [COTS] system , existed [for] 6 years

or so and is heavily customized. A lot of custom effort to get the way they wanted to do it but it involved

lots of customization. The point is that after 6 years later, it was perfect for what they were doing.”

Furthermore, the system was not supported by the vendor. P7 explained: “Well, first of all this was an

old system. We were on an older version which was not supported so [legacy system] was to upgrade.”

These drawbacks significantly increased cost and hence the organization decided to phase out their legacy

technology.

As a result of modernization, the [COTS] system was replaced by an Oracle platform with an ESB.

P7 explained the differences by drawing the legacy and the current architectures. In the new architecture,

132

an ESB is used to integrate various applications.

7.4.3.3 Unintended Benefits and Detrimental Effects

As an effect of modernization, the organization has experienced improved organizational flexibility. Some

of the geographically separated departments of the organization were merged to one. P7 expressed this

as “Eventually because of this [modernized] system, like I said these departments were geographically

separate, but they started working together. But they also moved geographically to one location.” The

effect of improved organizational flexibility was also reflected by changes in the process. The interviewee

expressed this as “So there was an updated model in who is allowed to do what within the system especially

the process is changed. Then process got integrated and people got different roles within the flow of the

system.” Regarding detrimental effects, P7 mentioned that there was some user resistance reported after

operationalization of the new system.

7.4.4 Case IV: The Gov. Office Case

This is a Government office of Portugal which was running its administration module built in COBOL

and DB2, both operating on IBM mainframes. The system was running 24/7 IMS applications to

serve users via terminal emulators (directly) or via web-services (indirectly). Prior to modernization, a

proof-of-concept was successfully done. Then the modernization project was started in 2010 and involved

re-hosting and migrating the COBOL application running on an IBM mainframe to a Linux environment,

converting code in one COBOL dialect to another, and migrating IMS data to an Oracle database. The

modernization project lasted for six months.

7.4.4.1 Reduce Operational Cost

As per available documentation, the primary objective of the modernization was to reduce the mainte-

nance and operational cost due to the use of mainframe technology. One of the initial documents state

this as “ongoing maintenance costs were well above 1M euros/year, and kept increasing.” P8 confirmed

that the project was aimed at reducing costs as “The main purpose was to reduce cost immediately.”

After the successful modernization, the organization made significant cost savings. The organiza-

tion reported that the maintenance cost was reduced by more than 80%, primarily due to phasing out

mainframe systems. P8 reported that “The costs reduced enormously with [the] same functionality, with

more or less same performance at much lower cost.”

7.4.4.2 Phase out Legacy Technology

With this modernization, the organization also wanted to phase out their legacy technology (i.e., the

mainframe and COBOL). The key reason for this was the ageing mainframe and COBOL manpower

within the organization. P8 mentioned “Just had two COBOL programmers– one of them was already

retired and he would go there part-time to solve problems and to develop some new functions. This was

also a concern.”

Due to the strategy taken to modernize the legacy system, this goal was partially realized. The

organization opted to first re-host the legacy application from mainframe to Linux but keeping the

133

COBOL within minimal configuration changes. With the cost savings from re-hosting, the organization

planned to phase out COBOL in the future. P8 mentioned this as “we only moved the application out

of mainframe and the application was still in COBOL [..]the new system was more flexible and [..] you

could develop in other languages like Java and integrate with the application. This was not possible with

the mainframe.”

7.4.4.3 Unintended Benefits and Detrimental Effects

It is interesting to observe that there were several unintended (both positive and negative) impacts

observed. Several unintended improvements were realized such as improved queries, automatic archiving,

improvements to withstand much larger loads than before. Nevertheless, the performance of the new

system was below that of the old mainframe system due to the firewall and security mechanisms used in

the new Linux environment.

7.4.5 Case V: The Finance Co. Case

The Finance Co. is a Dutch financial group. In 2012, the company initiated a modernization project for

its payments system built in COBOL and running on an IBM mainframe. The payments application used

a DB2 database with approximately 28TB of historical data. CICS was used for transaction monitoring

and approximately 10K jobs to run batches. The overall application had 11M LoC for batch programs

and 8M LoC for online transaction processing. The modernization process involved re-hosting and

migrating the application from the IBM mainframe to an AIX Unix platform, re-developing the existing

CICS code for online transactions in Java, migrating DB2 to an Oracle 10 database, and testing. The

modernization project lasted for 10 months.

7.4.5.1 Reduce Operational Cost

The Finance Co. had its payments system running on an IBM mainframe and the operational cost,

particularly licensing cost of the mainframe-based applications, were steadily increasing. To reduce

operational costs, the company started the modernization project. The project manager (P9) worded

this as “The Finance Co. saw the exploitation [operational] costs getting higher and higher and the

application itself was limited in its extensibility [..] But the system ran into limitations on the mainframe.

They could not grow, well they could, if they invested in expanding the mainframe. But they wanted to

cut costs on operating the system.” The project documentation also emphasized “Reduction in operation

cost” as one of the main business objectives.

Financial reports after modernization indicate that due to this modernization project, the operational

costs have been reduced significantly.

7.4.5.2 Increased Performance

The other key aim of modernization was to increase performance. The processing capacity of the main-

frame was reaching its limits within its existing configuration. P9 expressed this as “The time they needed

for the daily process of their mutations was too long. The window they had from 7 pm to 7am [out of

office time] started to get close to not being enough. If there was one little problem, the process would

need too much time. Once every month, for their big batch, they needed even 60 hours. Concluding, the

134

total lead-time needed every night was too high. A project goal was to lower this time.”

After modernization, the company compared the batch window on the mainframe to that of the AIX

Unix environment. The performance gain on the AIX Unix environment was more than a factor of three.

7.4.5.3 Phase out Legacy Technology

The key consideration on achieving cost reduction was by phasing out the mainframe ecosystem. The

mainframe ecosystem incurred high licensing cost and the company was approaching the end of the

existing contract. The company took this opportunity to discontinue the mainframe. P9 expressed this

concern as “... had the idea already to move to another platform, on the mainframe were some products

with high licensing costs. The Finance Co. already researched this, how can we move the applications to

Java, but ran into problems.”

Prior to this modernization, the company tried modernizing the COBOL to Java, but that was not

successful. Hence, in this project they opted to initially re-host the existing COBOL application from

mainframe to AIX Unix and IBM DB2 database to an Oracle database. With this modernization, the

company successfully re-hosted their operational environment but did continue to use COBOL.

7.4.5.4 Unintended Benefits

After modernization, the company benefited from increased flexibility by becoming vendor independent

(Mainframe ecosystem) and opened up possibilities to adopt new advanced technologies.

7.5 Findings

7.5.1 Cross-Case Synthesis

Table 7.4 depicts the findings of the cross-case analysis of the five software modernization case studies.

In addition to the summary of expected benefits of all five cases, we also list some of the modernization

activities that were in fact performed as well as some that we know were not performed. By listing the

activities, we aim to provide a high-level view of the commonalities and differences between the five cases

in terms of activities. The added value of listing the modernization activities is that they sketch a more

detailed picture of the extent of the modernization, and allow us to put the associated benefits better in

context. Finally, in the rightmost column of the table we list any side effects that have been observed

after modernization. These side effects can be both positive (unintended benefits, marked with +), and

negative (detrimental effects, marked with −).

7.5.1.1 Expected vs. Observed Benefits

As can be observed in Table 7.4, most of the expected benefits are met after software modernization.

The expected benefits include both technical goals such as enhanced usability, increased maintainability,

product consolidation, and increased performance as well as business goals such as reducing costs, and

phasing out legacy technology. We note that organizational benefits (like organizational flexibility and

transparency) that are mentioned mostly as the unintended benefits, are also much less commonly

mentioned as claimed benefits in the literature.

135

In two of the cases (the Gov. Office and Finance Co.), the expected benefit (i.e., “Phase out legacy

technology”) was only partially met. These two exceptions are interesting, because in both cases this

was in fact the main goal of modernization. In the Gov. Office case, phasing out legacy technology

was a goal for two reasons: a lack of skilled manpower and the high cost involved in keeping the legacy

technology operational. In the Financial Co., the high operational cost was the main reason to phase out

legacy technology. In both cases, the choice was made to re-host the legacy COBOL system to different

platform. The idea was to reduce operational cost by re-hosting the legacy system on a cheaper platform,

in order to save money and thereby create the budget to initiate programming language modernization

(porting the COBOL source code to a more modern technology). As indicated in the individual case

study, significant cost savings (>60%) were reported. The process of re-hosting the legacy systems to a

different platform did require various additional activities: in the case of Finance Co., assembler code

was re-written in Java, Rexx scripts were converted to Unix-Rexx, development based on VisualAge

was changed to the Enterprise Generation Language that generates Java wrappers. In case of the Gov.

Office, the COBOL source code required minor syntactic adaptations, IMS database migration to Oracle

database, and the re-development of the libraries.

7.5.1.2 Unintended Benefits

Interestingly, the case companies observed some unintended benefits– benefits that were not originally

set down as goals of the modernization. The unintended benefits include recurring goals such as reduced

maintenance cost, increased availability, and increased flexibility. Furthermore, three of the cases (Infra

Co., Aviation Co. and Public Service) observed organizational benefits in terms of transparency and

flexibility. This indicates that a software modernization can bring about significant changes in the

organization.

We also observed some interesting opportunities for one of the case companies that arose as a side

effect of modernization. The Aviation Co. decomposed their legacy software in a way that allowed them

to expose their capabilities as SaaS to one of their customers. Additionally, they used the process of mod-

ernization to initiate an improvement to the software development process by introducing programming

standards and enforcing quality control checks.

In spite of all these benefits, some detrimental effects were also observed. In two of the cases

(Infra. Co. and Public Service) user resistance was reported after modernization. Despite “increase

performance” is listed as a claimed benefit (cf. Table 7.1), the opposite was observed for the Gov. Office

case: the performance of the new system was lower as compared to the original mainframe system due

to additional firewall and security mechanisms on the new platform.

7.5.2 Claimed vs. Observed Benefits

This chapter provides an opportunity to compare the claimed benefits (cf. Table 7.1) with the observed

and unintended benefits (cf. Table 7.4). Most of these observed and unintended benefits complement

and are in–line with the claimed benefits. The observed and unintended benefits form a subset of the

claimed benefits of software modernization. However, we do observe some differences. For example, the

benefits related to organizational benefits (Organizational flexibility and transparency) attain relatively

little attention in the academic literature. On the other hand, the list of claimed benefits contains some

136

Table 7.4: Cross-Case Analysis of five case studies

Case Modernization Act. Exp. Ben. Obsrv. Ben. Other Observation

Infra. Co.

Operational platform
change

Enhance usability Yes +Organizational trans-
parency

User interface modern-
ization

Product consolida-
tion

Yes +Maintenance cost re-
duction

Code optimization Increase maintain-
ability

Yes −User resistance

Aviation Co.

Operational platform
change

Increase flexibility Yes +Maintenance cost re-
duction

User interface modern-
ization

Increase maintain-
ability

Yes +Increased availability

Architectural modern-
ization

Enhance usability Yes +Organizational flexibil-
ity

+Organizational trans-
parency

Public Service

Architectural modern-
ization

Phase out legacy
technology

Yes +Organizational flexibil-
ity

Operational platform
change

Reduce maintenance
& operational cost

Yes −User resistance

Database migration Increase flexibility Yes

Gov. Office

Code conversion Reduce operational
cost

Yes +Improved queries

Database migration Phase out legacy
technology

Partially +Increased load thresh-
old

Operational platform
change

−Decreased system per-
formance

Code analysis

Financial Co.

Operational platform
change

Reduce operational
cost

Yes +Increased flexibility

Code conversion Phase out legacy
technology

Partially

Database migration Increase performance Yes

Code analysis

benefits reported due to modernizing to specific architectures/platforms. For instance, modernization to

a service-oriented architecture (SOA) promises to deliver software modernization specific benefits such as

increased flexibility, reduced costs, increased productivity, increased reusability, faster-time-to market,

loose coupling [202, 83, 206]. Since none of our case studies include modernization to SOA, we are not

able to assess some of these claims.

7.5.3 Lessons Learned

The work reported here is indicative and the sample (case studies) are not large enough to claim com-

prehensiveness. Despite being an initial research initiative to empirically explore benefits of software

modernization, the following lessons can be of interest:

� Wider applicability: Industry can utilize software modernization not only to reduce maintenance

cost and to phase out obsolete technology but also for other (business) opportunities. For instance,

software modernization can provide an opportunity to redefine the business model of the company.

We observed this for Aviation Co. where software modernization enabled the company to offer

their modules as services through SaaS. Furthermore, they also used this opportunity to improve

their software development process by introducing standards. In the Infra. Co. case, software

137

modernization was used to consolidate their products.

� Technical vs. organizational aspects: Apart from possible technical improvements, software mod-

ernization can be used to improve organizational aspects such as bringing transparency and flexi-

bility. This was observed in two of the cases.

� User resistance was observed in two of the cases. This suggests that any software modernization

should also address the soft skill aspects to mitigate such resistances by conducting training and

capacity building programs, and by holding seminars to create the necessary awareness about

software modernization.

� In two of the cases (Public service and Finance Co.), a phased approach of mainframe-based soft-

ware modernization, i.e., initially re-hosting the mainframe-based systems to economical platforms

and thereby saving maintenance cost for language modernization in future, was undertaken. This

is a worthwhile software modernization alternative that industry can adopt.

7.6 Validity

Qualitative research studies are often viewed with discomfort in software engineering [3] with respect to

validity as assessing the validity of the qualitative research is a challenging task [107]. Yin [297] argues

that the quality of the case studies based on explanatory research should be judged on the basis of the

following types of validity:

7.6.1 Construct Validity

Construct validity concerns the validity of the research method and focuses on whether the constructs

(i.e., questions, terminology) are interpreted and measured correctly. This is a clear threat to our research

as maintaining consistent terminologies and their definitions throughout multiple case companies is a

challenge. To minimize this threat, we initially provide an interview protocol that includes a brief

introduction to the research, interview questions, and an explanation of the terminology used. After

transcribing the interviews, the interviewees were contacted by email, if required.

7.6.2 External Validity

concerns the domain to which the results can be generalized. With respect to external validity, we do

not claim comprehensiveness of the finding; it is rather indicative. The diversity of the case companies in

terms of domain, company size and geography gives confidence that the findings represent a significant

view. Furthermore, the cross-case analysis method that we adopted to synthesize the findings arguably

increases the generalizability. However, more empirical studies will have to be designed and executed

to extend the validity of the findings. In particular, when we compare the claimed benefits from the

literature (see Table 7.1) with the expected and unintended benefits of the five cases, then it is clear

that we do not cover them all. In particular, among the claimed benefits we also find benefits reported

due to modernizing to specific architectures/platforms. For instance, modernization to a service-oriented

architecture (SOA) promises to deliver software modernization specific benefits like increased flexibility,

reduced costs, increased productivity [202] along with SOA specific benefits such as increased reusability,

faster-time-to market, loose coupling, statelessness [83, 206]. Since none of our cases involved modern-

ization to SOA, we are not able to assess these claims.

