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1 Introduction

The Lorenz system is a system of differential equations, which was created by Edward Lorenz
in 1963 to model atmospheric convection. This system is known to be chaotic: small changes
in initial values or parameters can yield widely different outcomes for the system as a whole.

We are going to study this system, by taking a look at it physical interpretations, and
studying the parameter dependent stability of fixed points of the system.

1.1 What is the Lorenz system?

An often considered thought experiment is that of the butterfly effect. This says that actions
that might seem small at first can have major consequences, like a butterfly flapping its wings
could eventually effect a storm.

Chaotic systems are similar. In these systems of differential equations, slightly different
initial conditions of the system can have vastly different solutions, making it unpredictable.
Of course, for a specific initial value, you could still calculate a solution, allowing you to
predict the future, but this will not say much about what happens close by.

Edward Lorenz summarizes chaotic systems as follows:

Chaos: When the present determines the future but the approximate present does not
approximately determine the future.

One example of a chaotic system, and perhaps the most famous one, is the Lorenz system:
ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

(1)

We assume the parameters σ, ρ and β to be greater than 0.
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This system was created by the mathematician and meteorologist Edward Lorenz together
with Ellen Fetter, who was responsible for numerical calculations and figures, and Margaret
Hamilton who helped in the initial, numerical computations leading up to the finding of the
system, to model atmospheric convection [3].
In the system, x stands for the rate of convection in the atmosphere, which is air raising in
altitude because of differences in air temperature.
y stands for horizontal temperature variation and z is the vertical temperature variation.

The parameter σ is called the Prandtl number, and ρ is called the Rayleigh number.

2 Analysis of the system

2.1 Finding the equilibria

We are going to find the parameter-dependent equilibria of the Lorenz system. We assume
all parameters are greater than 0, and solve

σ(y − x) = 0

x(ρ− z)− y = 0

xy − βz = 0

Since σ > 0, it follows that we must have y − x = 0, x = y. We substitute this into the
third equation to find that we must have x2 − βz = 0, z = x2

β
. With this information, we

find that the second equation becomes:

x(ρ− x2

β
)− x = x(ρ− x2

β
− 1) = 0

So x = 0 or ρ− x2

β
− 1 = 0, i.e. x = ±

√
β(ρ− 1).

Thus the equilibria of the Lorenz system are

(x, y, z) = (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) and (x, y, z) = (−

√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1),

or (x, y, z) = (0, 0, 0).

We observe that, when ρ < 1, there can only be one equilibrium, the origin. When ρ = 1,
the first two equilibria coincide, so there are two equilibria, and when ρ > 1, all equilibria
exist.
Because the amount of equilibria changes as we let ρ vary, a bifurcation occurs when ρ = 1.

Interestingly, the equilibria are not dependent on σ, only on the parameters ρ and β.

From now on, we refer to the equilibria (x, y, z) = (±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1) by
Q±.
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2.2 Stability of the equilibria, dependent on the parameters

Now that we have found the equilibria of the Lorenz system, we are going to determine
their stability. When we write the system as a vector field F (x, y, z), we find that the total
derivative is equal to

DF (x, y, z) =

 −σ σ 0
ρ− z −1 −x
y x −β


We substitute the equilibria, one by one, to find what their (parameter-dependent) stability
is.

2.2.1 (x,y,z)=(0,0,0)

We first observe the origin. The total derivative at (0,0,0) is given by:

DF (0, 0, 0) =

−σ σ 0
ρ −1 0
0 0 −β

 , so |DF (0, 0, 0)− λI| =

∣∣∣∣∣∣
−σ − λ σ 0

ρ −1− λ 0
0 0 −β − λ

∣∣∣∣∣∣
= −(λ+ β)(λ2 + λ(σ + 1) + σ − ρσ).

We can immediately see that one of the eigenvalues is λ1 = −β. To find the other two
eigenvalues, we need to solve λ2 + λ(σ + 1) + σ − ρσ = 0. Using the quadratic formula, we
find that the solutions are

λ2,3 =
1

2
(−(σ + 1)±

√
(σ + 1)2 − 4σ(1− ρ))

Suppose ρ < 1, then we see that all eigenvalues are negative. This is because 1− ρ ∈ (0, 1),
and for those values (σ+12) > 4σ(1− ρ). So

√
(σ + 1)2 − 4σ(1− ρ) is real, and when ρ < 1

it is smaller than σ + 1, so in this case λ2 and λ3 are both negative.

