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Introduction to the Melnikov function

We consider the following planar Hamiltonian system{
ẋ = Hy(x, y)

ẏ = −Hx(x, y),
(1)

with (x, y) ∈ R2. In this system, H : R2 −→ R2 denotes the smooth Hamiltonian function and Hx and
Hy denote its partial derivatives with respect to x and y.

Equivalently, in vector form, we can write system (1) as

q̇ = JDH(q), (2)

with q = (x, y), J =
(

0 1
−1 0

)
and DH = (Hx, Hy).

We assume that the unperturbed Hamiltonian system contains a hyperbolic saddle point p0 = (x0, y0)
with a homoclinic orbit q0(t) = (x0(t), y0(t)). This homoclinic orbit connects p0 to itself and satisfies
H(x(t), y(t)) = h0, where h0 is a constant. We indicate the stable manifold of the saddle point with W s

and the unstable manifold with Wu and we let Γp0
= {q0(t)|t ∈ R} ∪ {p0} = (W s(p0) ∩Wu(p0)) ∪ {p0}

describe the homoclinic manifold. Let a continuous family of periodic orbits qα(t) with period Tα, α ∈
(−1, 0) occupy the interior of Γp0 . We assume that limα→0 q

α(t) = q0(t) and limα→0 T
α = ∞.

We consider the following class of perturbed Hamiltonian systems{
ẋ = Hy(x, y) + ϵf1(x, y, t, ϵ)

ẏ = −Hx(x, y) + ϵf2(x, y, t, ϵ),
(3)

where f1(x, y, t, ϵ) and f2(x, y, t, ϵ) are periodic functions in t with periodicity T = 2π
ω , and ϵ is a small

parameter. Writing system (3) in vector notation, yields the system

q̇ = JDH(q) + ϵf(q, t, ϵ), (4)

with f = (f1, f2). It is assumed that (4) is sufficiently differentiable on the area of our concern. In this
context, Cr with r ≥ 2 will suffice. Setting ϵ = 0 reduces system (4) to the unperturbed Hamiltonian
vector field (2).

Melnikov’s method is a technique used to detect chaos in dynamical systems. The Melnikov function
is important in the context of perturbations of Hamiltonian systems. In particular, it is useful in the
study of the onset of chaotic dynamics, by way of assessing whether the perturbations cause qualitative
changes in the behaviour of a system. The Melnikov function quantifies the distance between the stable
and unstable manifolds of a perturbed dynamical system such that both the magnitude and the direction
of the separation are captured in the equation.

Parametrization of the homoclinic manifold in the unperturbed system

Before we introduce the Melnikov function, we develop a parametrization of the homoclinic orbit of the
unperturbed Hamiltonian system. In order to do so, we rewrite system (4) to the three-dimensional
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system {
q̇ = JDH(q) + ϵf(q, ϕ, ϵ)

ϕ̇ = ω,
(5)

with (q, ϕ) ∈ R2 × S1. For ϵ = 0, system (5) reduces to the unperturbed system

{
q̇ = JDH(q)

ϕ̇ = ω.
(6)

The hyperbolic saddle point p0 of system (6) of the q component gives rise to a periodic orbit γ(t) =
(p0, ϕ(t) = ωt + ϕ0) in the unperturbed system. In the phase space R2 × S1, the unstable and stable
manifolds of γ(t) are given byWu(γ(t)) andW s(γ(t)), respectively. Since we assume there is a homoclinic
orbit to the saddle in the unperturbed system, Wu(γ(t)) and W s(γ(t)) unite and form a single homoclinic
manifold Γγ , see Figure 1

Figure 1: The homoclinic manifold Γγ with the periodic orbit γ(t) (Fig 28.1.2 from [1]).

The points q0(t) = (x0(t), y0(t)) for t ∈ R represent the position of the system at time t and precisely
follow the homoclinic orbit in the unperturbed system, connecting the saddle point to itself. Each point
p ∈ Γγ can be expressed as

p = (q0(−t0), ϕ0), (7)

with t0 ∈ R and ϕ0 ∈ (0, 2π]. In this notation, we interpret t0 as the time of flight from the point q0(−t0)
to q0(0). Thus we can write

Γγ = {(q0(−t0), ϕ0) ∈ R2 × S1|t0 ∈ R, ϕ0 ∈ (0, 2π]}. (8)