138

7.6.3 Reliability

is concerned with demonstrating that the results of the study can be replicated. This threat is mitigated

by maintaining a case study database34 that contains all the relevant information used in the case study.

This case study database consists of anonymized interview transcripts, Nvivo coding, interview protocols

and backward snowballing. We believe that these artifacts contribute towards the transparency.

A few remarks should be made on the retrospective nature of the case study. A problem relating to

this type of study is hindsight bias– a belief that an event is more predictable after it becomes known

than it was before it became known [232]. In this research, it means that interviewees might tend to

re-construct the business goals based on the results of the impacts. We minimized hindsight bias by

using multiple interviewees within same company and documentation, whenever possible.

7.7 Conclusion

Research on software modernization suggests many “claimed” benefits of modernization with limited

empirical evidences to support the claims. A plethora of technical solutions of software modernization

are labeled as “successful” once the modernization process is proven to be technically feasible. There

is limited research that assesses whether these technically “successful” solutions do meet the expected

benefits, i.e., the pre-modernization business goals.

In this chapter, we address this gap of empirical evidence by discussing five (retrospective) case studies

of software modernization. We have documented the “expected benefits” of each case and considered

whether these “expected benefits” were in fact met after modernization. In general, the outcome of these

five case studies suggest that the “expected benefits” were observed after modernization. Interestingly,

we found that the case companies also observed several “side effects” of modernization: most of them

were “unintended benefits”, but also a few detrimental effects, primarily, due to user resistance and

decreased performance. Among the reported unintended benefits we also found benefits that received

relatively little attention in software modernization literature, in particular, organizational transparency

and organizational flexibility.

To summarize, this chapter has the following contributions:

� reports upon five retrospective modernization case studies within different organizations,

� documents the pre-modernization business goals as “expected benefits” and identifies whether these

benefits were in fact met, and provides a comparative analysis of “claimed” and “expected” benefits

of modernization.

To the best of our knowledge, this empirical research is the first to explore and validate the observable

benefits of software modernization. It is clear that more empirical studies have to be performed in

collaboration with industry to further extend and strengthen the findings. In particular, when we

compare the claimed benefits from the literature to the expected benefits of our case studies, then some

benefits are still missing. Furthermore, study of successful case studies about modernization to a specific

architecture/platform (e.g., legacy to SOA or cloud, code conversion) can provide insights into more

specific benefits. In case of software modernization, we believe that an empirical study of failure cases is

invaluable to fully understand modernization impacts, making this an important topic for future work.

34Available at https://servicifi.wordpress.com/ICSME-2

139

140

Part III

Conclusion

141

Chapter 8

Conclusions and Outlook

Legacy software modernization has been widely researched for decades. Despite numerous moderniza-

tion methods and techniques, legacy software systems are still running the core business process in

industry. With the promises of new technologies such as mobile computing, cloud computing, legacy

software system modernization has become increasingly important in academia and in industry. Several

research projects such as REMICS [192], ARTIST [26], MODAClouds [10] have indicated the importance

of modernizing legacy software systems. Similarly, legacy software modernization has been in the top 10

priorities of companies, as identified by Gartner [97]. Acknowledging the importance of legacy software

system modernization, we started the “ServiciFi” project35 with the objectives to develop a moderniza-

tion method, and to identify challenges being faced by the financial sector. Subsequently, the findings

are used to develop techniques [236] to identify and extract services from monolithic code [234, 235].

This dissertation is the outcome of the former objective of developing modernization method and identi-

fying challenges faced by the financial sector. In this research, we have identified that academic research

on legacy software modernization is focused on technical aspects and not catering for business aspects.

This shortcoming of legacy software modernization methods from academia prevents a wide acceptance

of such methods in industry. In this concluding chapter, we provide the summary of this research by

elaborating these findings.

We revisited software modernization research with two main research objectives: first, to develop a

consolidated software modernization method, and second, to document how software systems and their

modernization are perceived in industry. Based on the two objectives, the dissertation is divided into

two parts. The first part of the thesis deals with a practical problem [291], and as a result, a structured

software modernization process is developed. The first objective is focused on combining technical and

business issues that persist in software modernization in the context of modernization towards a SOA

system. The second part of the dissertation deals with a knowledge problem [291], and as a result, the

research is focused on understanding how software modernization is perceived and performed in practice.

Despite decades of research in software modernization, billions of lines of code of legacy software are still

operational. With the second research objective, we documented the industrial perception of legacy

software systems, and their modernization challenges.

In this chapter, we reflect upon the overall research findings and revisit the research questions pre-

sented in Chapter 1, summarize the answers this research provides, and discuss additional pointers to

35http://servicifi.org/

143

further research.

8.1 Revisiting Research Questions

Based on the two research objectives discussed in Chapter 1, this dissertation is divided into two parts.

Each part is based on a research objective and addresses a main research question. Each research question

is further divided into multiple research sub-questions. In this section we present each research objective

and answer the research (sub-)questions. The first research objective is presented below:

Research Objective 1 (RO1)–“Develop a software modernization approach that includes

technical and business aspects.”

This research objective aims at developing a software modernization method (particularly, for the

modernization to a SOA system) that consolidates technical and business aspects. Research in software

modernization domain is focused on addressing technical aspects and less attention is given to others.

Hence, a holistic view of consolidated method of software modernization is missing. To address this

objective, RQ 1 is formulated as:

RQ 1 How can a modernization process be designed that facilitates enterprises in modernizing

software systems?

This question is answered in Part I of this dissertation by considering SOA system as a target

architecture. To address this question, we initially develop a legacy software modernization method

that combines technical and business aspects of legacy software modernization. Then, a state of the

art of modernization of legacy software systems to SOA system is provided. Finally, a structured

modernization approach is developed. RQ 1 consists of three sub-questions. A summary of the

answers to the sub–questions is provided below:

RQ 1.1 What are the (essential) steps to combine business aspects and technical aspects in soft-

ware modernization?

This research question is answered in Chapter 2. The primary focus of this research question

is to identify essential steps of combining business aspects and technical aspects related to

software modernization. Up to now, research has been focused either to develop supporting

technology to perform a technical modernization project or to determine modernization fea-

sibility. However, a consolidated method that combines both aspects was missing. To answer

this research question, we employed a method engineering approach to identify essential steps

and developed a consolidated method by reusing method fragments from existing moderniza-

tion methods. The consolidated method is known as the “ServiciFi” method. As Part I of

this dissertation focuses on modernizing to a SOA system, the existing modernization methods

used in developing the ServiciFi method are based on Service-orientation. In total, we used

three service-oriented development methods (SODDM [208], WSIM [166] and SOMA [12]) to

identify re-usable method fragments.

144

The ServiciFi method consists of five phases:

� Project initiation phase: performs the assessment of the viability of the modernization

by analyzing the technical and economical feasibility. Technical feasibility is decided with

an “as-is” analysis of the existing systems and the economical feasibility is done using a

cost-benefit analysis.

� Candidate service identification phase: focuses on identifying candidate services to

satisfy the requirements detailed in the earlier phase.

� Service specification phase: specifies the detailed capabilities of the “to-be” services.

Such capabilities are derived from the existing legacy services and by mapping with the

relevant third party services, if required.

� Service construction and testing phase: focuses on extracting source code from the

legacy system using concept slicing techniques and performing the necessary tests.

� Deployment, monitoring and management phase: details post-development activ-

ities including, but not limited to, publishing, provisioning, versioning, and monitoring.

The project initiation phase focuses on including business aspects such that feasibility anal-

ysis (cost and technical) and the rest of the phases are focused on executing the technical

modernization process. The ServiciFi method was initially evaluated with eight experts from

industry and academia. Furthermore, the ServiciFi method is evaluated with two case stud-

ies to extract services from existing systems. With these two evaluation mechanisms, the

ServiciFi method has been shown to be feasible and practical.

RQ 1.2 What is the state of the art of software modernization in academia?

Software modernization, in particular modernization to a SOA system, has been extensively

researched in the last decade. This has resulted in a large body of knowledge of which there

exists no comprehensive overview. In this research question, we identify peer-reviewed research

articles from academia to gain knowledge of the state of the art of modernizing software to

a SOA system. We use a systematic literature review (SLR) research method to gather a

historical overview methods and techniques used in software modernization. To answer RQ

1.2, we identify and collect 121 scientific articles reported from 2000 to 2011. The articles are

evaluated based on an evaluation framework.

The findings of the SLR indicate that only two scientific articles address both modernization

feasibility (business aspect) and technology support for modernization. Most of the arti-

cles (97) focus on realizing modernization by providing tools and techniques to execute the

modernization process. These implementation techniques are broadly divided into either inte-

gration or migration. The integration category largely includes techniques such as wrappers,

adopters and middleware whereas migration focuses on internal restructuring and modifica-

tion of the existing systems. Techniques to migrate legacy code include program slicing, model

transformation and code transformation.

In addition to presenting a historical overview of legacy to SOA modernization approaches,

this research also identifies several issues such as (i) the need of a structured modernization

method combining technical and business aspects, (ii) automation of the structured method

via integrating various tools and techniques, (iii) post-modernization experience reporting,

145

and (iv) addressing soft factors of software modernization. Chapter 3 provides the details of

the SLR.

RQ 1.3 How can a structured legacy to SOA software modernization process be developed from

existing methods and techniques?

Following the first two sub-questions, the RQ 1.3 research question identifies the need of a

structured software modernization process. In Chapter 4, we extend the evaluation framework

of Chapter 3 and the “ServiciFi” method of Chapter 2 to develop a consolidated software

modernization process consisting of six phases. The six phases of the process are the following:

� Legacy system understanding phase: involves creating an inventory of the existing

“as-is” features of the systems, primarily to understand the existing (legacy) software

landscape.

� Target system understanding phase: focuses on developing a target “to-be” ar-

chitecture blueprint with major components of the SOA environment and SOA-related

standards.

� Migration feasibility determination phase: identifies the feasibility of the modern-

ization from technical and economical perspectives.

� Candidate service identification phase: enables identifying potential legacy code so

as to maximize reusability and leveraging existing legacy features.

� Implementation phase: involves the execution of the modernization process based on

the chosen modernization strategy and availability of tool support.

� Deployment & provisioning phase: deals with deployment and management of the

services after exposing the legacy application as a service.

Furthermore, within each of the six phases of the process, we present a rationale to justify the

need of each phase, current practices within each phase, and challenges that require further

attention. The proposed structured process is then evaluated by (i) migrating features of

two simple yet representative applications to SOA, and (ii) by mapping activities reported in

literature.

The outcome of RQ 1 is a structured software modernization method that combines technical and business

aspects of software modernization to SOA. Initially, we developed a method by identifying essential steps

to combine technical and business aspects. The next step was to investigate the state of the art of

legacy to SOA modernization methods. This step indicated that the modernization methods reported in

academia cater for technical solutions to software modernization and less attention is given to business

and organization aspects. Based on this, we developed a structured software modernization method using

a method engineering approach [39]– an approach to design, construct, and adapt methods, techniques

and tools for the development of information systems. As Part I of this dissertation is focused on SOA

systems, the structured software modernization method is developed from existing SOA development

methods. With the method, we have answered RQ 1.

Software modernization has been a widely discussed topic in industry as well. Legacy software

systems are still operating in critical domains such as financial institutions, government offices, and

aviation. Despite a plethora of software modernization approaches, legacy software systems and their

146

modernization are still prevalent in industry. Research indicates that academic research in software

modernization are too abstract to adopt in industry. Furthermore, large scale software modernization

projects often overrun budget and time in practice. This indicates a knowledge gap within academia and

industry in understanding software modernization. In this dissertation, this knowledge gap is addressed

by the following research objective.

Research Objective 2 (RO2)–“Identify how software modernization is perceived and con-

ducted in practice.”

This research objective identifies how legacy software systems and software modernization are per-

ceived in practice. This research objective leads us to empirically investigate why legacy systems are still

prevalent in industry and what challenges practitioners face in software modernization. To address this

objective, RQ 2 is formulated as follows:

RQ 2 What are the perceptions of practitioners about software modernization?

This question is answered in Part II of this dissertation. To address this question, we initially

report on a case study of large scale software modernization of a financial application. Then,

we empirically investigate how legacy software systems and its modernization is perceived in the

industry. Finally, we perform five retrospective software modernization case studies to document

post-modernization effects. RQ 2 consists of three sub-questions. A summary of the answers to

the sub–questions is provided below:

RQ 2.1 How is large scale software modernization performed in practice?

This research question establishes a context to explore how software modernization is con-

ducted in practice. We have observed that a limited number of case studies of large scale

software modernization is reported in academia. In this research question, we conduct a case

study of a large scale software modernization process and explore the challenges faced in

practice. The case study is conducted in a Dutch bank which plans to modernize its legacy

application into a SOA–based environment.

The case study describes a 4-phase migration process that the bank adopted. For each phase,

we investigated techniques used, best practices that contribute to the success, and challenges

faced during modernization. The modernization process emphasized the need for a separate

governing body, known as the “Migration Program Management Committee”, primarily to

provide a governance on the modernization process and any other change management process.

This governing body is also responsible for establishing architecture principles and aligning

the business goals with the architectural requirements.

The modernization process extensively utilizes reverse engineering techniques such as call de-

pendency graphs, and program analysis to understand the complexity of the existing systems.

The findings of these reverse engineering techniques are used to decide upon selecting mod-

ernization strategies, and to harvest knowledge from the existing systems. Furthermore, the

147

findings of the case study also highlighted on adopting a pragmatic realization approach based

on various factors such as business value, business priority, and the technical qualities of the

existing systems. A key take-away from this case study is the fact that modernization of a

large scale software systems is not only a technical endeavor, but also requires addressing

significant business issues. For example, involving the technical staff in the modernization

process, and providing necessary training to enhance their expertise have proven successful in

this case.

RQ 2.2 What are the discrepancies between the perception of legacy software systems and their

modernization in academia and industry?

The software engineering community recognizes the problems introduced by legacy software

systems such as them being obsolete, inflexible, expensive to maintain, having out-dated

documentation, and yet these systems are mission critical to the daily operations of many

enterprises. A plethora of research has been reported on modernizing these legacy software

systems, primarily to reduce maintenance costs and to reuse existing features. However, tech-

nology consulting firms estimate that there are still billions of lines of legacy code in operation.

Industry does acknowledge the drawbacks of legacy software systems, however, they still ex-

tensively rely upon their legacy systems. This discrepancy of knowledge within academia and

industry is explored by this research question in Chapter 6 in which we conduct an exploratory

study to identify the perceived benefit of legacy software systems, the main drivers for legacy

software modernization, and the challenges professionals face with the modernization of legacy

software systems. We interviewed 26 industrial practitioners and analyzed the data to under-

stand their perception of legacy software systems and their modernization. The result of the

interviews are triangulated (data) with a structured survey to validate the findings.