Thus, for ρ < 1, we only have the equilibrium (x, y, z) = (0, 0, 0), which has three real
negative eigenvalues. So it is a stable node. [1]

Now, let ρ = 1. In this case, the eigenvalues of the origin are: λ1 = −β, λ2 = 0, λ3 =
−(σ + 1). This is not a stable node anymore. A bifurcation occurs here.

Let ρ > 1. We can evaluate the eigenvalues to be:

λ1 = −β, λ2,3 =
1

2
(−(σ + 1)±

√
(σ + 1)2 − 4σ(1− ρ))

We now have 1− ρ < 0, so
√

(σ + 1)2 − 4σ(1− ρ) > σ + 1.

Thus, the eigenvalues are λ1 = −β < 0, λ2 =
1
2
(−(σ + 1) +

√
(σ + 1)2 − 4σ(1− ρ)) > 0 and

λ3 =
1
2
(−(σ + 1)−

√
(σ + 1)2 − 4σ(1− ρ)) < 0.

Since we have two eigenvalues < 0 and one eigenvalue > 0, it follows that the origin is
an attracting saddle when ρ > 1, independent of the values of β and σ.
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2.2.2 Global stability of the origin for ρ < 1

When ρ < 1, we have already seen that the origin is a stable equilibrium point, and it’s the
only equilibrium point. Using a Lyapunov function, we are able to prove that the origin is
globally stable: all solutions of the system tend to the origin.

Definition 2.1. A Lyapunov function for a system{
f : Rn → Rn

ẏ = f(y)

with an equilibrium point at y = 0 is a scalar function g : Rn → R that is continuous, strictly
positive for y ̸= 0, has continuous first derivatives and has time derivative non-positive.

Theorem 2.2. Let the Lyapunov function g be globally positive definite, the equilibrium
y = 0 be isolate, the time derivative of the Lyapunov function be globally negative definite
and satisfy

∥x∥ → ∞ =⇒ g(x) → ∞.

Then the equilibrium y = 0 is globally asymptotically stable.

Take the function g(x, y, z) = 1
σ
x2 + y2 + z2. Since σ > 0, it follows that this function is

strictly positive for y ̸= 0. It is also continuous, and the time derivative along the flow of g
is given by:

∂g

∂t
= 2xy − 2x2 + 2xy(ρ− z)− 2y2 + 2xyz − 2βz2 = −2x2 + 2xy + 2ρxy − 2y2 − 2βz2.

It might not be directly clear that this is ≤ 0, but that will follow when we rewrite it as:

= −2

(
x− ρ+ 1

2
y

)2

− 2

(
1−

(
ρ+ 1

2

)2)
y2 − 2βz2

Now, the first part has to be negative because the square result in a positive number. Since
ρ+1
2

< 1 it follows that the second term is negative as well. Finally, −βz2 is also negative,

thus ∂g
∂t

≤ 0: g is a Lyapunov function.

To fulfill the conditions of the theorem, we need to show that g is globally positive definite,
which requires us to additionaly prove that g(x, y, z) = 0 only when (x, y, z) = (0, 0, 0), and
that its time derivative is globally negative definite: so ∂g

∂t
= 0 only when (x, y, z) = (0, 0, 0).

First, it follows because of sums of squares and knowing σ > 0 that g(x, y, z) = 0 only
when (x, y, z) = (0, 0, 0).
Secondly, the time derivative of g has all terms negative, so we just need every term to be
zero: this means −2βz2 = 0, so z = 0. Similarly, −2(1 − (ρ+1

2
)2)y2 = 0, so y = 0 because

the inside of the parentheses cannot be equal to 0 (that requires ρ = 1, which we do not
consider). Finally, we now need −2(x − ρ+1

2
y)2 = 0 i.e. −2x2 = 0, it follows that x = 0 as

well. Thus (x, y, z) = (0, 0, 0).

We satisfy all the conditions of Theorem 2.2, so for 0 < ρ < 1 the origin, which is the
only equilibrium of the system, is globally asymptotically stable.

Thus, all solutions of the system go towards the origin. This is the most boring case of
the system, everything is predictable. This changes drastically when we let ρ be bigger.
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2.2.3 Stability of Q±

Now that we have observed the stability of the origin for ρ < 1, we take a look at the other
two equilibria, which only appear once ρ > 1.

