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This paper is based on two sources [1] [2], the numbers of the definitions, lemmas and theorems correspond to
those in the sources for ease of reference.

Consider a smooth system (f : Rn → Rn is C1-smooth)

ẋ = f(x), x ∈ Rn (1)

Recall that the corresponding flow φt(x) is at least C1 jointly in (t, x).

Let Γ0 ⊂ Rn be a periodic orbit (cycle) of the dynamical system generated by (1), i.e. there exists T > 0
(the minimal period) such that for every x0 ∈ Γ0 we have φT (x0) = x0 and φt (x0) ̸= x0 for t ∈ (0, T ).

Choose x0 ∈ Γ0 and define
Σ0 = {ξ ∈ Rn : ⟨f (x0) , ξ⟩ = 0}

and introduce a cross-section
Πx0 = {x ∈ Rn : x = x0 + ξ, ξ ∈ Σ0} .

The orbit starting at x0 (Γ0) hits Πx0
again after T units of time. Our next aim is to show that orbits of

(1) starting at points on Πx0
near x0 also hit Πx0

after approximately T units of time. Actually, we show that
this is true for all orbits starting near x0, either on or off Πx0 (see Figure 1).

Figure 1: construction of the Poincare mapping

Lemma 3.11 (return to cross-section Πx0) There exists a C1 map τ : Rn → R, ξ 7→ τ(ξ), defined in a neigh-
bourhood of ξ = 0 and such that
(i) τ(0) = T ;
(ii) φτ(ξ) (x0 + ξ) ∈ Πx0

.

Proof. Define F : R× Rn → R by

F (t, ξ) =
〈
f (x0) , φ

t (x0 + ξ)− x0

〉
and consider the equation

F (t, ξ) = 0

Since φt(x) is at least C1 jointly in (t, x), F ∈ C1. We can compute the derivative over t of F ,

Ft(t, ξ) =

〈
f (x0) ,

∂

∂t
φt (x0 + ξ)

〉
=

〈
f (x0) , f(φ

t (x0 + ξ))
〉

Note that
F (T, 0) =

〈
f (x0) , φ

T (x0)− x0

〉
= ⟨f (x0) , x0 − x0⟩ = 0

while
Ft(T, 0) =

〈
f (x0) , f(φ

T (x0))
〉
= ⟨f (x0) , f (x0)⟩ = ∥f (x0)∥2 ̸= 0

The Implicit Function Theorem now yields that there exists an open neighbourhood of ξ = 0 on which there
exists a C1 map τ : Rn → R such that

τ(0) = T, F (τ(ξ), ξ) = 0
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Thus for any ξ in this neighbourhood,
φτ(ξ) (x0 + ξ)− x0 ∈ Σ0

and
x0 + φτ(ξ) (x0 + ξ)− x0 = φτ(ξ) (x0 + ξ) ∈ Πx0

Definition 3.12 The map P : Σ0 → Σ0, defined for ξ ∈ Σ0 near ξ = 0 by the formula

P(ξ) = φτ(ξ) (x0 + ξ)− x0, (2)

is called a Poincaré map of the periodic orbit Γ0.

remark P is a (locally defined) map on the (n− 1)-dimensional subspace Σ0. Let Ni ∈ Rn, i = 1, 2, . . . , n− 1,
be linearly independent vectors in Σ0, so that

⟨Ni, f (x0)⟩ = 0

Then any ξ ∈ Σ0 can be written as

ξ = η1N1 + η2N2 + · · ·+ ηn−1Nn−1

We will denote this map as
N : Rn−1 → Rn, η 7→ Nξ

where N denotes the n× (n− 1) matrix (
N1 N2 . . . Nn−1

)
Since the columns of the matrix are linearly independent and span Σ0 there exists an inverse matrix N−1

restricted to Σ0. Given such coordinates η in Σ0, the map P as defined in (2) is fully described by a (local)
C1-map

P : Rn−1 → Rn−1, η 7→ P (η)

defined by
P (η) = N−1P(Nη)

which is often also called the Poincaré map of Γ0. Note that η = 0 is a fixed point of this map: P (0) = 0. The
derivatives of P (η) and P(ξ) are related by

Pξ(ξ) = NPη(N
−1ξ)N−1

The eigenvalues of the (n− 1)× (n− 1)-matrix Pη(0) are the eigenvalues of the linear map Pξ(0). Indeed,

Pξ(0)v = λv = NPη(0)N
−1v

λN−1v = Pη(0)N
−1v

and conversely
Pη(0)v = λv = N−1Pξ(0)Nv

λNv = Pξ(0)Nv

So in particular Pξ(0) restricted to Σ0 has (n− 1) eigenvalues.

