
INLDS Essay: Uniqueness of the limit cycle near Hopf-bifurcation

Jelger J. van Haskera (9345825)

January 17, 2025

Summery

In this essay, we analyze the supercritical Hopf-bifurcation. We will prove that close to the origin, this
system has one unique limit cycle. In section two we will prove this by using the Poincaré-map, which we
derive in section one. In section three, we will give another proof, using the Bendixson-Dulac theorem
and the Poincaré-Bendixson theorem.

Introduction

The smooth orbital normal form for the supercritical Hopf bifurcation is defined as

ẇ = (α+ i)w − w|w|2 +O(|w|4), w ∈ C, (1)

where the O(|w|4)-terms can smoothly depend on α ∈ R. [1]

For our essay, it is more useful to write this system in polar coordinates. Herefore, we write w = ρeiϕ,
with ẇ = ρ̇eiϕ + iρϕ̇eiϕ. If we substitute this in (1), we get the following equation:

ρ̇eiϕ + iρϕ̇eiϕ = αρeiϕ − ρ3eiϕ + iρeiϕ +O(|w|4). (2)

This gives rise to the equations for the real and imaginary parts: ρ̇eiϕ = αρeiϕ − ρ3eiϕ + O(|w|4) and
ρϕ̇eiϕ = ρeiϕ +O(|w|4). In this essay, we will focus on the points on the complex plane with small ρ > 0,
unless stated otherwise. Therefore we can now use (2) to write our system in polar coordinates:

{
ρ̇ = ρ(α− ρ2) + Φ(ρ, ϕ)

ϕ̇ = 1 +Ψ(ρ, ϕ)
(3)

We note that Φ(ρ, ϕ) = O(|ρ|4) and Ψ = O(|ρ|3). The α-dependence of these smooth functions is not
indicated to simplify notations. At this point we emphasize that |w| = ρ and we will use the notations
O(|w|k), O(|ρ|k), k ∈ N interchangeably.

1 Cubic Taylor expansion of the Poincaré map and it’s depen-
dence on the higher order terms of the supercritical Hopf
bifurcation.

In this section, we aim to find a Taylor expansion of the parameter-dependent Poincaré map of system
(1) and to analyze it’s dependence on the O(|w|4) terms.

We will look at an orbit of (3), which starts at (ρ, ϕ) = (ρ0, 0), with very small ρ0. For this orbit we will
use the representation ρ = ρ(ϕ; ρ0), ρ0 = ρ(0; ρ0). A visual representation is included in figure 1 below.
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Figure 1: Visual representation of the Poincaré map for system (3), picture is from the book ”Elements
of Applied Bifurcation Theory” [2].

From (3), we know that the orbit ρ(ρ0, 0) satisfies

dρ

dϕ
=
ρ(α− ρ2) + Φ(ρ, ϕ)

1 + Ψ(ρ, ϕ)
. (4)

For convenience, we write the smooth function 1
1+Ψ(ρ,ϕ) as it’s Taylor expansion around ψ = 0 : 1

1+Ψ =

1−Ψ+ Ξ(Ψ), where Ξ(Ψ) is a smooth function of order O(|Ψ|2). Therefore we write

dρ

dϕ
= (ρ(α− ρ2) + Φ)(1−Ψ+ Ξ(Ψ)) = ρ(α− ρ2) +R(ρ, ϕ), (5)

where R(ρ, ϕ) is a smooth function of order O(|ρ|3). We recall that Φ(ρ, ϕ) = O(|ρ|4) and Ψ = O(|ρ|3).
Therefore Ξ(Ψ) = O(|Ψ|2) = O(|ρ|6) and we conclude that R(ρ, ϕ) = O(|ρ|4).

In the next step we will write the cubic Taylor expansion for ρ(ϕ, ρ0) at ρ0 = ρ(ϕ, 0) ≡ 0 :

ρ = u1(ϕ)ρ0 + u2(ϕ)ρ
2
0 + u3(ϕ)ρ

3
0 +O(|ρ0|4). (6)

The next step is to find the expressions for ui(ϕ), i = 1, 2, 3, and look at their dependency on the O(|w|4)
terms of (1). To do so, we substitute (6) into (5):

u′1(ϕ)ρ0 + u′2(ϕ)ρ
2
0 + u′3(ϕ)ρ

3
0 +O(|ρ0|4) = α(u1ρ0 + u2ρ

2
0 + u3ρ

3
0 +O(|ρ0|4))− u31ρ

3
0 −O(|ρ|4)

= αu1ρ0 + αu2ρ
2
0 + (αu3 − u31)ρ

3
0 +O(|ρ0|4).