The total derivative at Q± is given by the Jacobian matrix −σ σ 0

1 −1 ∓
√

β(ρ− 1)

±
√

β(ρ− 1) ±
√

β(ρ− 1) −β


We want to calculate the eigenvalues of this matrix, which we can do applying the Laplace
expansion on the determinant∣∣∣∣∣∣

−σ − λ σ 0

1 −1− λ ∓
√

β(ρ− 1)

±
√

β(ρ− 1) ±
√

β(ρ− 1) −β − λ

∣∣∣∣∣∣
= −(σ + λ)

∣∣∣∣ −1− λ ∓
√

β(ρ− 1)

±
√
(β(ρ− 1)) −β − λ

∣∣∣∣− σ

∣∣∣∣ 1 ∓
√
β(ρ− 1)

±
√

β(ρ− 1) −β − λ

∣∣∣∣
= −(σ + λ)(λ2 + (β + 1)λ+ βρ)− σ(−λ+ β(ρ− 2))

− λ3 − (σ + β + 1)λ2 − (σβ + σ + βρ)λ− σβρ+ λσ − βσ(ρ− 2)

= −λ3 − (σ + β + 1)λ2 − β(σ + ρ)λ− 2βσ(ρ− 1).

So the eigenvalues of Q± can be determined by finding the roots of the characteristic
equation

λ3 + (σ + β + 1)λ2 + β(σ + ρ)λ+ 2βσ(ρ− 1) = 0

We would like to find the eigenvalues, which are the roots of the characteristic equation
above. Since this is a polynomial of degree 3 however, that becomes difficult because of the
complexity of the cubic equation.

2.3 Hopf bifurcation existence.

To find stability of the equilibria Q±, we only need to determine the sign of the eigenvalues,
which we can do using the Routh-Hurwitz stability criterion. We will first define the Routh-
Hurwitz matrix before we introduce the criterion.

Definition 2.3. (Routh-Hurwitz matrix) let P (s) be the polynomial

P (s) = ans
n + an−1s

n−1 + ...+ a1s+ a0.
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Then the Routh-Hurwitz matrix has the following structure:
an; an−2; an−4; . . .
an−1; an−3; an−5; . . .

a1a2−a0a3
a1

; a1a4−a0a5
a1

; . . . . . .
a1a2−a0a3

a1
a3−a1a4−a0a5

a1
a1

a1a2−a0a3
a1

; . . . . . . . . .

. . . . . . . . . . . .


In general, after the first two rows, the entry rkj at the intersection of the k-th row and j-th
column is given by the fraction

rkj =
rk−1,1rk−2,j+1 − rk−2,1rk−1,j+1

rk−1,1

.

We repeat the algorithm until the number of rows in the matrix is equal to (n+ 1).

Using this matrix gives us the following useful theorem:

Theorem 2.4. (Routh-Hurwitz stability criterion) Let P (s) be the polynomial

P (s) = ans
n + an−1s

n−1 + ...+ a1s+ a0.

Then the roots of P (s) have real part < 0 if and only if all the entries in the first column of
the Routh-Hurwitz matrix have the same sign.

This criterion follows from the Routh-Hurwitz Theorem. A proof can be found at [6].
The following Lemma also follows from the Routh-Hurwitz Theorem.

Lemma 2.5. Let P (s) be the polynomial

P (s) = ans
n + an−1s

n−1 + ...+ a1s+ a0.

The amount of sign changes in the first column of the Routh-Hurwitz matrix is the amount
of roots with real parts nonnegative.

This criterion can give us exactly what we want: A way to know when the eigenvalues of
Q±, which are the roots of the characteristic polynomial, all have negative real part, so the
equilibria are stable.

We had the characteristic polynomial

P (λ) = λ3 + (σ + β + 1)λ2 + β(σ + ρ)λ+ 2βσ(ρ− 1).

So we can construct its Routh-Hurwitz matrix to be:
1 β(σ + ρ

σ + β + 1 2βσ(ρ− 1)
(σ + β + 1)β(σ + ρ)− 2βσ(ρ− 1) 0

2βσ(ρ− 1) 0
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Therefore, we obtain the following requirements for Q± to be stable:

σ + β + 1 > 0, (σ + β + 1)β(σ + ρ)− 2βσ(ρ− 1) > 0, 2βσ(ρ− 1) > 0.

The first and third requirements following immediately, since we assume σ, β, ρ > 0, and the
equilibria we are studying only exist for ρ > 1.

From now on, we assume that σ > β + 1, because this occurs most often in nature and
this allows us to derive a condition for stability.