Restricting the neigbourhood of Lemma 1 to Σ0 shows that the Poincaré map is well defined and since τ
is C1 the Poincaré map is smooth.

Theorem 3.13
(i) If all (n− 1) eigenvalues of the linearization Pξ(0) of the Poincaré map P at ξ = 0 satisfy |λ| < 1, then Γ0

is asymptotically stable.
(ii) If |λ| > 1 for some eigenvalue λ of the linearization of the Poincaré map P, then Γ0 is unstable.
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Proof. (i) By theorem 2.7 (see stability of linear maps section at the end of this document) introduce an
equivalent norm ∥ · ∥1 in Rn in which Pξ(0) is a linear contraction on Σ0. By theorem 3.1 there exists δ0 > 0
such that for all ξ ∈ Σ0 with ∥ξ∥1 ≤ δ0 the inequality

∥P(ξ)∥1 ≤ ρ1∥ξ∥1 (3)

holds with some ρ1 < 1. For any δ ≤ δ0, construct a neighbourhood Uδ of Γ0 as follows. Take the ball in Σ0

Bδ = {ξ ∈ Σ0 : ∥ξ∥1 ≤ δ}

and consider all orbits of (1) starting at x0 + ξ with ξ ∈ Bδ. Any such orbit returns back to Π0 after τ(ξ) units
of time. Define now Uδ ⊂ Rn as the union of all such orbit segments (see figure 2), i.e.,

Uδ =
{
x ∈ Rn : x = φt (x0 + ξ) , ξ ∈ Bδ, 0 ≤ t ≤ τ(ξ)

}

Figure 2: construction of Uδ

The set Uδ is a closed tubular neighbourhood of Γ0 that shrinks to Γ0 as δ → 0.
Indeed, because φt(x) is C1 in (t, x) it is Lipschitz continuous over the closed interval [0, 2T ]. Thus for some
C ≥ 1,

∥φt(x0)− φt(x0 + ξ)∥ ≤ C∥(t, x0)− (t, x0 + ξ)∥ = C∥ξ∥ (4)

This holds for all t ∈ [0, 2T ] (this includes the whole cycle for small enough δ since τ(ξ) → T as δ → 0) and
ξ ∈ Bδ, thus Uδ shrinks to Γ0 as δ → 0.

Since P (Bδ) is located strictly in Bδ, Uδ is a trapping region, i.e. any orbit starting in Uδ remains in it
for all t ≥ 0.
Indeed, the boundary ∂Uδ of Uδ consists of a cylinder Cδ, which is formed by translations of all points of ∂Bδ

by the flow until they return to Σ0, and a set Dδ defined by

Dδ = IntBδ\ IntP (Bδ) ,

which is an annulus in Σ0 between Bδ and P (Bδ). Provided δ is sufficiently small, since f(x) is smooth and
f(x0) is transverse to Dδ, all orbits of the ODE that start in Dδ cross it transversally and then enter Uδ. This
implies that any orbit starting in Uδ cannot leave Uδ for t ≥ 0, if one takes into account that the cylinder Cδ

is positively invariant with respect to the system flow.

Consider now any small open neighbourhood U of Γ0. Making δ sufficiently small, we can guarantee that
Uδ ⊂ U . Since Uδ is a trapping region, this implies Lyapunov stability of Γ0.

By induction, it follows from (3) that∥∥Pk(ξ)
∥∥
1
≤ ρk1∥ξ∥1, k = 1, 2, 3, · · · .

Let ξk = Pk(ξ), then since ρ1 < 1, ∥ξk∥1 → 0 as k → ∞. This means that the forward half of any orbit starting
in Uδ can be divided into finite segments, whose end-points x0 + ξk where ξk ∈ Σ0, form a convergent sequence
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with {ξk} → 0. Using (4) we see that these segments converge to Γ0 since ξk converges to 0. We conclude that
dist (φt (x0 + ξ) ,Γ0) → 0 as t → +∞, i.e. Γ0 is asymptotically stable.

(ii) This part also follows from Theorem 3.1, since instability for the Poincaré map P immediately implies
instability of Γ0 with respect to the flow generated by the ODE.