We observed that academia and industry do share commonalities with respect to the charac-

teristics of the legacy software systems. Despite acknowledging that legacy software systems

are resistant to modification and are typically old systems, the practitioners value their legacy

systems highly. The practitioners identify that the legacy software systems are core and busi-

ness critical, and have been operating in production for years. Over the years, these systems

have been well tested, optimized and hence are reliable systems for business. Evidence from

this research indicates that practitioners perceive legacy systems as core systems, rather than

obsolete systems– as generally perceived in academia. Furthermore, the practitioners argue

that their legacy software systems are the cash cows– systems that bring in revenues.

With respect to (legacy) software modernization, the practitioners believe in “if it ain’t broke,

don’t fix it” aphorism. Practitioners are reluctant to incur the cost and risk involved in

modernizing their legacy software systems. However, they do believe that scarcity of knowl-

edge, including legacy experts and (up-to-date) documentation of the legacy systems, is one

of the key challenges that they are currently facing. Furthermore, we observe that the drivers

of legacy software modernization and challenges faced while modernizing are not only due

to technical reasons, but also due to business issues. Various challenges such as “Funding

modernization projects”, “Resistance from organization”, “Predicting return-on-investment”,

“Timing constraints to finish” strongly relate to business perspectives of legacy system mod-

ernization. Similarly, several drivers including “Become flexible to change” and “Faster time

148

to market” represent business drivers. Nevertheless, the practitioners do acknowledge drivers

such as “High maintenance cost”, “Prone to failure” and challenges such as “Data migration”

problems, “Complex system architecture”, “Difficult to extract & prioritize business logic” as

technical issues related with legacy software system modernization.

RQ 2.3 How often are pre-modernization business goals achieved after a “technically” successful

software modernization?

Software modernization is claimed to be successful when a modernization process is completed

using technical solutions. Instead, such technically “successful” modernization indicates that

the transition towards new software is successful because this proves to be a technically feasible

approach. However, this technically “successful” modernization is not necessarily an indication

of achieving the business goals as aimed for prior to software modernization. Very limited

research, if any, is reported with an aim at documenting the post-modernization impacts,

i.e., whether any of the pre-modernization business goals are in fact achieved after software

modernization. With this research question, we address this relative absence of empirical

study through five retrospective software modernization case studies. We use an explanatory

case study approach to document the pre-modernization business goals, and to decide whether

those goals have been achieved after modernization.

Practitioners from the five case companies were interviewed in order to get an overview of

pre- and post- modernization business goals, termed as “expected benefits” and “observed

benefits” respectively. In general, the outcome of these five case studies suggest that the

“expected benefits” were observed after modernization. Interestingly, many cases exhibited a

number of unintended benefits, and some reported detrimental effects of modernization, due

to user resistance and decreased performance.

In two of the cases, user resistance is reported indicating that any software modernization

should also address the organizational aspects, referred to as soft-skill aspects [196], so as to

mitigate such resistances. Moreover, it is interesting to observe that some of the case com-

panies used software modernization not only to achieve recurring benefits such as reducing

maintenance cost, phasing out obsolete technology, but also used to explore other business

opportunities such as redefine business models by adopting a SaaS model, improve the soft-

ware development process, and consolidate different products. We further investigate claimed

benefits from academia and compared the software modernization benefits (i.e., “expected”,

“observed”, and “unintended” benefits) of case studies. There was no significant gap between

academia and industry.

The findings of RQ 2 provide a different viewpoint of legacy software system and its modernization. Prac-

titioners value their legacy software system despite acknowledging the well-known drawbacks of legacy

systems. It is interesting to note that challenges and motivations of legacy software modernization in

industry acknowledge the business aspects in addition to technical aspects. The post–modernization

result from the five retrospective case studies has revealed a new area of research in software moderniza-

tion. This has enabled to understand the actual business impact of software modernization, i.e., meeting

pre-modernization business goals.

149

8.2 Contributions and Implications

In this section, we present the contributions and implications of this dissertation. This dissertation

has three main contributions and each contribution has different implication for the software evolution

research community, and the industry. The three contributions and their implications are described

below.

� Structured software modernization method– The result of this research is a structured soft-

ware modernization method that consolidates technical, business, and organization aspects. Soft-

ware modernization methods are broadly focused on (i) developing supporting technology to address

the technical modernization (i.e., implementation techniques to conduct modernization), and (ii)

developing techniques to determine software modernization feasibility. Chapter 2 demonstrates the

feasibility of consolidating these two aspects of software modernization by identifying essential steps

in the context of legacy to SOA modernization. The consolidated approach is further extended to

develop a structured software modernization method consisting of six phases in Chapter 3 and 4.

A method engineering approach is used to develop the structured process by reusing the method

fragments of existing software modernization and development methods.

The structured software modernization method developed in this dissertation is primarily focused

on legacy to SOA modernization. The modernization method is developed from existing software

modernization methods, hence is sufficiently generic to be used for any software modernization

projects. More importantly, the research community can extend the modernization method and

adapt it accordingly. This is possible due to the use of method engineering while developing the

structured software modernization method. The consolidation of technical and business aspects of

legacy software modernization also allows industry to use this method in practice.

� Industry viewpoint of legacy software systems and their modernization– Software mod-

ernization has steadily gained importance both in academia and in industry. There is an extensive

body of knowledge already in academia that is based on research in which legacy systems are

predominantly perceived as obsolete systems. However, this research identifies legacy systems as

core systems and practitioners value their legacy systems highly. For the first time, this research

documented the industrial perception of legacy software systems and their modernization. In par-

ticular, an initial attempt is made to identify the perceived benefits of legacy systems, drivers of

software modernization, and challenges faced during modernization.

The industry viewpoint has implications for the software evolution research community and for

industry. As for software evolution research, the industrial perception of legacy software systems

and their modernization provide practical challenges that industry is facing when modernizing

their legacy software systems. Based on these issues and challenges, the research community can

align its research agenda. In addition, the result of this research acts as a bridge between the

research community and industry to facilitate technology and knowledge transfer in the software

modernization domain.

� Post software modernization impacts– This dissertation initiates a new research area in the

software modernization domain. Until now, research in software modernization has been focused

on providing technical solutions to facilitate the software modernization process. Software mod-

ernization is claimed to be “successful” when the modernization is completed using those technical

150

solutions. This technically “successful” represent a successful transition, but not necessarily the

business goals set prior to the modernization. As per our knowledge, this dissertation for the first

time attempts to empirically study the post-modernization impacts within five case companies.

The findings of the post modernization impacts have implications both for research and for industry.

For research, new case studies have to be conducted in order to establish more concrete results

in exploring post modernization impacts. The five case studies and their results are the initial

steps towards establishing a separate research direction so as to further extend the research in

understanding the impact of modernization. As for industry, the preliminary findings of the five case

studies indicate that industry can utilize software modernization not only to reduce maintenance

cost and to phase out obsolete technology but also for other (business) opportunities such as

improving software development process, changing business models (adopting SaaS offerings) .

Within the context of the five case studies, we also observed a phased approach of mainframe-based

software modernization, which can be a worthwhile alternative that industry can adopt. The phased

approach emphasizes on initially re-hosting the mainframe-based systems to economical platforms

and thereby saving maintenance cost for system modernization in the future.

8.3 Limitations and Future Works

The findings of this dissertation are the result of individual research, following the design science research

framework. Most of the research questions involve knowledge problems, thereby requiring empirical re-

search methods such as interviews, case studies and surveys, wherever applicable. In case of practical

problems, the artefact is developed by rigorously following appropriate methods (e.g., method engi-

neering) and taking into account the methods’ particular validity constraints. Furthermore, artefacts

developed within the scope of practical problems are either evaluated by experts or by conducting exper-

imentation. In a research scenario, where there is need of selection of participants or case companies, the

selection process in itself could not be fully controlled by the researcher, albeit measures such as snowball

sampling are followed to select participants. Because of this, it cannot be excluded that participants were

somehow either positively or negatively biased towards the research domain. This hinders the studys

credibility, and further research is necessary to confirm the results. To mitigate this limitation, validity

measures are rigorously followed.

Validation of research results is crucial throughout the entire research process. Each chapter of this

dissertation details the possible threats to validity of the findings and thus contributes collectively to

the credibility of the findings. Additionally, the validity of the results is ensured by rigorously following

the research protocols (e.g., case study protocol, interview protocol) that are set up beforehand and

employing design science approach in which the results are constantly evaluated during each iteration

of the cycle. The research performed in this dissertation includes a limited number of cases or subject

and can never cover a significant sample population. Hence, the findings of the research may not be

generalizable to the entire population. However, this research attempts to ensure the validity of the

results by adhering to the mitigation measures for each research method. The findings of this research

can be strengthened further by conducting more case studies and including larger sample population,

wherever possible.

The artefacts (e.g., the ServiciFi methods, and the structured software modernization methods)

produced in this dissertation are developed by re-using method fragments from existing software mod-

151

ernization/development methods reported in literature. This potentially excludes the requirements or

considerations from the industry, thereby inhibiting adoption in practice. To mitigate this risk, we have

evaluated the ServiciFi methods using expert validation.

Based on the implications and limitations, we have identified several new avenues for future research.

They are discussed below.

� Extending the structured software modernization method: The structured software mod-

ernization method proposed in this thesis is developed from existing software modernization meth-

ods/frameworks using the method engineering approach. Hence, there is possibility that the struc-

tured method does not sufficiently cover the issues identified in the industry. While conducting

software modernization case studies in Part II of this dissertation, we identified some possible im-

provements. One of the improvements concerns the inclusion of a business case for the software

modernization project. A business case identifies reasons for initiating a project. For a software

modernization project, a business case would potentially represent the need for the project, with

long term and short term benefits that project would bring to the organization. Furthermore, a

business case also documents the risks associated with the project and alternative considerations for

any potential failure. Such a business case document can be an effective medium to communicate

with management.

Additionally, the structured software modernization method can be extended to include guidelines

on adopting modernization strategies. In general, a large scale software modernization in industry

does not only depend upon one strategy, but rather involves (a combination of) multiple strate-

gies such as wrapping, replacement with COTS product, re-redevelopment, and migration. Such

guidelines can include technical details of the existing systems, business strategies and financial

constraints. The case company presented in Chapter 4 adopted a similar approach.

� Tool-set support for the structured software modernization method: Software mod-

ernization is a complex endeavor for any enterprise that involves risks to day-to-day operations.

Additionally, software modernization not only involves technical aspects, but requires equal partic-

ipation from business and management. Adopting any modernization process involves automation

of the process, whenever possible. For instance, various tools are being developed in isolation for

legacy system understanding, candidate service identification and implementation phases based on

reverse engineering techniques. In fact such automation would be expensive and needs significant

engineering efforts in integrating the existing or any newly developed tools. Advancements in

model-driven engineering have shown some potentials towards this automation. Some of the recent

examples include Software EvolutioN SErvice Integration (SENSEI) [132], Software Analysis as a

Service (SOFAS) [102], Q-MIG [133], and MARBLE [213].

As a part of our research, we have also developed an integrated set of language independent tools

to analyzed legacy software systems called GELATO– GEneric LAnguage TOols for model-driven

analysis of legacy software systems [234]. Within the scope of our project, we have developed a

model-driven based toolset that facilitates “as-is” understanding via topic modeling [236]. This has

resulted in a web-based application called ITMViz [235] to facilitate program comprehension and

transformation of legacy software systems. ITMViz is a part of the GELATO toolset. In future, we

aim at extending GELATO to extract legacy code so as to expose them as services in a language

independent fashion.

152

� Conducting in–vivo research with industry: As observed throughout the dissertation, there

has been a limited number of case study-based in-vivo research within software modernization

research. We have attempted to provide details of some of the large scale industrial software mod-

ernization cases, but more in–vivo research in collaboration with industry is required. As argued

by Van Geet & Demeyer [278], in-vitro research when expanded to in-vivo provides confidence

towards applying the research findings in reality, thereby increasing adopted by industry. In the

context of software modernization, significant research is conducted in in-vitro settings. Hence, the

research results are too abstract to implement in industry and do not fit the industrial purposes.

To increase technology and knowledge transfer between academic research and industry in the

context of software modernization, large scale in-vivo research in software modernization must be

conducted.

We have captured the industrial perception of legacy software systems and their modernization

in this dissertation. The result of the industrial perception reported some discrepancies within

academia and practice and also highlights the issues and challenges faced in practice. Such issues

and challenges reported by the industry can be utilized by the research community to conduct large

scale in–vivo research in collaboration with industry.

� Exploring post-modernization impact research: One of the key contributions of this disser-

tation is the pioneering of empirically investigating the post modernization impact. In chapter 7,

we conducted five retrospective case studies to document pre-modernization business goals and vali-

dated if those goals were met after successful modernization. Given the large set of claimed benefits

(i.e., benefits reported by academia with limited evidences), the case studies only validated a lim-

ited sub-set of the claimed benefits. Hence, we envision abundant opportunities to conduct more

case studies and validated the claimed benefits. Additionally, the research reported in Chapter 7

is not based on any specific architecture/platform, hence dedicated case studies for specific archi-

tecture/platform (e.g., legacy software systems to SOA or cloud, code conversion/transformation)

can provide further insights and helps to validate benefits specific to those architectures.

Furthermore, the findings of Chapter 7 are based on successful software modernization case studies.

However, we do strongly believe that any empirical study of failure cases is invaluable to fully

understand modernization impacts. In particular, such case studies will provide data to investigate

why large scale software modernization overrun budget and time in industry.

With the advancement of cloud and mobile, the industry is experiencing pressure to modernize its

legacy software systems. The topic of legacy software modernization will still be relevant not only in

academia, but also in industry. Hence, this research becomes more relevant in a way that it presents

an extensible legacy software modernization method and documents the industrial perspective of legacy

software modernization. Several areas that are identified in this research become more relevant if legacy

software modernization research is performed by considering the challenges actually faced by industry.

153

154

Part IV

Finale

155

Bibliography

[1] A. Abran and H. Nguyenkim. Measurement of the maintenance process from a demand-based
perspective. Journal of Software Maintenance: Research and Practice, 5(2):63–90, 1993.

[2] ADM. Architecture-Driven Modernization, 2010. Retrieved on Jan 2012, from www.adm.omg.org.

[3] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the experience of software
development. Empirical Software Engineering, 16(4):487–513, 2011.

[4] W. S. Adolph. Cash cow in the tar pit: Reengineering a legacy system. IEEE Software, 13(3):41–47,
1996.

[5] S. Alahmari, D. De Roure, and E. Zaluska. A model-driven architecture approach to the efficient
identification of services on service-oriented enterprise architecture. In EDOCW’10, pages 165–172.
IEEE, 2010.