Splitting of the manifolds in the perturbed system

Next, we want to define the separation of the unstable and the stable manifold in the pertubed system
5. Our aim is to investigate how the homoclinic manifold Γγ is affected by the perturbation. First,
let us focus on two essential perturbation results. That is, for small ϵ > 0, the periodic orbit γ(t) of
unperturbed system 6 persists as a periodic orbit in perturbed system 5 as γϵ(t) = γ(t) + O(ϵ) with
the same stability type as γ(t). Furthermore, the local stable and unstable manifolds W s

loc(γϵ(t)) and
Wu

loc(γϵ(t)) of the perturbed periodic orbits are Cr ϵ-close to those of the unperturbed periodic orbit
W s

loc(γ(t)) and Wu
loc(γ(t)).

This means that, for ϵ0 sufficiently small, the periodic orbit γϵ(t) of the perturbed vector field is contained
in the small neighborhood N (ϵ0) containing γ(t), with a distance O(ϵ0) from γ(t) to the boundary of
N (ϵ0). For 0 < ϵ < ϵ0 we can write

W s,u
loc (γϵ(t)) = W s,u

loc (γ(t)) ∩N (ϵ0). (9)

To verify these results, we introduce the cross-section of the phase space

Σϕ0 = {(q, ϕ) ∈ R2 × S1|ϕ = ϕ0} (10)

2



which is parallel to the q-plane. The dynamics are captured by the Poincaré map

Pϕ0
ϵ :Σϕ0 → Σϕ0

qϵ(0) 7→ qϵ(2π/ω).
(11)

Since the periodic orbit γ(t) intersects Σϕ0 at the point = p0, it follows that γ(t) corresponds to a fixed

point of the unperturbed Poincaré map, so Pϕ0

0 (p0) = p0. We know that the unperturbed system contains

a hyperbolic periodic orbit γ(t), so p0 is a hyperbolic fixed point of Pϕ0

0 . We define Fϵ(x) = Pϕ0
ϵ (x)− x

and for the unperturbed system, x = p0 satisfies F0(p0) = 0. We want to show that the fixed point p0
of the unperturbed Poincaré map Pϕ0

0 persists as a fixed point p∗ϵ of the perturbed Poincaré map Pϕ0
ϵ .

By the implicit function theorem, a solution x = p∗ϵ to Fϵ(x) = 0 exist for sufficiently small ϵ, provided
that Fϵ(x) is sufficiently smooth (Cr, r ≥ 1) in x and ϵ and that the Jacobian DxF0(p0) is invertible.
As hyperbolicty implies that the Poincaré map near γ(t) has no eigenvalues on the unit circle and since

DxF0(p0) = DPϕ0

0 (p0)− I, we find that DxF0(p0) is invertible. Thus, there exists a unique fixed point
ϵ 7→ p∗ϵ that satisfies Pϕ0

ϵ (p∗ϵ ) = p∗ϵ . As a fixed point p∗ϵ of the Poincaré map corresponds directly to
a periodic orbit γϵ(t) of the perturbed system and considering p∗ϵ is O(ϵ) close to p0, this implies the
existence of γϵ(t) = γ(t) +O(ϵ). Since Pϵ is C

r-close to P0, so are the eigenvalues and the stability type
remains the same. By the stable and unstable manifold theorem for maps [2] W s

loc(γϵ(t)) and Wu
loc(γϵ(t))

are O(ϵ)-close to W s
loc(γ(t)) and Wu

loc(γ(t)), respectively.

To construct the splitting of Wu(γϵ(t)) and W s(γϵ(t)), we focus on p ∈ Γγ . For the purpose of measuring
the distance between the pertubed stable and unstable manifolds at a point p in the homoclinc manifold,
we want to introduce a vector in the direction normal to Γγ . Thus, we introduce the vector

πp = (DH(q0(−t0)), 0). (12)

It is important to note that at every point p ∈ Γγ , the stable and unstable manifolds W s(γ(t)) and
Wu(γ(t)) intersect the vector πp transversely at point p. For any point pw ∈ W s ∩Wu, the sets W s and
Wu are said to be transversal at pw if Tpw