We are now going to work out the second requirement. We can write it out into

(σ + β + 1)βσ + ρβ(σ + β + 1) + 2βσ + ρ(−2βσ) > 0

We want to isolate ρ, since the existence of equilibria is solely dependent on it. This we
rewrite the in equality as follows

ρβ(−σ + β + 1) > −σβ(σ − β − 3).

By using our assumption that σ > β + 1

ρ <
−σβ(σ + β + 3)

β(−σ + β + 1)
= σ

σ + β + 3

σ − β − 1

Thus we obtain a criteria on ρ for the stability of Q±.

With this in hand, we can show that a Hopf bifurcation occurs when ρ = σ σ+β+3
σ−β−1

. We
call this value ρH from now on.

We use the following Lemma from [1]:

Lemma 2.6. Let P (s) be the third-order polynomial

P (s) = λ3 + pλ2 + qλ+ r

and let R = pq−r. Then the characteristic equation has at least one zero root on the surface
r = 0, and a pair of imaginary eigenvalues on the surface (R = 0, q > 0).

In our case R = (σ + β + 1)β(σ + ρ) − 2βσ(ρ − 1), which we know to be equal to zero
exactly when ρ = ρH . Since q = 2βσ(ρ− 1) > 0 when ρ > 1, it follows that Q± has a pair of
purely imaginary eigenvalues when ρ = ρH . The first column of the Routh-Hurwitz has two
sign changes, so the remaining eigenvalue, λ3 has negative real part.
In fact, λ3 must be real, because for real polynomials, the conjugate of a root is also a root,
but if im(λ3) ̸= 0, there is no eigenvalue left to be the conjugate.

To conclude: When ρ = ρH , the equilibria Q± have a pair of purely imaginary eigenvalues
λ1, λ2, and one real eigenvalue λ3 < 0. Thus a Hopf bifurcation occurs here.
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2.4 We found Hopf bifurcations, are they supercritical or subcrit-
ical?

Now that we have shown a Hopf bifurcation occurs in the system for ρ = ρH , we are
going to determine whether this bifurcation is subcritical or supercritical, thus proving non-
degeneracy. To do this, we will need to calculate the Lyapunov coefficient.

Firstly, we transform the Lorenz system into one equation. We write y = ẋ
σ
+ x, and

substitute this into the ẏ equation to obtain:

ẍ

σ
+ ẋ = x(ρ− z − 1)− ẋ

σ
.

Next, we incorporate the ż equation

z =
−ẍ

σx
− ẋ

x
+ ρ− ẋ

σx
− 1.

We can substitute this into the ż equation, to obtain

...
x + (σ + β + 1)ẍ+ β(σ + 1)ẋ+ βσ(1− ρ)x =

(1 + σ)ẋ2

x
+

ẍẋ

x
− x2ẋ− σx3.

This is a single equation encapsulating the Lorenz system. To calculate the Lyapunov
coefficient, we need to translate it such that Q+ or Q− is at the origin. We substitute
ξ = x−x0, where x0 = ±

√
β(ρ− 1) for Q+ and Q− respectively, it will not end up mattering

which one we take. The equation becomes
...
ξ + (σ + β + 1)ξ̈ + (β(1 + σ) + x2

0)ξ̇ + (βσ(1− ρ) + 3σx2
0)ξ

= −3σx0ξ
2 − 2x0ξξ̇ +

1 + σ

x0

ξ2 +
1

x0

ξ̇ξ̈ − σξ3 − ξ2ξ̇ − 1 + σ

x2
0

ξξ̇2 − 1

x2
0

ξξ̇ξ̈ + ...

where we have taken the taylor approximation around zero of 1
ξ+x0

as:

1

ξ + x0

∼ 1

x0

− ξ

x2
0

+ ...

we do not consider higher order terms, since those are not necessary to calculate the Lyapunov
coefficient.

Using an algorithm from [1] (page 877-879) it follows that the Lyapunov coefficient is
given by:

L1 = β(p3q(p2 + q)(p2 + 4q)(σ − β − 1))−1B,

where

B = 9σ4+(20−18β)σ3+(20β2+2β+10)σ2−(2β3−12β2−10β+4)σ−β4−6β3−12β2−10β−3.

Unfortunately, I do not know what p and q are here... But they are positive, and it turns
out that by substitution of σ = σ∗ + b + 1 in the B-equation makes all coefficients become
positive.