[6] S. Alahmari, E. Zaluska, and D. De Roure. A service identification framework for legacy system
migration into SOA. In SCC’10, pages 614–617. IEEE, 2010.

[7] A. Alderson and H. Shah. Viewpoints on legacy systems. Communications of the ACM, 42(3):115–
116, 1999.

[8] A. Almonaies, J. Cordy, and T. Dean. Legacy system evolution towards service-oriented archi-
tecture. In International Workshop on SOA Migration and Evolution (SOAME’10), pages 53–62.
IEEE, 2010.

[9] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Managing the evolution of service speci-
fications. In AISE, pages 359–374. Springer, 2008.

[10] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale,
P. Matthews, C.-S. Nechifor, D. Petcu, A. Gericke, and C. Sheridan. Modaclouds: A model-
driven approach for the design and execution of applications on multiple clouds. In Modeling in
Software Engineering (MISE), 2012 ICSE Workshop on, pages 50–56, June 2012.

[11] E. C. Arranga and F. P. Coyle. Cobol: Perception and reality. IEEE Computer, 30(3):126–128,
1997.

[12] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley. SOMA: A method
for developing service-oriented solutions. IBM Systems Journal, 47(3):377–396, 2008.

[13] L. Aversano, L. Cerulo, and C. Palumbo. Mining candidate web services from legacy code. In
WSE’08, pages 37–40. IEEE, 2008.

[14] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes. Sourcerer:
a search engine for open source code supporting structure-based search. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and appli-
cations(OOPSLA’06), pages 681–682. ACM, 2006.

157

[15] S. Balasubramaniam, G. A. Lewis, E. Morris, S. Simanta, and D. Smith. Smart: Application of a
method for migration of legacy systems to soa environments. In Proceedings of the 6th International
Conference on Service-Oriented Computing (ICSOC’08), pages 678–690, Berlin, Heidelberg, 2008.
Springer-Verlag.

[16] L. Bao, C. Yin, W. He, J. Ge, and P. Chen. Extracting reusable services from legacy object-
oriented systems. In IEEE International Conference on Software Maintenance (ICSM’10), pages
1–5. IEEE, 2010.

[17] B. V. Batlajery, R. Khadka, A. M. Saeidi, S. Jansen, and J. Hage. Industrial perception of legacy
software system and their modernization. TR UU-CS-2014-004, Utrecht University, 2014.

[18] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS®: Program transformations for practical scalable
software evolution. In International Conference on Software Engineering (ICSE’04), pages 625–
634. IEEE Computer Society, 2004.

[19] L. A. Belady and M. M. Lehman. A model of large program development. IBM Systems Journal,
15(3):225–252, 1976.

[20] M. Beller, G. Gousios, A. Panichella, and A. Zaidman. When, how, and why developers (do
not) test in their ides. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 179–190. ACM, 2015.

[21] H. C. Benestad, B. Anda, and E. Arisholm. Understanding software maintenance and evolution by
analyzing individual changes: a literature review. Journal of Software Maintenance and Evolution:
Research and Practice, 21(6):349–378, 2009.

[22] K. Bennett. Legacy systems: Coping with success. IEEE Software, 12(1):19–23, 1995.

[23] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: a roadmap. In Future of
Software Engineering, pages 73–87. ACM, 2000.

[24] J. Bergey, L. O’Brien, and D. Smith. Options analysis for reengineering (oar): A method for mining
legacy assets. Technical Report CMU/SEI-2001-TN-013, SEI, 2001.

[25] J. Bergey, D. Smith, N. Weiderman, and S. Woods. Options analysis for reengineering (oar): Issues
and conceptual approach. Technical Report CMU/SEI-99-TN-014, SEI, 1999.

[26] A. Bergmayr, H. Bruneliere, J. Canovas Izquierdo, J. Gorronogoitia, G. Kousiouris, D. Kyriazis,
P. Langer, A. Menychtas, L. Orue-Echevarria, C. Pezuela, and M. Wimmer. Migrating legacy
software to the cloud with ARTIST. In Proceedings of the 17th Europrean Conference on Software
Maintenance and Reengineering (CSMR’13), pages 465–468, March 2013.

[27] P. Bhallamudi and S. Tilley. Soa migration case studies and lessons learned. In 2011 IEEE
International Systems Conference (SysCon’11), pages 123–128. IEEE, 2011.

[28] A. Bianchi, D. Caivano, F. Lanubile, F. Rago, and G. Visaggio. An empirical study of distributed
software maintenance. In International Conference on Software Maintenance (ICSM’02), pages
103–109. IEEE, 2002.

[29] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio. Iterative reengineering of legacy systems.
Transactions on Software Engineering, 29(3):225–241, 2003.

[30] T. Biggerstaff, B. Mitbander, and D. Webster. Program understanding and the concept assignment
problem. Communications of the ACM, 37(5):72–82, 1994.

[31] D. Binkley. Source code analysis: A road map. In International Conference on Software Engineering
(ICSE’00), pages 104–119. IEEE, 2007.

[32] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy information systems: Issues and directions.
IEEE Software, 16(5):103–111, 1999.

158

[33] J. Bisbal, D. Lawless, B. Wu, J. Grimson, R. Wade, V.and Richardson, and D. OSullivan. A survey
of research into legacy system migration. TR TCD-CS-1997-01, Trinity College Dublin, 1997.

[34] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R. Richardson, and D. O’Sullivan. An
overview of legacy information system migration. In Asia Pacific Software Engineering Conference
and International Computer Science Conference (APSEC/ICSC’97), pages 529–530. IEEE, 1997.

[35] T. F. Bissyandé, L. Réveillère, Y.-D. Bromberg, J. L. Lawall, and G. Muller. Bridging the gap
between legacy services and web services. In Middleware’10, pages 273–292. Springer, 2010.

[36] H. Boeije. A purposeful approach to the constant comparative method in the analysis of qualitative
interviews. Quality and Quantity, 36(4):391–409, 2002.

[37] R. W. Bons, R. Alt, H. G. Lee, and B. Weber. Banking in the internet and mobile era. Electronic
Markets, 22(4):197–202, 2012.

[38] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and
D. Winer. Simple object access protocol (soap) 1.1, 2000. http://www.w3.org/TR/SOAP/.

[39] S. Brinkkemper. Method engineering: engineering of information systems development methods
and tools. Information and Software Technology, 38(4):275–280, 1996.

[40] S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-modelling based assembly techniques for situa-
tional method engineering. Information Systems, 24(3):209–228, 1999.

[41] M. L. Brodie. The promise of distributed computing and the challenges of legacy systems. In
Advanced Database Systems, pages 1–28. Springer, 1992.

[42] M. L. Brodie and M. Stonebraker. DARWIN: On the incremental migration of legacy information
systems. TR TR-022-10-92-165, GTE Labs Inc, 1993.

[43] M. L. Brodie and M. Stonebraker. Migrating legacy systems: Gateways, interfaces & the incre-
mental approach. Morgan Kaufmann Publishers Inc., 1995.

[44] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca. Decomposing legacy programs: A first
step towards migrating to client–server platforms. Journal of Systems and Software, 54(2):99–110,
2000.

[45] G. Canfora and M. Di Penta. New frontiers of reverse engineering. In Future of Software Engi-
neering, pages 326–341. IEEE, 2007.

[46] G. Canfora and M. Di Penta. Service-oriented architectures testing: A survey. In Software Engi-
neering, pages 78–105. Springer, 2009.

[47] G. Canfora and M. Di Penta. Service-oriented architectures testing: A survey. In Software Engi-
neering, pages 78–105. Springer, 2009.

[48] G. Canfora, M. Di Penta, and L. Cerulo. Achievements and challenges in software reverse engi-
neering. Communications of ACM, 54(4):142–151, 2011.

[49] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana. Migrating interactive legacy systems
to web services. In European Conference on Software Maintenance and Reengineering (CSMR’06),
pages 24–36. IEEE, 2006.

[50] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana. A wrapping approach for migrating
legacy system interactive functionalities to service oriented architectures. JSS, 81(4):463–480, 2008.

[51] S. Cetin, N. Ilker Altintas, H. Oguztuzun, A. H. Dogru, O. Tufekci, and S. Suloglu. Legacy
migration to service-oriented computing with mashups. In ICSEA’07, pages 21–31. IEEE, 2007.

[52] K. Channabasavaiah, K. Holley, and E. Tuggle. Migrating to a service-oriented architecture. IBM
DeveloperWorks, 16, 2003.

159

[53] K. Channabasavaiah, E. Yuggle, and K. Holley. Mirgating to a service-oriented architecture. On-
line, Dec 2003. Available from:http://www.ibm.com/developerworks/webservices/library/
ws-migratesoa/.

[54] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan. Types of software evolution
and software maintenance. Journal of software maintenance and evolution: Research and Practice,
13(1):3–30, 2001.

[55] R. N. Charette. Why software fails [software failure]. Spectrum, IEEE, 42(9):42–49, 2005.

[56] F. Chen, S. Li, H. Yang, C.-H. Wang, and W. Cheng-Chung Chu. Feature analysis for service-
oriented reengineering. In 12th Asia-Pacific Software Engineering Conference (APSEC’05), pages
8–18. IEEE, 2005.

[57] F. Chen, H. Yang, B. Qiao, and W.-C. Chu. A formal model driven approach to dependable
software evolution. In 30th Annual International Computer Software and Applications Confer-
ence(COMPSAC’06), volume 1, pages 205–214. IEEE, 2006.

[58] F. Chen, Z. Zhang, J. Li, J. Kang, and H. Yang. Service identification via ontology mapping. In
COMPSAC’09, pages 486–491. IEEE, 2009.

[59] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and G. Rackham. Impact of service
orientation at the business level. IBM Systems Journal, 44(4):653–668, 2005.

[60] E. J. Chikofsky, J. H. Cross, et al. Reverse engineering and design recovery: A taxonomy. Software,
IEEE, 7(1):13–17, 1990.

[61] M. Chuba. Assessing the next 50 years for the ibm mainframe. Online, 2014. http://www.

gartner.com/technology/reprints.do?id=1-1SJXH56&ct=140401&st=sb.

[62] S. Chung, J. B. C. An, and S. Davalos. Service-oriented software reengineering: SoSR. In HICSS’07,
pages 172–182. IEEE, 2007.

[63] S. Chung, P. Young, and J. Nelson. Service-oriented software reengineering: Bertie3 as web services.
In Proceedings of the IEEE International Conference on Web Services (ICWS’05), pages 837–838.
IEEE, 2005.

[64] A. Cimitile, A. De Lucia, G. Antonio Di Lucca, and A. Rita Fasolino. Identifying objects in legacy
systems using design metrics. Journal of Systems and Software, 44(3):199–211, 1999.

[65] G. Coleman and R. OConnor. Using grounded theory to understand software process improvement:
A study of irish software product companies. Information and Software Technology, 49(6):654–667,
2007.

[66] G. Coleman and R. OConnor. Investigating software process in practice: A grounded theory
perspective. Journal of Systems and Software, 81(5):772–784, 2008.

[67] M. Colosimo, A. D. Lucia, G. Scanniello, and G. Tortora. Evaluating legacy system migration
technologies through empirical studies. Inf. Soft. Tech., 51(2):433–447, 2009.

[68] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert. A survey of black-box modernization
approaches for information systems. In In the Proceedings of the International Conference on
Software Maintenance (ICSM’00), pages 173–183. IEEE, 2000.

[69] F. Consulting. Application modernization: Procrastinate at your peril! Online: http://

www.enterprisecioforum.com/en/whitepaper/application-modernization-procrastinate,
2011.

[70] T. A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems Journal, 28(2):294–
306, 1989.

160

[71] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A systematic sur-
vey of program comprehension through dynamic analysis. Transactions on Software Engineering,
35(5):684–702, 2009.

[72] F. Cuadrado, B. Garćıa, J. Dueas, and H. Parada. A case study on software evolution towards
service-oriented architecture. In Proceeddings of the 22nd International Conference on Advanced
Information Networking and Applications-Workshops (AINAW’08), pages 1399–1404. IEEE, 2008.

[73] T. H. Davenport. Putting the enterprise into the enterprise system. Harvard business review, 76(4),
1998.

[74] A. De Lucia, G. A. Di Lucca, A. R. Fasolino, P. Guerra, and S. Petruzzelli. Migrating legacy
systems towards object-oriented platforms. In Proceedings in the International Conference on
Software Maintenance (ICSM’97), pages 122–129. IEEE, 1997.

[75] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora. Developing legacy system migration
methods and tools for technology transfer. Software: Practice and Experience, 38(13):1333–1364,
2008.

[76] J. Dedrick and J. West. Why firms adopt open source platforms: a grounded theory of innovation
and standards adoption. In Proceedings of the workshop on standard making: A critical research
frontier for information systems, pages 236–257. Seattle, WA, 2003.

[77] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-oriented reengineering patterns. Elsevier, 2002.

[78] P. J. Denning. A new social contract for research. Communications of the ACM, 40(2):132–134,
1997.

[79] J. Dvorak. Conceptual entropy and its effect on class hierarchies. Computer, 27(6):59–63, 1994.

[80] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical methods for soft-
ware engineering research. In Guide to Advanced Empirical Software Engineering, pages 285–311.
Springer, 2008.

[81] K. M. Eisenhardt. Building theories from case study research. Academy of management review,
14(4):532–550, 1989.

[82] EPC. SEPA–vision and goal. Online, 2014. http://www.europeanpaymentscouncil.eu/index.

cfm/about-sepa/sepa-vision-and-goals/.

[83] T. Erl. Service-oriented architecture: concepts, technology, and design. Prentice Hall, 2006.

[84] L. Erlikh. Leveraging legacy system dollars for e-business. IT professional, 2(3):17–23, 2000.

[85] A. Erradi, S. Anand, and N. Kulkarni. Evaluation of strategies for integrating legacy applica-
tions as services in a service oriented architecture. In IEEE International Conference on Services
Computing(SCC’06), pages 257–260. IEEE, 2006.

[86] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N. Du. A version-aware approach
for web service directory. In ICWS’07, pages 406–413. IEEE, 2007.

[87] L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach to support software architecture
analysis. Software: Practice and Experience, 28(4):371–400, 1998.

[88] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi. Empirical studies of open
source evolution. In Software Evolution, pages 263–288. Springer, 2008.

[89] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel. Model-driven engineering for
software migration in a large industrial context. In Model Driven Engineering Languages and
Systems, pages 482–497. Springer, 2007.

161

[90] B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative inquiry, 12(2):219–
245, 2006.

[91] B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative inquiry, 12(2):219–
245, 2006.

[92] A. Fuhr, T. Horn, V. Riediger, and A. Winter. Model-driven software migration into service-
oriented architectures. Computer Science-Research and Development, 28(1):65–84, 2011.