This gives us three sets of linear differential equations. Before we write them down, we note that we
have the initial conditions u1(0) = 1, u2(0) = u3(0) = 0, since ρ(0, ρ0) = ρ0 : The first equation is
u′1 = αu1, with solution u1(ϕ) = eαϕ. The second equation is u′2 = αu2, from which we find u2 ≡ 0.

Finally, u′3 = αu3 − u31 so we conclude u3(ϕ) = −2π if α = 0 and u3(ϕ) = eαϕ 1−e2αϕ

2α for |α| > 0. At this

point we make a small note that limα→0 e
αϕ 1−e2αϕ

2α = −2π so the definition of u3(ϕ) is consistant.

We look at the Poincaré mapping of (1) defined on the half-axis Re(w) ≥ 0, near w = 0. Because ϕ̇ ≈ 1,
the Poincaré map is defined by ρ0 7→ ρ1 := ρ(2π, ρ0).We can use (6) and the expressions for u1, i = 1, 2, 3
to express the Poincaré map:

ρ1(ρ0) = e2παρ0 + e2πα
(
1− e4απ

2α

)
ρ30 +O(|ρ0|4), α ̸= 0 (7)

ρ1(ρ0) = e2παρ0 − 2πρ30 +O(|ρ0|4), α = 0 (8)

Because the expressions for ui, i = 1, 2, 3, are independent of R(ϕ, ψ), we conclude that the Poincaré
map above is independent of all O(|ρ|4) terms of the system (3) in Polar coördinates. Therefore the
Poincaré map is also independent of the higher order O(|w|4) terms of (1).
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2 Fixed point of the Poincaré map and limit cycles of the Hopf
bifurcation

In this section we will prove that the Poincaré map has a unique stable positive fixed point when α > 0.
We will then use this to conclude that a unique stable limit cycle bifurcates from the origin in (1)
independent of the O(|w|4)–terms.

We will analyze the Poincaré-map for small ρ0, |α|. We start of by finding an expression for the fixed

points r, such that ρ1(r) = r. For α = 0, (8) gives us the equation r2 = O(|r|4)
e−2π . This gives us the trivial

fixed point r ≈ 0 but we are only interested in ρ0 > 0. If we take |α| > 0, from (7) we get the following
equations to find the fixed point:

r = e2παr + e2πα
(
1− e4απ

2α

)
r3 +O(|r|4) (9)

1 = e2πα + e2πα
(
1− e4απ

2α

)
r2 +O(|r|3) (10)

r2 =
1− e2πα +O(|r|3)
e2πα

(
1−e4απ

2α

) (11)

For small |r|, the higher order terms can be discarded and the expression on the righthand side of (11)
is positive for α > 0 : While this equation has only the trivial solutions for very small α ≤ 0, there is
exactly one solution for small α > 0. After some rewriting, this point is given by

r ≈
√

2α− 2αe2πα

e2πα − e8απ
, α > 0. (12)

We can use a Taylor expansion around α = 0, to write this fixed point as r(α) =
√

2
3

√
α+O(α3/2).

Because a positive fixed point of the Poincaré-map corresponds to a limit cycle of the system, this means
that system (1) has a unique limit cycle. This limit cycle bifurcates from the origin and exists for α > 0.
A visual representation of the existence of the fixed point, is seen in the figure below.

Figure 2: Visual representation of the fixed points of the Poincaré map for system (3), picture is from
the book ”Elements of Applied Bifurcation Theory” [2].

The existence of this fixed point is independent of any O(|w|4) terms. Therefore the higher order terms
of (1) do not influence the limit cycle bifurcation in some neighborhood of z = 0, if we take |α| small
enough.
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At last, we will state something about the stability of the fixed point of the limit cycle. To do so we
determine |ρ′1(r(α), α)|. From (7) we see that

|ρ′1(ρ0, α)| =
∣∣∣∣e2πα + 3e2πα

(
1− e4απ

2α

)
ρ20 +O(|ρ0|4)

∣∣∣∣ (13)

Since r(α) =
√

2
3

√
α+O(α3/2), it follows that

|ρ′1(r(α), α)| =
∣∣e2πα + e2πα(1− e4απ) +O(α) +O(|r(α)|4)

∣∣ (14)

=
∣∣2e2πα − e6απ +O(α)

∣∣ . (15)

In the last step, we have used that r(α) = O(α1/2) so O(|r(α)|4) = O(α2). Now from (15), we see that
µ = ρ′1(r(α), α) ∈ (0, 1) if we take α small enough. Therefore the cycle that bifurcates from the origin is
stable for small enough α. This is again not affected by any O(|w|4) terms of (1).