There is actually a stronger sense of stability near Γ0 that follows from (3),

Definition 3.14 A cycle Γ0 through x0 is called exponentially orbitally stable with asymptotic phase if there
exist c > 0,K > 1, and t0 = t0(x) ∈ [0, T ) such that∥∥φt(x)− φt−t0 (x0)

∥∥ ≤ Ke−ct, t ≥ 0

for all x with sufficiently small dist (x,Γ0).

Theorem 3.15 If all (n − 1) eigenvalues of the linearization Pξ(0) of the Poincaré map P at ξ = 0 satisfy
|λ| < 1, then Γ0 is exponentially orbitally stable with asymptotic phase.

Proof. Consider first x = x0 + ξ, ξ ∈ Σ0, and define for a given ξ :

ξ0 = ξ,

ξk = P (ξk−1) ,

τk = τ (ξk−1) + τk−1, τ0 = 0

for k = 1, 2, . . .. Using (3) we know that (we denote the norm ∥ · ∥1 by ∥ · ∥) there exists δ > 0 such that for all
ξ with ∥ξ∥ ≤ δ the estimate,

∥ξk∥ = ∥Pk(ξ)∥ ≤ ρk1∥ξ∥ ≤ e−αk∥ξ∥
holds. The last inequality follows from the fact that ρ1 < 1 and,

ρk1 = ek ln ρ1 ≤ e−αk

for some −α ≥ ln ρ1, we choose −α < 0.
Since τ ∈ C1, it is Lipschitz continuous on [0, δ] and we can derive the estimate:

|τ (ξk−1)− T | = |τ (ξk−1)− τ (0)| ≤ C ∥ξk−1∥ ≤ Ce−α(k−1) ∥ξ0∥

This implies
|(τk − kT )− (τk−1 − (k − 1)T )| = |τ (ξk−1)− T | ≤ Ce−α(k−1) ∥ξ0∥ .

Thus, θk = τk − kT is a Cauchy sequence, so it has a limit that we denote by t0. By iteratively applying the
previous inequality we have

|τk+m − (k +m)T − (τk − kT )| ≤ C ∥ξ0∥
m−1∑
j=0

e−α(k+j) ≤ C ∥ξ0∥ e−αk
m−1∑
j=0

e−αj ≤ C ∥ξ0∥
e−αk

1− e−α

where the last inequality follows from the geometric series and the fact that e−α < 1. Taking the limitm → +∞,
we find

|τk − kT − t0| ≤ C ∥ξ0∥
e−αk

1− e−α

We now apply the Lipschitz continuity of φt(x) given by (4) to obtain,∥∥φt+τk (x0 + ξ0)− φt (x0)
∥∥ =

∥∥φt (x0 + ξk)− φt (x0)
∥∥ ≤ C1 ∥ξk∥ ≤ C1e

−αk ∥ξ0∥

for 0 ≤ t ≤ T . Likewise∥∥φt+τk (x0 + ξ0)− φt+kT+t0 (x0 + ξ0)
∥∥ =

∥∥φt (x0 + ξk)− φt
(
φkT+t0−τk (x0 + ξk)

)∥∥
= |τk − kT − t0|

≤ C ∥ξ0∥
e−αk

1− e−α

= C2e
−αk ∥ξ0∥ ,

for 0 ≤ t ≤ T . Combining the last two inequalities and using the periodicity of φt(x0), we find∥∥φt+t0 (x0 + ξ0)− φt (x0)
∥∥ ≤ (C1 + C2) e

−αk ∥ξ0∥

for kT ≤ t ≤ (k + 1)T . Now take any x ∈ Rn near Γ0. If this point does not belong to Π0, consider the first
intersection of the forward half-orbit starting at x with Π0 and represent it as x0 + ξ0. Apply then the above
given proof.
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Note that in the following section ∂
∂x denotes the total derivative of a function w.r.t. the variable x, this is

also denoted using subscript x.

Lemma 3.6 The matrix

Y (t) =
∂φt(x)

∂x

∣∣∣∣
x=x0

satisfies the linear differential equation
Ẏ = fx

(
φt (x0)

)
Y

and the initial condition Y (0) = In.

Proof. Let x (t, x0 + hv) = φt (x0 + hv). Note that Y (t) is the total derivative of φt w.r.t. x, so any directional
derivative can be written as Y (t)v (where v is the direction). Thus, for any v ∈ Rn :

[Y (t)]v = lim
h→0

1

h
[x (t, x0 + hv)− x (t, x0)] .