[93] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger, and W. Teppe. Model-driven
software migration: Process model, tool support, and application. In A. D. Ionita, M. Litoiu, and
G. Lewis, editors, Migrating Legacy Applications: Challenges in Service-Oriented Architecture and
Cloud Computing Environments, pages 154–185. IGI Global, 2012.

[94] H. Gall, M. Jazayeri, R. R. Klosch, and G. Trausmuth. Software evolution observations based on
product release history. In International Conference on Software Maintenance (ICSM’97), pages
160–166. IEEE, 1997.

[95] H. Gall, R. Klösch, and R. Mittermeir. Object-oriented re-architecturing. In European Software
Engineering Conference (ESEC’95), pages 499–519. Springer, 1995.

[96] I. Garcia-Rodriguez de Guzman, M. Polo, and M. Piattini. An ADM approach to reengineer rela-
tional databases towards web services. In 14th Working Conference on Reverse Engineering(WCRE
2007), pages 90–99. IEEE, 2007.

[97] Gartner. Cio agenda insights 2013. Online, 2013. www.gartner.com/imagesrv/cio/pdf/cio_

agenda_insights2013.pdf.

[98] Gartner. Insights from the 2013 gartner cio agenda report. Online, 2013. http://www.gartner.

com/newsroom/id/2304615.

[99] Gartner. High failure rates in insurance legacy modernization challenge cios. Online: https:

//www.gartner.com/doc/2653016/high-failure-rates-insurance-legacy, 2014.

[100] Gartner. Market trends: Banking, worldwide, 2014. Online, 2014. http://www.gartner.com/

document/2646424, source = http://www.gartner.com/document/2646424.

[101] J. V. Geet and S. Demeyer. Feature location in COBOL mainframe systems: An experience report.
In 25th IEEE International Conference on Software Maintenance (ICSM’09), pages 361–370. IEEE,
2009.

[102] G. Ghezzi and H. C. Gall. A framework for semi-automated software evolution analysis composition.
Automated Software Engineering, 20(3):463–496, 2013.

[103] B. G. Glaser and A. L. Strauss. The discovery of grounded theory: Strategies for qualitative research.
Aldine Transaction, Chicago, Illionios, 1967.

[104] M. W. Godfrey and D. M. German. The past, present, and future of software evolution. In Future
of Software Maintenance (FoSM’08), pages 129–138. IEEE, 2008.

[105] M. W. Godfrey and Q. Tu. Evolution in open source software: A case study. In International
Conference on Software Maintenance (ICSM’00), pages 131–142. IEEE, 2000.

[106] M. Goedicke and U. Zdun. Piecemeal legacy migrating with an architectural pattern language: A
case study. Journal of Software Maintenance and Evolution: Research and Practice, 14(1):1–30,
2002.

[107] N. Golafshani. Understanding reliability and validity in qualitative research. The Qualitative
Report, 8(4):597–607, 2003.

162

[108] N. Gold, M. Harman, D. Binkley, and R. Hierons. Unifying program slicing and concept assignment
for higher-level executable source code extraction. Software: Practice and Experience, 35(10):977–
1006, 2005.

[109] L. D. Goodwin and N. L. Leech. The meaning of validity in the new standards for educational
and psychological testing: Implications for measurement courses. Measurement and evaluation in
Counseling and Development, 2003.

[110] Grammatech. Codesurfer. Online, 2011. Available at: http://www.grammatech.com/products/

codesurfer/academic.html.

[111] M. Greiler, A. van Deursen, and M. Storey. Test confessions: a study of testing practices for plug-
in systems. In 34th International Conference on Software Engineering (ICSE’12), pages 244–254.
IEEE, 2012.

[112] Q. Gu and P. Lago. Service identification methods: a systematic literature review. In Towards a
Service-Based Internet, pages 37–50. Springer, 2010.

[113] G. Gui and P. D. Scott. Coupling and cohesion measures for evaluation of component reusability.
In Proceedings of the International workshop on Mining Software Repositories (MSR’06), pages
18–21. ACM, 2006.

[114] M. Harman, N. Gold, R. Hierons, and D. Binkley. Code extraction algorithms which unify slicing
and concept assignment. In Proceeding of the 9th Working Conference on Reverse Engineering,
pages 11–20. IEEE, 2002.

[115] D. Harris, A. Yeh, and H. Reubenstein. Extracting architectural features from source code. Auto-
mated Software Engineering, 3(1):109–138, 1996.

[116] W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and S. Krieghoff. The dublo
architecture pattern for smooth migration of business information systems: An experience report.
In 26th International Conference on Software Engineering, pages 117–126. IEEE, 2004.

[117] R. Heckel, R. Correia, C. Matos, M. El-Ramly, G. Koutsoukos, and L. Andrade. Architectural
transformations: From legacy to three-tier and services. In Soft. Evol., pages 139–170. Springer,
2008.

[118] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintainability. In 6th
International Conference on Quality of Information and Communications Technology, pages 30–39.
IEEE, 2007.

[119] J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut. An industrial experience report on legacy
data-intensive system migration. In International Conference on Software Maintenance, pages
473–476. IEEE, 2007.

[120] A. Hevner and S. Chatterjee. Design research in information systems: theory and practice, vol-
ume 22. Springer, 2010.

[121] A. Hevner, S. March, J. Park, and S. Ram. Design science in information systems research. MIS
Quarterly, 28(1):75–105, 2004.

[122] R. Hoda, J. Noble, and S. Marshall. Organizing self-organizing teams. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1, pages 285–294. ACM,
2010.

[123] R. Hoda, J. Noble, and S. Marshall. Using grounded theory to study the human aspects of software
engineering. In Human Aspects of Software Engineering, page 5. ACM, 2010.

[124] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck. A model-driven development
approach for service-oriented integration scenarios. In Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns (COMPUTATIONWORLD’09, pages 353–358. IEEE, 2009.

163

[125] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assessment of mde in
industry. In Proceedings of the 33rd International Conference on Software Engineering (ICSE’11),
pages 471–480. ACM, 2011.

[126] ING. Nederlander die mobiel bankiert heeft meer controle over geldzaken. online,
2012. https://www.ing.nl/nieuws/nieuws_en_persberichten/2012/08/nederlander_die_

mobiel_bankiert_heeft_meer_controle_over_geldzaken.aspx.

[127] ISO/IEC. Software Engineering– Software Life Cycle Processes–Maintenance. Technical Report
14764-2006, IEEE, 2006.

[128] S. Jalali and C. Wohlin. Systematic literature studies: database searches vs. backward snowballing.
In International symposium on Empirical software engineering and measurement (ESEM’12), pages
29–38. ACM, 2012.

[129] P. Jamshidi, A. Ahmad, and C. Pahl. Cloud migration research: A systematic review. Cloud
Computing, IEEE Transactions on, 1(2):142–157, 2013.

[130] A. Jansen and J. Bosch. Software architecture as a set of architectural design decisions. In
WICSA’05, pages 109–120. IEEE, 2005.

[131] S. Jansen and S. Brinkkemper. Information Systems Research Methods, Epistemology and Ap-
plications, chapter Applied multi-case research in a mixed-method research project: Customer
configuration updating improvement, pages 1–29. IGI Global, 2008.

[132] J. Jelschen. Sensei: Software evolution service integration. In Software Evolution Week-IEEE
Conference onSoftware Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
pages 469–472. IEEE, 2014.

[133] J. Jelschen, G. Pandey, and A. Winter. Towards quality-driven software migration. In Software
Engineering (Workshops), pages 8–9, 2014.

[134] Y. Jiang and E. Stroulia. Towards reengineering web sites to web-services providers. In European
Conference on Software Maintenance and Reengineering (CSMR’04), pages 296–305. IEEE, 2004.

[135] S. Johnston. Modeling service-oriented solutions. Online, Jul 2005. Available from: http://www.
ibm.com/developerworks/rational/library/jul05/johnston/.

[136] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. Journal of Software: Maintenance and
Evolution, 19(2):77–131, 2007.

[137] A. Kalsing, G. do Nascimento, C. Iochpe, and L. Thom. An Incremental Process Mining Approach
to Extract Knowledge from Legacy Systems. In 14th IEEE International Enterprise Distributed
Object Computing Conference (EDOC’10), pages 79–88. IEEE, 2010.

[138] Y. Kanellopoulos, C. Tjortjis, I. Heitlager, and J. Visser. Interpretation of source code clusters
in terms of the iso/iec-9126 maintainability characteristics. In European Conference on Software
Maintenance and Reengineering, pages 63–72. IEEE, 2008.

[139] R. Kazman, L. O’Brien, and C. Verhoef. Architecture reconstruction guidelines. Tech. Rpt.
CMU/SEI-2001-TR-026, CMU/SEI, 2001.

[140] C. F. Kemerer and S. Slaughter. An empirical approach to studying software evolution. Software
Engineering, IEEE Transactions on, 25(4):493–509, 1999.

[141] R. Khadka. Service identification strategies in legacy-to-soa migration. In Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM’11), 2011.

[142] R. Khadka, B. V. Batlajery, A. Saeidi, S. Jansen, and J. Hage. How do professionals perceive
legacy systems and software modernization? In the 36th International Conference on Software
Engineering (ICSE’14), pages 36–47. ACM, 2014.

164

[143] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage. A method engineering based legacy to
SOA migration method. In International Conference on Software Maintenance (ICSM’11), pages
163–172. IEEE, 2011.

[144] R. Khadka, A. Saeide, A. Idu, J. Hage, and S. Jansen. Legacy to soa evolution:evaluation results.
Technical Report UU-CS-2012-006, Department of Information and Computing Sciences, Utrecht
University, 2012.

[145] R. Khadka, A. Saeidi, A. Idu, J. Hage, and S. Jansen. Legacy to SOA evolution- a systematic
literature review. In A. D. Ionita, M. Litoiu, and G. Lewis, editors, Migrating Legacy Applications:
Challenges in Service Oriented Architecture and Cloud Computing Environments, pages 40–71. IGI
Global, 2012.

[146] R. Khadka, A. Saeidi, R. Jansen, J. Hage, and R. Helms. An evaluation of service frameworks for
the management of service ecosystems. In PACIS’11, page 10. AIS, 2011.

[147] R. Khadka, A. Saeidi, S. Jansen, J. Hage, and G. Haas. Migrating a large scale legacy application
to SOA: Challenges and lessons learned. In 20th Working Conference on Reverse Engineering,
pages 425–432. IEEE, 2013.

[148] R. Khadka and B. Sapkota. An evaluation of dynamic web service composition approaches. In
Proceeding of the 4th International Workshop on Architectures, Concepts and Technologies for
Service-Oriented Computing (ACT4SOC’10), pages 67–79, Athens, Greece, 2010.

[149] R. Khadka, B. Sapkota, L. Ferreira Pires, M. Van Sinderen, and S. Jansen. Model-driven approach
to enterprise interoperability at the technical service level. Computers in Industry, 64(8):951–965,
2013.

[150] R. Khadka, B. Sapkota, L. F. Pires, M. Sinderen, and S. Jansen. Model-driven development
of service compositions for enterprise interoperability. In M. Sinderen and P. Johnson, editors,
Enterprise Interoperability, pages 177–190. Springer, 2011.

[151] R. Khadka, B. Sapkota, L. F. Pires, M. van Sinderen, and S. Jansen. Model-driven development
of service compositions for enterprise interoperability. In M. van Sinderen and P. Johnson, editors,
Enterprise Interoperability, volume 76, pages 177–190. Springer, 2011.

[152] V. Khusidman and W. Ulrich. Architecture-driven modernization: Transforming the enter-
prise draft v.5. Technical report, OMG, 2007. Available from: http://www.omg.org/cgi-
bin/doc?admtf/2007-12-01.

[153] B. Kitchenham. Procedures for performing systematic reviews. Technical Report TR/SE-0401,
Keele University, 2004.

[154] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman. Systematic
literature reviews in software engineering–a systematic literature review. Information and software
technology, 51(1):7–15, 2009.

[155] B. Kitchenham and S. L. Pfleeger. Principles of survey research: Part 5: Populations and samples.
Software Engineering Notes, 27(5):17–20, 2002.

[156] S. Koch. Software evolution in open source projects–a large-scale investigation. Journal of Sofware:
Maintenance and Evolution, 19(6):361–382, 2007.

[157] T. Kokko, J. Antikainen, and T. Systa. Adopting soa–experiences from nine finnish organizations.
In 13th European Conference on Software Maintenance and Reengineering, pages 129–138. IEEE,
2009.

[158] K. Kontogiannis, G. Lewis, and D. Smith. A research agenda for service-oriented architecture. In
International Workshop on Systems Development in SOA Environments (SDSOA’08), pages 1–6.
ACM, 2008.

165

[159] K. Kontogiannis, G. A. Lewis, D. B. Smith, M. Litoiu, H. Muller, S. Schuster, and E. Stroulia.
The landscape of service-oriented systems: A research perspective. In International Workshop on
Systems Development in SOA Environments (SDSOA’07), pages 1–1. IEEE, 2007.

[160] R. Koschke. Software visualization in software maintenance, reverse engineering, and re-
engineering: a research survey. J. Soft. Maint. Evol., 15(2):87–109, 2003.

[161] J. Koskinen, J. J. Ahonen, H. Sivula, T. Tilus, H. Lintinen, and I. Kankaanpaa. Software modern-
ization decision criteria: An empirical study. In 9th European Conference on Software Maintenance
and Reengineering (CSMR’05), pages 324–331. IEEE, 2005.

[162] G. Koutsoukos, L. Andrade, J. Gouveia, and M. El-Ramly. Service Extraction. Technical Re-
port 016004, Sensoria Project, 2006. Available from:http://www.pst.ifi.lmu.de/projekte/
Sensoria/del_12/D6.2.a.pdf.

[163] M. Lanza. The evolution matrix: Recovering software evolution using software visualization tech-
niques. In IWPSE, pages 37–42. ACM, 2001.

[164] J. Lavery, C. Boldyreff, B. Ling, and C. Allison. Modelling the evolution of legacy systems to
web-based systems. Journal of Software Maintenance and Evolution: Research and Practice, 16(1-
2):5–30, 2004.

[165] C. Lawrence. Adapting legacy systems for soa. Online, Jun 2007. Available from: http://www.

ibm.com/developerworks/webservices/library/ws-soa-adaptleg/.

[166] S. P. Lee, L. P. Chan, and E. W. Lee. Web services implementation methodology for soa application.
In Proceeding of the 4th IEEE International Conference on Industrial Informatics, pages 335–340,
2006.

[167] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE,
68(9):1060–1076, 1980.

[168] M. M. Lehman. Laws of software evolution revisited. In Software process technology, pages 108–124.
Springer, 1996.

[169] M. M. Lehman, J. Ramil, and G. Kahen. Evolution as a noun and evolution as a verb. In Proceedings
of the SOCE 2000 Workshop on Software and Organisation Co-evolution, pages 12–13, 2000.