3 Proof of uniqueness of the limit cycle of Hopf bifurcation
using the Poincaré–Bendixson–Dulac theory.

In this section we will again prove the existence of an unique limit cycle of the Hopf bifurcation. This
time we will use Theorem 1.15 (Bendixson-Dulac). [3]

To use the Bendixson-Dulac theory, we write down the divergence of system (3). We will use the notation
X = (ρ, ϕ), F (X) := (ρ̇, ϕ̇). The divergence is given by

(divF )(X) = α− 3ρ2 +O(|ρ|3). (16)

We will now define a trapping annulus D ∈ R2 for system (3) in which the divergence is negative.

If we take ρ small enough, the termO(|ρ|3) can be discarded and the divergence has the roots ρ∗ ≈ ±
√

1
3α.

Because of our context of polar coordinates, we are only interested in the positive root and we define

ρ∗ =
√

1
3α.

If ρ gets bigger, the term O(|ρ|3) starts dominating the divergence. There are two possibilities: The first
case is that there exists a smallest ρ3 > ρ∗, for which the divergence has another root.
The second possibility is that such a ρ3 does not exist and the divergence is negative for all ρ > ρ∗. Then
we define ρ3 as a radius bigger then ρ∗, for which the higher order terms can still be discarded. The
value of ρ3 is not important.

Now we define the annulus D :=
{
X ∈ R2 : Ẋ = F (x), ρ ∈

(√
1
3α, ρ3.

)}
. The annulus is sketched in

figure 3 below.
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Figure 3: Visual representation of the annulus D and the limit cycles Γ0,Γ1. The flow at the borders of
D is sketched at the y-axis. [2].

Before we move on, we argue why D is a trapping annulus for our system. Along Γ0, we see that

ρ̇|ρ=ρ∗ = 2
3

√
1
3α

3/2 > 0. This implies that the flow on the inner boundary of D is pointing outwards.

Inside D, the divergence is negative. We notice that (discarding higher order terms) (divF )(X) = d
dt ρ̇

and therefore in D, ρ̇ only decreases. Furthermore we note that ρ̇|ρ=√
α = 0 while (divF )(X)|ρ=√

α < 0
and the higher order terms of (16) will not dominate for such a small ρ =

√
α.

This means that ρ∗ <
√
α < ρ3 and that ρ̇|√α<ρ≤ρ3

< 0. This implies that the flow on the outer boundary
of D, the flow is pointing inwards.

The flow on the boundary of D is sketched in figure 3. We see that the flow on the boundary of D points
to the interior of D. From this we conclude that an orbit starting in D̄, cannot leave D̄ and is therefore
bounded.
From (1) and (3), we see that the Hopf bifurcation has only the trivial equilibrium, which lies outside
of the annulus D. Therefore, by Theorem 2.11 (Poincaré-Bendixson) [3], an orbit starting in D̄ must be,
or approach a periodic orbit. This means that there exists at least one limit cycle Γ0 in D̄. This cycle is
sketched in figure 3.

We want to prove that this is a unique cycle: Inside of the disc {X : ρ <
√

1
3α, } the divergence is strictly

positive and the Bendixson-Dulac theory [3] implies that there is no cycle. If a ρ3 as above exists, the
higher order term O(|ρ0|3) starts dominating for ρ > ρ3. In this essay we only look at small points close
to w = 0, so we discard the area for which ρ ≥ ρ3.

Now assume there exists a second limit cycle Γ1 inside D. (See figure 3 for a sketch.) We define the
annulus A which is enclosed by the cycles Γ0,Γ1, hence ∂A = Γ0 ∪ Γ1.

We define (P,Q) = F (X). Now by Green’s theorem,∮
Γ0

Pdy −Qdx−
∮
Γ1

Pdy −Qdx =

∫ ∫
A

(divF )dX < 0. (17)

In this expression Γ0 is traced clockwise and Γ1 is traced counterclockwise. We can also trace the
boundary of A the other way around, to find

∮
Γ0

Pdy −Qdx−
∮
Γ1

Pdy −Qdx = −
∫ ∫

A

(divF )dX > 0. (18)

Now both (17) and (18) lead to a contradiction because∮
Γ0

Pdy −Qdx−
∮
Γ1

Pdy −Qdx =

∮
Γ0

⟨F⊥, dX⟩ −
∮
Γ1

⟨F⊥, dX⟩ ≡ 0. (19)
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To conclude: In our prove we have looked at the Hopf bifurcation close to the origin. We have proved the
existence of a limit cycle. The assumption of the existance of a second limit cycle lead to a contradiction.
Therefore we have proven that the Hopf bifurcation only has one unique limit cycle close to the origin.
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