Now

[Ẏ (t)]v =
d

dt
[Y (t)]v = lim

h→0

1

h
[ẋ (t, x0 + hv)− ẋ (t, x0)]

= lim
h→0

1

h
[f (x (t, x0 + hv))− f (x (t, x0))]

Note that this is the directional derivative of f(φt(x)) in the direction v in the point x0. Thus,

[Ẏ (t)]v =

[
∂

∂x
f
(
φt (x)

)∣∣∣∣
x=x0

]
v

=
[
fx

(
φt (x)

)
· φt

x(x)
∣∣
x=x0

]
v

= fx
(
φt (x0)

)
Y (t)v

for any v ∈ Rn, so Ẏ = fx (φ
t (x0))Y . Since φ0 (x) = x, Y (0) = In.

Note that Y (T ) is also dependent on the initial point x0, while this is not explicitly written.

Lemma 3.7 Let y0 = f (x0) and y1 = f (φt1 (x0)). Then y1 = Y (t1) y0.

Proof. Since x(t) = φt (x0) is a solution to (1), we have

d

dt
φt (x0) = f

(
φt (x0)

)
Differentiating this equation with respect to t we find

d

dt

(
d

dt
φt (x0)

)
= fx

(
φt (x0)

) d

dt
φt (x0)

so

y(t) =
d

dt
φt (x0) = f

(
φt (x0)

)
is a solution to the linearized problem

ẏ = fx
(
φt (x0)

)
y, y ∈ Rn

with the initial condition y(0) = f (x0) = y0. Since any such solution has the form y(t) = Y (t)y0 (Y(t) is
the fundamental matrix solution by lemma 3.6), we get

y1 = y (t1) = Y (t1) y0

Theorem 3.8 For any x0 ∈ Γ0, f (x0) is an eigenvector of Y (T ) corresponding to eigenvalue 1.

Proof. By Lemma 3.7, f
(
φT (x0)

)
= Y (T )f (x0). The periodicity now yields f (x0) = Y (T )f (x0).
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Definition 3.9 Y (T ) is called the monodromy matrix. Its eigenvalues are called the (characteristic or) Floquet
multipliers. The multiplier 1 is called trivial, while all others are called nontrivial multipliers.

Definition 3.10 A cycle Γ0 of (1) is called simple if λ = 1 is a simple eigenvalue of Y (T ).

We’re now going to establish a relationship between the eigenvalues of the linear part Pξ(0) of the Poincaré
mapping and the eigenvalues of the monodromy matrix Y (T ).

Lemma 3.16 (i) The linearization around ξ = 0 of P(ξ) is the restriction to Σ0 of the linear map

ξ 7→ ⟨τξ(0), ξ⟩ f (x0) + Y (T )ξ (5)

(ii) Take a point in Rn. f(x0) and Σ0 span Rn so we can write this point as cf(x0) + ξ for c ∈ R and ξ ∈ Σ0.
Denote this point by its span {f (x0)} and Σ0 component as (c, ξ). Then Y (T ) maps

(c, ξ) 7→ (c− ⟨τξ(0), ξ⟩ ,Pξ(0)ξ)

.

Proof. (i) By Lemma 3.11 the map ξ 7→ τ(ξ) is defined and differentiable in a neighbourhood of the origin in Rn.
Since φt(x) is differentiable in both t, x the same is true for the Poincaré map ξ 7→ P(ξ) = φτ(ξ) (x0 + ξ)− x0.
The derivative of the Poincaré map is determined using the chain rule. To make clear the steps of taking the
derivative we define the following functions,

φ(t, x) = φt(x), g(ξ) = x0 + ξ

Pξ(ξ) =
d

dξ
(φ(τ(ξ), g(ξ))− x0) =

∂φ

∂t

dτ

dξ
+

∂φ

∂x

dg

dξ
=

∂φ

∂t

dτ

dξ
+

∂φ

∂x

Since φ is a flow of the system (1) ∂φ
∂t = f(φ). Substituting this and writing the arguments of the functions

gives,
Pξ(ξ) = f(φ(τ(ξ), g(ξ)))τξ(ξ) + φx(τ(ξ), g(ξ))

Pξ(0) = f(φ(T, x0))τξ(0) + φx(T, x0)