[170] G. Lewis, E. Morris, L. O’Brien, D. Smith, and L. Wrage. Smart: The service-oriented migration
and reuse technique. Technical Report CMU/SEI-2005-TN-029, CMU/SEI, Sept 2005. Available
from:http://www.sei.cmu.edu/reports/05tn029.pdf.

[171] G. Lewis, E. Morris, and D. Smith. Analyzing the reuse potential of migrating legacy compo-
nents to a service-oriented architecture. In European Conference on Software Maintenance and
Reengineering (CSMR’06), pages 9–18. IEEE.

[172] G. Lewis, E. Morris, and D. Smith. Service-oriented migration and reuse technique (SMART). In
Workshop on Software Technology and Engineering Practice, pages 222–229. IEEE, 2005.

[173] G. Lewis and D. Smith. Service-oriented architecture and its implications for software maintenance
and evolution. In FoSM’08., pages 1–10. IEEE, 2008.

[174] G. Lewis and D. Smith. Research challenges in the maintenance and evolution of service-oriented
systems. In A. D. Ionita, M. Litoiu, and G. Lewis, editors, Migrating Legacy Applications: Chal-
lenges in Service Oriented Architecture and Cloud Computing Environments, pages 13–39. IGI
Global, 2012.

[175] G. Lewis, D. Smith, N. Chapin, and K. Kontogiannis. Maintenance and evolution of service-
oriented systems and cloud-based environments (mesoca’09). Technical Report 1424448972, SEI,
2009.

166

[176] S. Li, S. Huang, D. Yen, and C. Chang. Migrating legacy information systems to web services
architecture. Journal of Database Management, 18(4):1–25, 2007.

[177] S. Li and L. Tahvildari. E-bus: a toolkit for extracting business services from java software
systems. In Companion of the 30th international conference on Software engineering (ICSE-I’08),
pages 961–962. ACM, 2008.

[178] Z. Li, X. Anming, Z. Naiyue, H. Jianbin, and C. Zhong. A soa modernization method based
on tollgate model. In International Symposium on Information Engineering and Electronic Com-
merce(IEEC’09), pages 285–289. IEEE, 2009.

[179] B. P. Lientz and E. B. Swanson. Software maintenance management: a study of the maintenance
of computer application software in 487 data processing organizations. 1980.

[180] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application software mainte-
nance. Communications of the ACM, 21(6):466–471, 1978.

[181] J. Liu, D. Batory, and C. Lengauer. Feature-oriented refactoring of legacy applications. In 28th
International Conference on Software Engineering, pages 112–121. ACM, 2006.

[182] Y. Liu, Q. Wang, M. Zhuang, and Y. Zhu. Reengineering Legacy Systems with RESTful Web Ser-
vice. In Proceedings of the 32nd Annual IEEE International Computer Software and Applications
Conference (COMPSAC’08), pages 785–790. IEEE, 2008.

[183] Z. Mahmood. The Promise and Limitations of Service-Oriented Architecture. International Journal
of Computers, 1(3):74–78, 2007.

[184] A. Marchetto and F. Ricca. Transforming a java application in an equivalent web-services based
application: toward a tool supported stepwise approach. In 10th International Symposium on Web
Site Evolution (WSE’08), pages 27–36. IEEE, 2008.

[185] M. L. Markus and C. Tanis. Framing the domains of IT research: Glimpsing the future through the
past, chapter The enterprise systems experience-from adoption to success, pages 207–173. Pinnaflex
Educational Resources Cincinnati, OH, 2000.

[186] A. Martin, R. Biddle, and J. Noble. Xp customer practices: A grounded theory. In Agile Conference,
2009. AGILE’09., pages 33–40. IEEE, 2009.

[187] A. Mehta and G. T. Heineman. Evolving legacy system features into fine-grained components. In
24th International Conference on Software Engineering, pages 417–427. ACM, 2002.

[188] T. Mens, Y.-G. Gueheneuc, J. Fernandez-Ramil, and M. D’Hondt. Guest editors’ introduction:
Software evolution. IEEE Software, 27(4):22–25, 2010.

[189] Microfocus. Academia needs more support to tackle the it skills gap. Online, 2013. http://www.

microfocus.com/about/press/pressreleases/2013/pr070320131001.aspx.

[190] Microsoft. The business value of legacy modernization: Custom research note. Technical report,
Microsoft, July 2007. Available from: www.microsoft.com/mainframe.

[191] R. Millham. Migration of a legacy procedural system to service-oriented computing using feature
analysis. In International Conference on Intelligent and Software Intensive Systems (CISIS’10),
pages 538–543. IEEE, 2010.

[192] P. Mohagheghi, A. J. Berre, A. Sadovykh, F. Barbier, and G. Benguria. Reuse and migration of
legacy systems to interoperable cloud services-the remics project. Proceedings of Mda4ServiceCloud,
10, 2010.

[193] M. Mortensen, S. Ghosh, and J. M. Bieman. Aspect-oriented refactoring of legacy applications:
An evaluation. Transactions on Software Engineering, 38(1):118–140, 2012.

167

[194] MOSCOW. MoSCoW Prioritisation. Online, 2011. Available from: http://www.

coleyconsulting.co.uk/moscow.htm.

[195] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and K. Wong. Reverse
engineering: a roadmap. In Future of Software Engineering, pages 47–60. ACM, 2000.

[196] S. Murer, B. Bonati, and F. J. Furrer. Managed Evolution. Springer, 2011.

[197] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K.-i. Matsumoto. Constructing home network
systems and integrated services using legacy home appliances and web services. IJWSR, 5(1):82–98,
2008.

[198] NASCIO. Digital states at risk modernizing legacy systems. Technical report, NASCIO, 2008.

[199] NASCIO. State CIO Top Ten Policy and Technology Priorities for 2014. Online, 2013. http:

//www.nascio.org/publications/documents/NASCIO_StateCIOTop10For2014.pdf5.

[200] K. Nasr, H. Gross, and A. van Deursen. Adopting and Evaluating Service-Oriented Architecture in
Industry. In 14th European Conference on Software Maintenance and Reengineering (CSMR’10),
pages 11–20. IEEE, 2010.

[201] K. A. Nasr, H.-G. Gross, and A. van Deursen. Realizing service migration in industry: lessons
learned. Journal of Software: Evolution and Process, 2011.

[202] K. A. Nasr, H.-G. Gross, and A. van Deursen. Realizing service migration in industry–lessons
learned. Journal of Software: Evolution and Process, 25(6):639–661, 2013.

[203] P. Newcomb and G. Kotik. Reengineering procedural into object-oriented systems. In 20th Working
Conference on Reverse Engineering (WCRE’95), pages 237–237. IEEE Computer Society, 1995.

[204] NYTimes. ING to Cut 1,700 Jobs and Invest $248 Million in
Digital Push. Online. http://dealbook.nytimes.com/2014/11/25/

ing-to-cut-1700-jobs-invest-248-million-in-digital-push/?_r=0.

[205] L. O’Brien, D. Smith, and G. Lewis. Supporting migration to services using software architecture
reconstruction. In 13th IEEE International Workshop on Software Technology and Engineering
Practice(STeP’05), pages 81–91. IEEE, 2005.

[206] M. Papazoglou. Web services: principles and technology. Addison-Wesley, 2008.

[207] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: a research
roadmap. International Journal of Cooperative Information Systems, 17(2):223–255, 2008.

[208] M. Papazoglou and W. Van Den Heuvel. Service-oriented design and development methodology.
International Journal of Web Engineering and Technology, 2(4):412–442, 2006.

[209] M. P. Papazoglou. The challenges of service evolution. In Advanced Information Systems Engi-
neering, pages 1–15. Springer, 2008.

[210] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: State
of the art and research challenges. Computer, 40(11):38–45, 2007.

[211] D. L. Parnas. Software aging. In Proceedings of the 16th international conference on Software
engineering (ICSE’94), pages 279–287. IEEE Computer Society Press, 1994.

[212] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari. Coupling metrics for predicting main-
tainability in service-oriented designs. In 18th Australian Software Engineering Conference
(ASWEC’07), pages 329–340. IEEE, 2007.

[213] R. Pérez-Castillo. Marble: Modernization approach for recovering business processes from legacy
information systems. In 28th IEEE International Conference on Software Maintenance (ICSM’12),
pages 671–676. IEEE, 2012.

168

[214] R. Pérez-Castillo, I. G.-R. de Guzmán, O. Ávila-Garćıa, and M. Piattini. Marble: a modernization
approach for recovering business processes from legacy systems. In International Workshop on
Reverse Engineering Models from Software Artifacts (REM’09), pages 17–20, 2009.

[215] M. Petticrew and H. Roberts. Systematic reviews in the social sciences: A practical guide. John
Wiley & Sons, 2008.

[216] M. Polan. Web service provisioning. Online, January 2002. Available from: http://www.ibm.

com/developerworks/library/ws-wsht.

[217] A. Quilici. Reverse engineering of legacy systems: A path toward success. In 17th International
Conference on Software Engineering, pages 333–336. ACM, 1995.

[218] V. Rajlich. Software evolution and maintenance. In Proceedings of the on Future of Software
Engineering, pages 133–144. ACM, 2014.

[219] M. Rambold, H. Kasinger, F. Lautenbacher, and B. Bauer. Towards autonomic service discovery:
a survey and comparison. In SCC’09, pages 192–201. IEEE, 2009.

[220] B. Ramesh, J. Pries-Heje, and R. Baskerville. Internet software engineering: A different class of
processes. Annals of Software Engineering, 14(1-4):169–195, 2002.

[221] M. Razavian. Knowledge-driven Migration to Services. PhD thesis, Vrije Universiteit Amsterdam,
2013.

[222] M. Razavian and P. Lago. A frame of reference for SOA migration. In Towards a Service-Based
Internet, pages 150–162. Springer, 2010.

[223] M. Razavian and P. Lago. A survey of SOA migration in industry. In G. Kappel, Z. Maamar,
and H. R. Motahari-Nezhad, editors, Service-Oriented Computing, volume 7084 of LNCS, pages
618–626. Springer, 2011.

[224] M. Razavian and P. Lago. A lean and mean strategy for migration to services. In WICSA/ECSA’12,
pages 61–68. ACM, 2012.

[225] RBS. RBS IT Failure Cost Hits £175m. Online, 2012. http://www.techweekeurope.co.uk/

workspace/rbs-it-failure-175m-98130.

[226] P. Reason. Three approaches to participative inquiry. 1994.

[227] V. Reddy, A. Dubey, S. Lakshmanan, S. Sukumaran, and R. Sisodia. Evaluating legacy assets in
the context of migration to SOA. Software Quality Journal, 17(1):51–63, 2009.

[228] G. Reijnders, R. Khadka, S. Jansen, and J. Hage. Developing a legacy to soa migration method.
Technical Report UU-CS-2011-008, Department of Information and Computing Sciences, Utrecht
University, 2011.

[229] F. Ricca and A. Marchetto. A quick and dirty meet-in-the-middle approach for migrating to soa.
In Proceedings of the joint international and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops, pages 73–78. ACM, 2009.

[230] R. Robbes and M. Lanza. A change-based approach to software evolution. Electronic Notes in
Theoritical Computer Science, 166:93–109, 2007.

[231] E. Roch. Soa benefits, challenges and risk mitigation. Online, May
2006. Available from: http://it.toolbox.com/blogs/the-soa-blog/

soa-benefits-challenges-and-risk-mitigation-8075.

[232] N. J. Roese and K. D. Vohs. Hindsight bias. Perspectives on Psychological Science, 7(5):411–426,
2012.

169

[233] P. Runeson and M. Höst. Guidelines for conducting and reporting case study research in software
engineering. Emp. Soft. Eng., 14(2):131–164, 2009.

[234] A. Saeidi, J. Hage, R. Khadka, and S. Jansen. Gelato: Generic language tools for model-driven anal-
ysis of legacy software systems. In 20th Working Conference on Reverse Engineering (WCRE’13),
pages 481–482. IEEE, 2013.

[235] A. Saeidi, J. Hage, R. Khadka, and S. Jansen. Itmviz: Interactive topic modeling for source code
analysis. In 23rd IEEE International Conference on Program Comprehension (ICPC’15), pages
xx–xx. IEEE, 2015.

[236] A. M. Saeidi, J. Hage, R. Khadka, and S. Jansen. A search-based approach to multi-view clustering
of software systems. In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on, pages 429–438. IEEE, 2015.

[237] R. Salama and S. G. Aly. A decision making tool for the selection of service oriented-based legacy
systems modernization strategies. In International Conference on Software Engineering Research
and Practice (ICSERP’08), 2008.

[238] J. Schelp and S. Aier. Soa and ea-sustainable contributions for increasing corporate agility. In
42nd Hawaii International Conference on System Sciences (HICSS’09), pages 1–8. IEEE computer
society, 2009.

[239] D. Scholler. Hype cycle for application architecture. TR Tech. Rep. G00200962, Gartner, Inc,
2012.

[240] Scitools. Understand tool. Online, 2011. Available at: http://www.scitools.com/index.php.

[241] R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing legacy systems: software technologies,
engineering processes, and business practices. Addison-Wesley Professional, 2003.

[242] C. Seaman. Qualitative methods in empirical studies of software engineering. IEEE Transactions
on Software Engineering, 25(4):557–572, 1999.

[243] J. Singer. Practices of software maintenance. In International Conference on Software Maintenance
(ICSM’98), pages 139–145. IEEE, 1998.

[244] D. Smith, L. OBrien, and J. Bergey. Using the options analysis for reengineering (oar) method for
mining components for a product line. In Software Product Lines, pages 316–327. Springer, 2002.

[245] D. B. Smith, H. A. Müller, and S. R. Tilley. The year 2000 problem: Issues and implications.
Technical Report CMU/SEI-97-TR-002, CMU/SEI, 1997.

[246] H. Sneed. Planning the reengineering of legacy systems. Software, 12(1):24–34, 1995.

[247] H. Sneed. COB2WEB a toolset for migrating to web services. In 10th International Symposium
on Web Site Evolution (WSE’08), pages 19–25. IEEE, 2008.

[248] H. Sneed. A pilot project for migrating COBOL code to web services. International Journal on
Software Tools for Technology, 11(6):441–451, 2009.

[249] H. M. Sneed. Migration of procedurally oriented cobol programs in an object-oriented architecture.
In Proceedings in the International Conference on Software Maintenance (ICSM’92.

[250] H. M. Sneed. Software renewal: A case study. IEEE Software, 1(3):56–63, 1984.

[251] H. M. Sneed. Understanding software through numbers: A metric based approach to program
comprehension. Journal of Software Maintenance: Research and Practice, 7(6):405–419, 1995.

[252] H. M. Sneed. Encapsulating legacy software for use in client/server systems. In Proceedings of the
3rd Working Conference on Reverse Engineering (WCRE’96), pages 104–119. IEEE, 1996.