Thus the Lyapunov coefficient L1 is positive. By definition, this means that the Hopf
bifurcations that occur at Q± for ρ = ρH are subcritical.
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3 The Lorenz attractor

We are now going to observe the sequence of global bifurcations of the Lorenz system that
leads to the creation of the Lorenz attractor.

First, we define attractors.

Definition 3.1. Let f be the flow of an system. An attractor is a subset A of the phase
space characterized by the following conditions:

1 If a ∈ A, then so is f(t, a) for all t > 0.

2 There exists a neighborhood of A, called B(A), such that for all b ∈ B(A) and for all
open neighborhoods N of A, there is a T > 0 such that f(t, b) ∈ N for all t > T.

3 There is no non-empty subset of A with the previous two properties.

Some examples of 2D attractors are:
stable equilibria, since there is no movement happening inside it, the first condition holds.
When we look close enough, everything around it is attracted towards it, so the second
condition holds. We can not find a subset with these two properties, because A is a single
point.

Another example is a stable periodic orbit in R2. If a on the periodic orbit A, then f(t, a)
is on A for all t > 0, because of periodicity.
Since the periodic orbit is stable, solutions close to it are attracted towards it, from both
the inside and outside.
Finally, we cannot break the periodic orbit and retain the previous two properties.

Now that we have defined attractors, we are going to study global bifurcations of the
Lorenz system, and we eventually see an attractor appear.

We fix σ = 10 and β = 8
3
, and let ρ vary between 10 and 30.

When ρ ≈ 10, we see the following:

As we can see in figure 1, the two unstable seperatrices move towards the stable equilibria
Q±, and spiral around. When we increase ρ, this changes.

Around ρt ≈ 13.93, the unstable seperatrices don’t just move around Q+ or Q+, but
instead they are attracted to the origin, which is a saddle. They form two homoclinic orbits,
which can be seen in Figure 2:

This is where a homoclinic bifurcation occurs. As a result of this bifurcation, periodic
orbits come into existence as a result of the destruction of the homoclinic orbits as we let ρ
increase.

This can be observed in Figure 3, where we have shown a diagram of the system with ρ
greater than ρt ≈ 13.93, but smaller than ρH ≈ 24.74, where the Hopf bifurcations occur.
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Figure 1: Flow of the Lorenz system for ρ ≈ 10, σ = 10, β = 8
3 . Image from [2]

Figure 2: Flow of the Lorenz system for ρ = ρt ≈ 13.93, σ = 10, β = 8
3 . Image from [2]

Figure 3: Flow of the Lorenz system for ρ > ρt ≈ 13.93 but smaller than ρH ≈ 24.74, σ = 10, β = 8
3 . Image

from [2]

The seperatrices now move around the other stable equilibrium Q± then they did for
ρ < ρt (So the seperatrix that went around Q+ now goes around Q− and vice versa). This
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can be interpreted as the effect of the stable equilibria becoming weaker. This is also visible
in the following diagram: (Figure 4)

Figure 4: A diagram showing three states of the system when varying ρ: The first is before the homoclinic
bifurcation, so ρ < ρt. The second is during the bifurcation, so ρ = ρt. The third state is after the homoclinic
bifurcation, where periodic orbits have come into existence. Image from [4]

We can now see that there exist periodic orbits after the homoclinic bifurcation, and the
seperatrices are attracted to the opposite equilibrium point now.

In the range of ρt < ρ < ρH , transient chaos occurs. This means that solutions with very
close initial conditions can still have wildly different behavior, but they eventually settle
down. In our case this means that solutions eventually stay close to one of the equilibria
Q±, and do not jump to the other anymore.

Finally, when ρ reaches ρH , the hopf bifurcations take place. Now, Q± lose their stability,
and the periodic orbits, which were produced by the homoclinic bifurcation, are destroyed.
What remains, is the Lorenz attractor. This looks as follows: (Figure 5)

Solutions outside the attractor all go towards it, but once they enter the attractor, chaos
occurs. Solutions that have initial conditions very close to each other have completely dif-
ferent behaviour relative to each other. This is called a strange attractor.

The Lorenz system also looks like the wings of a butterfly. This is where the name
’butterfly effect’ comes from.

A weather model like the Lorenz system showing chaos explains why weather forecasts get
more unreliable the further in the future we look. We could calculate the weather conditions
next year for example, but because the real initial conditions might be slightly different, the
predictions become completely unreliable because of the chaos.
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Figure 5: The Lorenz attractor, shown with parameter values ρ = 28, σ = 10, β = 8
2 . Figure from [5]
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