Since Y (T ) = φT
x (x0) and φ(T, x0) = x0,

Pξ(0) = f(x0)τξ(0) + Y (T )

Thus the linearization around ξ = 0 is given by (5). Next we simply restrict to Σ0.
(ii) Since Y (T )f (x0) = f (x0), the point with coordinates (c, ξ) is mapped to cf (x0) + Y (T )ξ. According to
part (i) we may write

Y (T )ξ = Pξ(0)ξ − ⟨τξ(0), ξ⟩ f (x0)

P maps points on Σ0 to Σ0. Since Σ0 is an affine vector subspace of Rn, the derivative of P also maps to
Σ0,

Pξ(0)ξ ∈ Σ0

So the image point has coordinates (c− ⟨τξ(0), ξ⟩ ,Pξ(0)ξ).

Theorem 3.17 (i) λ ̸= 1 is an eigenvalue of Pξ(0) if and only if λ is an eigenvalue of Y (T ).
(ii) λ = 1 is an eigenvalue of Pξ(0) if and only if the eigenvalue 1 of Y (T ) has multiplicity bigger than one.

Proof. (i) If Y (T )η = λη and η has coordinates (c, ξ), then Pξ(0)ξ = λξ because of Lemma 3.16 (ii) and the fact
that span {f (x0)} and Σ0 are linearly independent. If λ ̸= 1 then ξ ̸= 0 since the eigenvector corresponding to
ξ = 0 of Y (T ) is f (x0) which has eigenvalue 1. On the other hand, if Pξ(0)ξ = λξ and λ ̸= 1, then η given by

η =
1

1− λ
⟨τξ(0), ξ⟩ f (x0) + ξ

is such that

Y (T )η =
1

1− λ
⟨τξ(0), ξ⟩Y (T )f (x0) + Pξ(0)ξ − ⟨τξ(0), ξ⟩ f (x0)

= λξ + (
1

1− λ
− 1) ⟨τξ(0), ξ⟩ f (x0)

= λξ + (
λ

1− λ
) ⟨τξ(0), ξ⟩ f (x0) = λη
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In the above calculation we used (5) and theorem 3.8.
(ii) Suppose first that η is not a multiple of f (x0). We can distinguish two cases,

Y (T )η = η

and
Y (T )η − η = f (x0)

For case one, the Σ0-component ξ of η is nonzero. And, by Lemma 3.16 (ii), Pξ(0)ξ = ξ, so 1 is an eigenvalue
of Pξ(0).
For case two write η = cf(x) + ξ. Then it follows from Lemma 3.16 (ii) that

(c− ⟨τξ(0), ξ⟩)f (x0) + Pξ(0)ξ − cf(x0)− ξ = f(x0)

Pξ(0)ξ − ξ = 0

so Pξ(0)ξ = ξ where ξ is the Σ0-component of η which is nonzero.

If, conversely, Pξ(0)ξ = ξ we distinguish the case where ⟨τξ(0), ξ⟩ ≠ 0 from the case where ⟨τξ(0), ξ⟩ = 0.
In the latter case it follows from (5) that Y (T )ξ = Pξ(0)ξ = ξ, so 1 is an eigenvalue of Y (T ) and ξ is not a
multiple of f(x0) since the image of Pξ(0) is Σ0. Thus the eigenvalue 1 has multiplicity bigger than one. In
the former case, we find that the normalized vector

ζ = − 1

⟨τξ(0), ξ⟩
ξ

satisfies

Y (T )ζ − ζ = −⟨τξ(0),−
1

⟨τξ(0), ξ⟩
ξ⟩f (x0) + Pξ(0)

(
− 1

⟨τξ(0), ξ⟩
ξ

)
− ζ

= ζ + f(x0)− ζ

= f (x0)

showing that, corresponding to the eigenvalue 1, Y (T ) has a higher-than-one dimensional generalized eigenspace
and thus that the eigenvalue 1 has a multiplicity bigger than 1.

Theorem 3.17 implies that

det (λIn − Y (T )) = (λ− 1) det (λIn−1 − Pη(0))

where Pξ is defined in a remark immediately after Definition 3.12. Furthermore, by combining Theorems 3.13,
3.15, and 3.17 we arrive at the following summarising result.