170

[253] H. M. Sneed. Object-oriented cobol recycling. In Proceedings of the 3rd Working Conference on
Reverse Engineering (WCRE’96), pages 169–178. IEEE, 1996.

[254] H. M. Sneed. Risks involved in reengineering projects. In 6th Working Conference on Reverse
Engineering, pages 204–211. IEEE, 1999.

[255] H. M. Sneed. Encapsulation of legacy software: A technique for reusing legacy software components.
Annals of Software Engineering, 9(1-2):293–313, 2000.

[256] H. M. Sneed. Encapsulation of legacy software: A technique for reusing legacy software components.
Annals of Software Engineering, 9(1-2):293–313, 2000.

[257] H. M. Sneed. Integrating legacy software into a service oriented architecture. In Proceedings of
10th European Conference on Software Maintenance and Reengineering (CSMR’06), pages 3–14.
IEEE, IEEE Computer Society, 2006.

[258] H. M. Sneed. Migrating from COBOL to Java. In International Conference on Software Mainte-
nance, pages 1–7. IEEE, 2010.

[259] H. M. Sneed and R. Majnar. A case study in software wrapping. In Proceedings of the International
Conference on Software Maintenance (ICSM’98), pages 86–93. IEEE, 1998.

[260] H. M. Sneed and S. H. Sneed. Creating web services from legacy host programs. In WSE’03, pages
59–65. IEEE, 2003.

[261] T. Souder and S. Mancoridis. A tool for securely integrating legacy systems into a distributed
environment. In Proceedings of 6th Working Conference on Reverse Engineering (WCRE’99),
pages 47–55. IEEE, 1999.

[262] SQuaRE. Systems and software quality requirements and evaluation (SQuaRE)– system and soft-
ware quality models. Standard ISO/IEC 25010, ISO, 2011.

[263] A. Strauss and J. Corbin. Basics of qualitative research: Grounded theory procedures and tech-
niques, volume 1. Sage, 1990.

[264] E. Stroulia, M. El-Ramly, and P. Sorenson. From legacy to web through interaction modeling. In
18th International Conference on Software Maintenance, pages 320–329. IEEE, 2002.

[265] T. Sucharov and P. Rice. The burden of legacy. Online: http://www.ncc.co.uk/article/

?articleid=15665, 2008.

[266] A. Sulaiman, N. I. Jaafar, and S. Mohezar. An overview of mobile banking adoption among the
urban community. International Journal of Mobile Communications, 5(2):157–168, 2007.

[267] E. B. Swanson. The dimensions of maintenance. In Proceedings of the 2nd international conference
on Software engineering, pages 492–497. IEEE Computer Society Press, 1976.

[268] P. Thiran, J.-L. Hainaut, G.-J. Houben, and D. Benslimane. Wrapper-based evolution of legacy
information systems. Transactions on Software Engineering and Methodology, 15(4):329–359, 2006.

[269] S. Thorne. Data analysis in qualitative research. Evidence Based Nursing, 3(3):68, 2000.

[270] S. R. Tilley, D. B. Smith, and S. Paul. Towards a framework for program understanding. In 4th
International Workshop on Program Comprehension (WPC’96), pages 19–28. IEEE, 1996.

[271] M. Torchiano, M. Di Penta, F. Ricca, A. De Lucia, and F. Lanubile. Migration of information sys-
tems in the Italian industry: A state of the practice survey. Information and Software Technology,
53(1):71–86, 2011.

[272] M. C. Tremblay, A. R. Hevner, and D. J. Berndt. The use of focus groups in design science research.
In Design Research in Information Systems, pages 121–143. Springer, 2010.

171

[273] A. Umar and A. Zordan. Reengineering for service oriented architectures: A strategic decision
model for integration versus migration. Journal of Systems and Software, 82(3):448–462, 2009.

[274] I. van de Weerd and S. Brinkkemper. Handbook of Research on Modern Systems Analysis and
Design Technologies and Applications, chapter Meta-modeling for situational analysis and design
methods, pages 38–58. Idea Global Publishing, 2008.

[275] I. van de Weerd, S. de Weerd, and S. Brinkkemper. Developing a reference method for game
production by method comparison. In J. Ralyt, S. Brinkkemper, and B. Henderson-Sellers, editors,
Situational Method Engineering: Fundamentals and Experiences, volume 244 of IFIP International
Federation for Information Processing, pages 313–327. Springer Boston, 2007.

[276] A. van Deursen, P. Klint, and C. Verhoef. Research issues in the renovation of legacy systems. In
2nd International Conference on Fundamental Approaches to Software Engineering, pages 1–21.
Springer, 1999.

[277] J. Van Geet and S. Demeyer. Lightweight visualisations of COBOL code for supporting migration
to SOA. Symposium on Software Evolution, 8, 2008.

[278] J. Van Geet and S. Demeyer. Reverse engineering on the mainframe: Lessons learned from” in
vivo” research. IEEE Software, 27(4):30–36, 2010.

[279] R. Van Noorden. The trouble with retractions. Nature, 478(7367):26–28, 2011.

[280] M. van Sinderen. Challenges and solutions in enterprise computing. Enterprise Information Sys-
tems, 2(4):341–346, 2008.

[281] M. van Sinderen. Challenges and solutions in enterprise computing. Enterprise Information Sys-
tems, 2(4):341–346, 2008.

[282] M. van Sinderen and M. Spies. Towards model-driven service-oriented enterprise computing. En-
terprise Information Systems, 3(3):211–217, 2009.

[283] N. Veerman. Revitalizing modifiability of legacy assets. Journal of Software Maintenance and
Evolution: Research and Practice, 16(4-5):219–254, 2004.

[284] P. Vemuri. Modernizing a legacy system to SOA-feature analysis approach. In IEEE Region 10
Conference TENCON, pages 1–6. IEEE, 2008.

[285] G. Visaggio. Ageing of a data-intensive legacy system: symptoms and remedies. Journal of Software
Maintenance and Evolution: Research and Practice, 13(5):281–308, 2001.

[286] I. Warren and D. Avallone. The renaissance of legacy systems. Springer, 1999.

[287] J. Webster and R. T. Watson. Analyzing the past to prepare for the future: Writing a literature
review. Management Information Systems Quarterly, 26(2):3, 2002.

[288] B. W. Weide, W. D. Heym, and J. E. Hollingsworth. Reverse engineering of legacy code exposed.
In 17th International Conference on Software Engineering, pages 327–331. ACM, 1995.

[289] N. H. Weiderman, J. K. Bergey, D. B. Smith, and S. R. Tilley. Approaches to legacy system
evolution. TR CMU/SEI-97-TR-O14, DTIC Document, 1997.

[290] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on Software
Engineering (ICSE’81), pages 439–449. IEEE, 1981.

[291] R. Wieringa. Design science as nested problem solving. In Proceedings of the 4th international
conference on design science research in information systems and technology, page 8. ACM, 2009.

[292] R. Wieringa and J. Heerkens. The methodological soundness of requirements engineering papers:
a conceptual framework and two case studies. Requirements engineering, 11(4):295–307, 2006.

172

[293] C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, page 38. ACM, 2014.

[294] WSO2. Wso2/c++ web service framework. Online, 2011. Available from: http://wso2.com/

products/web-services-framework/cpp/.

[295] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. O’Sullivan, and R. Richardson. Legacy
systems migration-a method and its tool-kit framework. In APSEC & ICSC’97, pages 312–320,
1997.

[296] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and D. OSullivan. The
butterfly methodology: A gateway-free approach for migrating legacy information systems. In
3rd IEEE International Conference on Engineering of Complex Computer Systems, pages 200–205.
IEEE, 1997.

[297] R. Yin. Case study research: Design and methods. Sage Publications, Inc, 2009.

[298] Z. Zhang, R. Liu, and H. Yang. Service identification and packaging in service oriented reengineer-
ing. In International Conference on Software Engineering and Knowledge Engineering (SEKE’05),
pages 219–26, 2005.

[299] Z. Zhang and H. Yang. Incubating services in legacy systems for architectural migration. In
Asia-Pacific Software Engineering Conference (APSEC’04), pages 196–203. IEEE, 2004.

[300] Z. Zhang, H. Yang, and W. Chu. Extracting reusable object-oriented legacy code segments with
combined formal concept analysis and slicing techniques for service integration. In Proceedings of
6th International Conference of Software Quality (QSIC’06), pages 385–392. IEEE, 2006.

[301] Z. Zhang, D.-D. Zhou, H.-J. Yang, and S.-C. Zhong. A service composition approach based on
sequence mining for migrating e-learning legacy system to soa. International Journal of Automatic
Computing, 7:584–595, 2010.

[302] J. Ziemann, K. Leyking, T. Kahl, and D. Werth. Soa development based on enterprise models
and existing it systems. In P. Cunningham, editor, Exploiting the Knowledge Economy: Issues,
Applications and Case Studies. IOS Press, Amesterdam, 2006.

[303] C. Zillmann, A. Winter, A. Herget, W. Teppe, M. Theurer, A. Fuhr, T. Horn, V. Riediger, U. Erd-
menger, U. Kaiser, et al. The SOAMIG Process Model in Industrial Applications. In European
Conference on Software Maintenance and Reengineering (CSMR’11), pages 339–342. IEEE, 2011.

[304] Y. Zou and K. Kontogiannis. Migration to object oriented platforms: A state transformation
approach. In Proceedings in the International Conference on Software Maintenance (ICSM’02),
pages 530–539. IEEE, 2002.

173

174

List of Figures

1.1 Comparison of modernization strategies with respect to cost and reuse [8] 8

1.2 Design science framework (Wieringa [291]) . 11

1.3 Decomposition of practical problem (adapted from Wieringa [291]) 12

1.4 Design Science Research Method [121] . 16

1.5 Types of case study designs adapted from Yin [297] . 18

1.6 An SLR Process [154] . 19

1.7 Grounded Theory Method [111] . 20

2.1 Activity and Concept types [274] . 32

2.2 Excerpt of the project initiation phase of the super-method 34

2.3 Analyze as-is situation . 36

2.4 PDD of the serviciFi method . 37

2.5 Dependency Graph . 43

3.1 The review process with number of studies . 52

3.2 The evaluation framework . 53

3.3 Distribution of the primary studies published per year . 56

3.4 Summary of primary studies across different venues . 57

3.5 Distribution of methods and techniques used for legacy system understanding 59

3.6 Distribution of methods and techniques used for target system understanding 59

3.7 Distribution of methods and techniques used for evolution feasibility determination 60

3.8 Distribution of methods and techniques used for candidate service identification 60

3.9 Distribution of methods and techniques used for implementation 61

3.10 Distribution of case study performed . 61

4.1 Legacy to SOA Migration Process . 73

4.2 Legacy system understanding techniques . 74

175

4.3 Realization strategy . 78

4.4 Implementation Techniques . 78

4.5 Dependency Graph . 80

4.6 Dependency Graph . 81

5.1 Sequence diagram depicting coupling within the payments domain 92

5.2 Logical Target Architecture . 95

5.3 Excerpt of a detailed program analysis of the CalculateInterest COBOL programs 96

5.4 Excerpt of a call dependency diagram of the CalculateInterest COBOL programs 97

5.5 Realization Choices . 99

6.1 Legacy languages by as per the informants . 107

6.2 Survey responses for perceived benefits of the legacy systems 109

6.3 Drivers for Legacy System Modernization (Legends: Flex.:–Become flexible to change;
Maint.:–High cost of maintenance; FTTM:–Faster time-to-market; Exp./Doc.:–Lack of
experts/documentation; Opport.:–Create business opportunities via mergers/acquisitions;
Supp.:–Lack of suppliers/vendors; Fail.:–Prone to failure) 110

6.4 Challenges of Legacy System Modernization (Legends: TC:–Time constraint to finish
modernization; PROI:–Predicting ROI; DM:–Data Migration; FLM:–Funding modern-
ization project; LK:–Lack of knowledge; DT:–Difficult to test; ResS.:–Resistance from
staff; DBL:–Difficult to extract business logic; Narch.:–Non-evolvable system architecture;
DCC:–Difficult to communicate the consequences; DPF:–Difficult to prioritize the func-
tionality; CR:–Cultural resistance from organization) . 112

176

List of Tables

1.1 Summary of mapping of research questions with research method and validity 22

2.1 Phase Comparison . 32

2.2 Excerpt of the project initiation phase of the method comparison matrix 33

2.3 Details of the experts . 39

2.4 Program metrics . 42

3.1 Inclusion and Exclusion Criteria for study selection . 51

3.2 The evaluation criteria based on the evaluation framework 55

3.3 The judgement scale to assess the support of techniques and method used 56

3.4 Summary of primary studies according to the sources . 57

3.5 Distribution of primary studies per phase . 58

4.1 Activity mapping between the selected papers and the structured process 82

4.2 Overview of the current practices, challenges and the possible solutions 83

5.1 Details of the subsystems in the payments domain . 92

5.2 Excerpt of legacy assessment result . 96

5.3 Excerpt of feature mapping to the logical target-architecture 97

6.1 Details of the informants . 105

7.1 Claimed benefits identified in the literature . 126

7.2 Details of the interviewees . 127

7.3 Details of the legacy systems . 128

7.4 Cross-Case Analysis of five case studies . 137

177

178

Publication List

Journal

R. Khadka, B. Sapkota, L. Ferreira Pires, M.J. van Sinderen and S. Jansen. Model-driven Approach to
Enterprise Interoperability at the Technical Service Level. Computer in Industry, 64 (8) 951-965, Elsevier,
2013.

T. Baars, R. Khadka, H. Stefanov, S. Jansen, R. Batenburg and E. van Heusden E. Chargeback for cloud
services. Future Generation Computer Systems. 41: 91-103, Elsevier, 2014.

Conference

R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage. A method engineering based legacy to SOA
migration method. In the 26th IEEE International Conference on Software Maintenance (ICSM 2011),
pages 163–172. IEEE, 2011.

R. Khadka, A. Saeidi, A. Idu, J. Hage, and S. Jansen. Legacy to SOA evolution: a systematic literature
review. In A. D. Ionita, M. Litoiu, and G. Lewis, editors, Migrating Legacy Applications: Challenges in
Service Oriented Architecture and Cloud Computing Environments, pages 40–71. IGI Global, 2012.

R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage. A structured legacy to SOA migration
process and its evaluation in practice. In the IEEE 7th International Symposium on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2013), pages 2–11. IEEE, 2013.

R. Khadka, A. Saeidi, S. Jansen, J. Hage, and G. Haas. Migrating a large scale legacy application to
SOA: Challenges and lessons learned. In the 20th Working Conference on Reverse Engineering (WCRE
2013), pages 425–432. IEEE, 2013.