Theorem 3.18 If all nontrivial Floquet multipliers of a simple cycle have modulus less than one, then the
cycle is exponentially orbitally stable with asymptotic phase. If some multiplier lies outside the unit circle, the
cycle is unstable.

stability of linear maps

Definition 2.4 The spectral radius of a linear map A is defined by

r(A) = sup
λ∈σ(A)

|λ|

The relation between these quantities is specified by Gelfand’s formula which we will state without proof,

r(A) = lim
k→∞

∥∥Ak
∥∥1/k = inf

k≥1

∥∥Ak
∥∥1/k (6)

This shows that the eigenvalues of A yield information about the growth or decay of the time-series obtained
by iterating A.
Theorem 2.7 Let ρ > r(A). There exists an equivalent norm ∥ · ∥1 on Rn such that ∥A∥1 ≤ ρ.
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Proof. Define ∥ · ∥1 for x ∈ Rn by the formula:

∥x∥1 =

∞∑
k=0

ρ−k
∥∥Akx

∥∥
Formula (6) implies that this series converges. Indeed, for k sufficiently large and some q < 1,∥∥Ak

∥∥1/k ≤ ρq

ρ−1
∥∥Ak

∥∥1/k ≤ q

and hence
ρ−k

∥∥Akx
∥∥ ≤ ρ−k

∥∥Ak
∥∥ ∥x∥ ≤ ∥x∥qk

∞∑
k=0

ρ−k
∥∥Akx

∥∥ ≤ ∥x∥
∞∑
k=0

qk

Since q < 1 this implies that the sum converges. Clearly, ∥x∥1 ≥ 0 for all x ∈ Rn and ∥x∥1 = 0 if and only if∥∥Akx
∥∥ = 0 if and only if x = 0. Likewise the property ∥αx∥1 = |α|∥x∥1 holds,

∥αx∥1 =

∞∑
k=0

ρ−k
∥∥Akαx

∥∥ = |α|
∞∑
k=0

ρ−k
∥∥Akx

∥∥ = |α|∥x∥1

and ∥x+ y∥1 ≤ ∥x∥1 + ∥y∥1 also holds,

∥x+ y∥1 =

∞∑
k=0

ρ−k
∥∥Akx+Aky

∥∥ ≤
∞∑
k=0

ρ−k(
∥∥Akx

∥∥+
∥∥Aky

∥∥) = ∥x∥1 + ∥y∥1

So ∥ · ∥1 is a norm on Rn and since Rn is finite dimensional ∥ · ∥1 is equivalent to ∥ · ∥. Now, for x ∈ Rn,

∥Ax∥1 =

∞∑
k=0

ρ−k
∥∥Ak+1x

∥∥ = ρ

∞∑
k=−1

ρ−(k+1)
∥∥Ak+1x

∥∥− ρ∥A0x∥ = ρ (∥x∥1 − ∥x∥)

so that
∥Ax∥1 ≤ ρ∥x∥1, x ∈ Rn

Theorem 3.1 (Principle of Linearized Stability for Maps) Consider a C1-map

x 7→ g(x), x ∈ Rn

with g(0) = 0.LetA = gx(0).
(i) If r(A) < 1 then the fixed point x = 0 is asymptotically stable.
(ii) If r(A) > 1 then the fixed point x = 0 is unstable.

Proof. We will only prove part (i), for the proof of part (2) see [2].
(i) Take any ρ satisfying r(A) < ρ < 1. By theorem 2.7, there is a norm ∥ · ∥1, which is equivalent to ∥ · ∥ and
for which

∥Ax∥1 ≤ ρ∥x∥1, x ∈ Rn

Since g is a C1-map, for any small ε > 0, there is δ > 0, such that

∥g(x)−Ax∥1 ≤ ε∥x∥1

when ∥x∥1 ≤ δ. Then, for all such x,

∥g(x)∥1 = ∥Ax+ g(x)−Ax∥1 ≤ ∥Ax∥1 + ∥g(x)−Ax∥1 ≤ (ρ+ ε)∥x∥1

Since ρ < 1 and ε > 0 is arbitrarily small, we can achieve that ρ1 = ρ+ ε < 1, which implies that g maps the
ball

B̄δ = {x ∈ Rn : ∥x∥1 ≤ δ}
into itself for all sufficiently small δ > 0, so the fixed point x = 0 is stable. By induction:∥∥gk(x)∥∥

1
≤ ρk1∥x∥1

showing that gk(x) → 0 as k → +∞ for any x with ∥x∥1 ≤ δ. Therefore, the fixed point x = 0 is asymptotically
stable.
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