R. Khadka, B. V. Batlajery, A. Saeidi, S. Jansen, and J. Hage. How do professionals perceive legacy
systems and software modernization? In the 36th International Conference on Software Engineering
(ICSE 2014), pages 36–47. ACM, 2014.

R. Khadka, P. Shrestha, B. Klein, A. Saeidi, S. Jansen, J. Hage, E. van Dis, and M. Bruntink. Does
software modernization deliver what it aimed for? A post modernization analysis of five software mod-
ernization case studies. In the 31st International Conference on Software Maintenance and Evolution
(ICSME 2015), pages 477–486. IEEE, 2015.

A. Saeidi, J. Hage, R. Khadka, and S. Jansen. A Search-based Approach to Multi-View Clustering of
Software Systems. In the proceedings of the 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2015), pages 429–438, IEEE, 2015.

R. Khadka, A. Saeidi, S. Jansen, J. Hage, and R. Helms. An Evaluation of Service Frameworks for
the Management of Service Ecosystems. In the 15th Pacific Asian Conference on Information Systems
(PACIS 2011), Brisbane, 2011.

R. Khadka, B. Sapkota, L. Ferreira Pires, M. J. van Sinderen, and S. Jansen. Model-Driven Develop-
ment of Service Compositions for Enterprise Interoperability. In the Proceedings of the International

179

IFIP Working Conference on Enterprise Interoperability (IWEI 2011), Stockholm, Sweden, pages 23-24,
Springer, 2011.

Workshop

R. Khadka, B. Sapkota. An Evaluation of Dynamic Web Service Composition Approaches. In the 4th
International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing
(ACT4SOC 2010), pages 67-79, SciTePress, 2010.

R. Khadka, B. Sapkota, L. Ferreira Pires, M. J. van Sinderen, and S. Jansen. WSCDL to WSBPEL– A
Case Study of ATL-based Transformation. In the 3rd International Workshop on Model Transformation
with ATL (MtATL 2011), CEUR, 2011.

H. Stefanov, S. Jansen, R. Batenburg, E. van Heusden, and R. Khadka. How to do Successful Chargeback
for Cloud Services. In the 8th International Workshop on the Economics and Business of Grids, Clouds,
Systems, and Services (GECON 2011), pages 61-75, Springer, 2011.

Tools

A. Saeidi, J. Hage, R. Khadka, R. and S. Jansen. ITMViz: Interactive Topic Modeling for Source Code
Analysis. In the proceedings of the 23rd IEEE International Conference on Program Comprehension
(ICPC 2015), pages 295-298, IEEE, 2015.

A. Saeidi, J. Hage, R. Khadka, and S. Jansen. GElATO: GEneric LAnguage TOols for Model-Driven
Analysis of Legacy Software Systems. In the proceedings of the 20th Working Conference on Reverse
Engineering (WCRE 2013), pages 481-482, IEEE, 2013.

180

Summary

Legacy software systems are those that significantly resist modification and evolution while still being
valuable to its stakeholders, to the extent that their failure has a detrimental impact on business. De-
spite several drawbacks, the world still depends on legacy software systems for vital societal functions,
from banking to health. Even though these systems have collected seemingly insurmountable technical
debt, legacy software systems keep providing valuable and useful features to support critical business
processes. Legacy software systems and their modernization have been extensively researched. After
decades of research, a plethora of methods and techniques has been proposed to facilitate legacy soft-
ware system modernization. These modernization methods are predominantly aimed at providing a
technical solution to facilitate understanding or assisting the modernization process. However, a legacy
software modernization method should also consider business and organizational perspectives. In the
current body of knowledge, such a consolidated modernization method is missing. Furthermore, despite
numerous software modernization methods, legacy systems are still vital to run day-to-day processes in
industry. Research indicates that legacy modernization methods reported in academia do not fit the
purposes of industry. To address the aforementioned two issues, this dissertation consists of two research
questions and hence, the dissertation is divided into two parts.

The first research question of this dissertation reads:

How can a modernization process be designed that facilitates enterprises in modernizing software
systems?

To answer this question, the first part focuses on developing a systematic legacy software modern-
ization method, particularly aimed at modernizing towards a Service-Oriented Architecture (SOA). To
develop a systematic method, we initially investigate the combination of technical and business perspec-
tives of legacy to SOA modernization. We leverage the method engineering approach to combine method
fragments from different existing modernization methods in Chapter 2. The consolidated legacy to SOA
modernization method is evaluated and enhanced by interviewing experts and further evaluated with
two case studies. In Chapter 3, we aim at systematically investigating techniques and methods that are
reported in academia regarding legacy to SOA software modernization. We use the systematic litera-
ture review method to document a historical overview of legacy to SOA modernization approaches and
provide an overview of available methods and techniques used. In Chapter 4, we develop a phase-wise
structured method for legacy to SOA modernization. For each phase, we present a rationale to justify
the need of it, current practices, and challenges that require further attention. This research is based on
the rationale that there is a need for a structured legacy to SOA modernization method that incorporates
not only the technical issues but also the business and organizational issues.

The answer to the first research question is a software modernization method that combines technical
and business aspects of software modernization to SOA. Initially, we developed a method by identifying
essential steps to combine technical and business aspects. The next step was to investigate the state of
the art of legacy to SOA modernization methods. The software modernization method is then further
extended using the state of the art of software modernization in academia. An overview of the literature,
analyzed in a structural manner, is used in to gather a historical overview methods and techniques used in
software modernization leading to a development of a phase-wise structured method. The results of the
overview indicate that less attention is given to business aspects of legacy software system modernization

181

in academic research.

The second research question of this dissertation reads:

What are the perceptions of practitioners about software modernization?

To answer the second research question, the second part focuses on understanding how legacy soft-
ware systems and their modernization are perceived in industry. In particular, we investigate what
characteristics of legacy software systems still keep them operational, what are the key drivers for mod-
ernization, what key challenges are faced in the modernization process and what business objectives/goals
are met after conducting legacy software modernization. To establish a context, Chapter 5 starts with
investigating a large scale legacy to SOA modernization case in a Dutch financial institution with the
aim of understanding what methods and techniques are used and what challenges are faced in an indus-
trial context. In Chapter 6, we investigate how legacy systems and their modernization are perceived
in industry. We conduct interviews with 26 practitioners to understand what keeps them operational in
industry, what drivers lead to modernization and what challenges are faced during modernization? We
use a grounded theory approach to analyze the interviews and then use a structured survey to trian-
gulate the findings. In Chapter 7, we investigate what it means for a legacy system modernization to
be ”successful” from a business perspective. As of now, legacy software modernization is claimed to be
successful when the technical modernization is completed. However, there has been limited research on
investigating the post-modernization results

The findings of the second research question provide a different viewpoint of legacy software system
and its modernization. Practitioners value their legacy software system despite acknowledging the well-
known drawbacks of legacy systems. It is interesting to note that challenges and motivations of legacy
software modernization in industry acknowledge the business aspects in addition to technical aspects. The
post–modernization result from the five retrospective case studies has revealed a new area of research in
software modernization. Based on the post-modernization investigation of five cases, the results indicate
that most of the pre-modernization business goals are met.

This dissertation revisits legacy software system modernization and highlights the importance of
business aspects of software modernization along with the technical ones. These perspectives are aligned
in a structured legacy software modernization method. Additionally, this dissertation also highlights the
industrial viewpoint of legacy modernization by exploring how legacy systems and their modernization
are perceived in practice. To summarize, this dissertation has contributed to three key research areas,
(i) establishing the importance of business aspects of software modernization, (ii) documenting indus-
trial perspective of software modernization, and (iii) identifying a new research domain within software
modernization to document post software modernization impacts.

182

Nederlands Samenvatting

Legacy software-systemen zijn systemen die moeilijk te modificeren en evolueren zijn terwijl ze nog
steeds waardevol zijn voor belanghebbenden, in die zin dat hun falen een nadelig effect op het bedrijf
heeft. Ondanks meerdere nadelen is de wereld nog steeds afhankelijk van legacy software-systemen
voor essentile maatschappelijke functies, van het bankwezen tot de gezondheidszorg. Ondanks dat
deze systemen een schier onoverkomelijke technische bagage hebben opgebouwd, blijven legacy software-
systemen waardevolle en nuttige functies bieden voor de ondersteuning van kritische bedrijfsprocessen.
Legacy software-systemen en hun modernisering zijn extensief onderzocht. Na tientallen jaren onder-
zoek, is een plethora van methoden en technieken voorgesteld om de modernisering van legacy soft-
waresystemen te faciliteren. Deze moderniseringsmethoden zijn voornamelijk gericht op het leveren van
technische oplossingen om het moderniseringsproces te begrijpen of assisteren. Een legacy software-
moderniseringsmethode zou echter ook organisationele perspectieven moeten incorporeren. Binnen de
huidige kennis mist een dergelijke moderniseringsmethode. Verder zijn legacy-systemen, ondanks vele
software moderniseringsmethoden, nog steeds essentiel in dagelijkse processen in de industrie. Onderzoek
wijst uit dat legacy-moderniseringsmethoden uit de wetenschap niet overeenkomen met de doelen van
de industrie. Om deze bovengenoemde twee problemen te behandelen, bestaat deze dissertatie uit twee
onderzoeksvragen en uit twee delen.

De eerste onderzoeksvraag luidt:

Hoe kan een moderniseringsproces worden ontworpen dat bedrijven faciliteert bij het moderniseren van
softwaresystemen?

Om deze vraag te beantwoorden richt het eerste deel zich op het ontwikkelen van een systematis-
chce legacy software-moderniseringsmethode, die speciaal gericht is op het moderniseren van een Service-
Oriented Architecture (SOA). Om een systematische methode te ontwikkelen, onderzoeken we in de eerste
plaats de combinatie van technische en bedrijfsperspectieven op legacy-naar-SOA-modernisering. We ge-
bruiken de method engineering aanpak om methodefragmenten van verschillende betaande moderniser-
ingsmethoden te combineren in hoofdstuk 2. De geconsolideerde legacy-naar-SOA-moderniseringsmethode
wordt gevalueerd en verbeterd door middel van het interviewen van experts en twee case studies. In hoofd-
stuk 3 richten we ons op het systematisch onderzoeken van technieken en methoden uit de wetenschap
m.b.t. legacy-naar-SOA-modernisering. We gebruiken de systematic literature review methode om een
historisch overzicht te vormen van legacy-naar-SOA-moderniseringsmethoden en -technieken. In hoofd-
stuk 4 ontwikkelen we een gefaseerde gestructureerde methode voor legacy-naar-SOA-modernisering.
Voor iedere fase presenteren we een verklaring om de noodzaak ervan, de huidige praktijk, en toekom-
stige uitdagingen te verdedigen. Dit onderzoek is gebaseerd op de aanname dat er behoefte is aan een
gestructureerde legacy-naar-SOA-moderniseringsmethode die niet alleen technische problemen behelst
maar ook bedrijfskundige en organisationele.

Het antwoord op de eerste onderzoeksvraag is een software-moderniseringsmethode die technische en
bedrijfskundige aspecten van legacy-naar-SOA modernisering combineert. In de eerste stap ontwikkelden
we een methode door essentile stappen te identificeren om technische en bedrijfsmatige aspecten te
combineren. Deze software-moderniseringsmethode is verder uitgebreid door middel van state-of-the-
art moderniseringskennis uit de wetenschap. Een overzicht van de literatuur wordt gebruikt om een
gefaseerde gestructureerde methode te ontwikkelen. Dit overzicht laat zien dat er minder aandacht

183

gegeven wordt aan bedrijfsmatige aspecten van legacy software-modernisering in academisch onderzoek.

De tweede onderzoeksvraag van deze dissertatie luidt:

Wat zijn de percepties van gebruikers over softwaremodernisering?

Om de tweede onderzoeksvraag te beantwoorden, richt het tweede deel zich op begrijpen hoe legacy
software-systemen en hun modernisering in de industrie beschouwd worden. We onderzoeken de percep-
tie in de industrie van legacy-systemen en legacy software-modernisering. In het bijzonder onderzoeken
we welke karakteristieken van legacy software-systemen ervoor zorgen dat ze operationeel gehouden
worden, wat de key drivers voor modernisering zijn, welke uitdagingen aangegaan worden in het mod-
erniseringsproces, en welke bedrijfsmatige doelen worden behaald na legacy software-migratie. Om
een context te geven begint hoofdstuk 5 met het onderzoeken van een grootschalige legacy-naar-SOA-
moderniseringscase in een Nederlands financiel instituut, met als doel om te begrijpen welke methoden en
technieken gebruikt worden en welke uitdagingen aangegaan worden in een industrile context. In hoofd-
stuk 6 onderzoeken we hoe legacy-systemen en hun modernisering worden beschouwd in de industrie.
We interviewen 26 gebruikers om te begrijpen waarom ze operationeel gehouden worden in de industrie,
welke drivers tot modernisering leiden en welke uitdagingen aangegaan worden tijdens modernisering.
We gebruiken een grounded theory-aanpak om de interviews te analyseren en vervolgens een gestruc-
tureerde enqute om de resultaten te trianguleren. In hoofdstuk 7 onderzoeken we wat het betekent
voor een legacy-systeemmodernisering om “succesvol” te zijn vanuit een bedrijfskundig perspectief. Mo-
menteel wordt een legacy-softwaremodernisering als succesvol beschouwd als de technische modernisering
compleet is. Er is echter weinig onderzoek gedaan naar resultaten na afloop van de modernisering.

De uitkomsten van de tweede onderzoeksvraag bieden een verschillend perspectief op legacy software-
systemen en hun modernisering. Gebruikers waarderen hun legacy software-systemen ondanks dat ze zich
bewust zijn van bekende nadelen. Het is interessant om te bemerken dat uitdagingen en motivaties van
legacy software-modernisering in de industrie zowel de bedrijfsmatige als de technische aspecten erkennen.
De postmoderniseringsresultaten uit de vijf retrospectieve case studies heeft een nieuw onderzoeksgebied
in softwaremodernisering blootgelegd. De postmoderniseringsresultaten wijzen uit dat de meeste pre-
moderniseringsdoelen behaald worden.

Deze dissertatie herbeschouwt de modernisering van legacy software-systemen en belicht het belang
van bedrijfsmatige aspecten van softwaremodernisering naast de technische. Deze perspectieven worden
naast elkaar gezet in een gestructueerde legacy software-moderniseringsmethode. Daarnaast belicht
deze dissertatie ook het industrile perspectief van legacy-modernisering door te onderzoeken hoe legacy-
systemen en hun modernisering in de praktijk worden beschouwd. Samenvattend draagt deze dissertatie
bij aan meerdere onderzoeksgebieden: (i) het bepalen van het belang van bedrijfsmatige aspecten van
softwaremodernisering, (ii) het documenteren van het industrile perspectief op softwaremodernisering,
en (iii) het identificeren van een nieuw onderzoeksdomein binnen softwaremodernisering om de impact
van software modernisering te documenteren.

184