W s + Tpw
Wu = R3. Here, Tpw

W s and Tpw
Wu denote the

tangent spaces of the stable and unstable manifolds, respectively, at the point pw [1]. Since transversality
persists and as we assume that Wu(γ(t)) and W s(γ(t)) are sufficiently smooth (Cr with r ≥ 2), for ϵ
small enough, we state that the separated manifolds Wu(γϵ(t)) and W s(γϵ(t)) cross πp transversely in
the points puϵ and psϵ correspondingly. Consequently, the distance between Wu(γϵ(t)) and W s(γϵ(t)) at
the point p, denoted by d(p, ϵ), can be derived from the distance between puϵ and psϵ as follows

d(p, ϵ) = |puϵ − psϵ |. (13)

We can rewrite this expression (13) to

d(p, ϵ) =
(DH(q0(−t0), 0) · (puϵ − psϵ)

∥(DH(q0(−t0))∥
=

πp · (puϵ − psϵ)

∥(DH(q0(−t0))∥
, (14)

where we compute the vector scalar product ”·” and the norm ”∥.∥” of the vector DH(q0(−t0)). Since the
points puϵ and psϵ both lie on the vector (DH(q0(−t0)), 0), it is clear that (13) is equivalent to (14). This
analogous expression of the distance between Wu(γϵ(t)) and W s(γϵ(t)) will prove to be useful henceforth.

By definition, puϵ and psϵ have the same ϕ0 coordinate and therefore, we can write psϵ = (qsϵ , ϕ0) and
puϵ = (quϵ , ϕ0). Thus, (14) is equivalent to

d(t0, ϕ0, ϵ) =
(DH(q0(−t0)) · (quϵ − qsϵ )

∥(DH(q0(−t0))∥
, (15)

since every p ∈ Γγ can be expressed in parameters t0 ∈ R, ϕ0 ∈ (0, 2π] as in 7.

Before we can define the Melnikov function using expression (15), we concentrate on a technical issue
regarding the choice of the points psϵ and puϵ , where W

s(γϵ(t)) and Wu(γϵ(t)) cross πp transversely. These
manifolds may cross the vector πp more than once. In this case, it is not yet clearly defined as to which
points will be chosen for puϵ and psϵ so as to define the distance function 15. Thus, we state a definition
for the points closest to γϵ(t) in terms of the time of flight along the stable or unstable manifold.
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Definition. Let us define points psϵ,i ∈ W s(γϵ(t)) ∩ πp and puϵ,i ∈ Wu(γϵ(t)) ∩ πp, for i in some index
set I. Orbits of the perturbed vector field are denoted with (qsϵ,i(t), ϕ(t)) ∈ W s(γϵ(t)) and (quϵ,i(t), ϕ(t)) ∈
Wu(γϵ(t)), with the initial conditions (qsϵ,i(0), ϕ(0)) = psϵ,i and (quϵ,i(0), ϕ(0)) = puϵ,i, respectively.

Then, a point ps
ϵ,̃i

is considered to be the closest point in W s(γϵ(t)) to γϵ(t) in terms of positive time

of flight, if for all t > 0, the trajectory (qsϵ,i(t), ϕ(t)) does not intersect πp. Similarly, a point pu
ϵ,̃i

is the

closest point in Wu(γϵ(t)) to γϵ(t) in terms of negative time of flight, if for all t < 0, the intersection
between the trajectory (quϵ,i(t), ϕ(t)) and πp is empty [1].

For a visual interpretation, see Figure 2.

Figure 2: The points ps
ϵ,̃i

and pu
ϵ,̃i

closest to γϵ(t) in terms of negative time of flight along W s(γϵ(t)) and

posiftive time of flight along Wu(γϵ(t)), respectively, are shown (Fig 28.1.12 from [1]).

In our definition of the distance (13) between the stable and the unstable manifold of the perturbed
periodic orbit γϵ(t) at point p 13, we choose the unique points psϵ = ps

ϵ,̃i
, closest to γϵ(t) in terms of

positive time of flight along W s(γϵ(t)), and puϵ = pu
ϵ,̃i

closest in terms of negative time of flight along

Wu(γϵ(t)).

Deriving the Melnikov function

Subsequently, we want to derive the Melnikov function, starting with a Taylor expansion of (15) about
ϵ = 0. This gives

d(t0, ϕ0, ϵ) = d(t0, ϕ0, 0) + ϵ
∂d

∂ϵ
(t0, ϕ0, 0) +O(ϵ2). (16)

In this expression, d(t0, ϕ0, 0) reduces to 0 and

∂d

∂ϵ
(t0, ϕ0, 0) =

(DH(q0(−t0)) ·
(

∂quϵ
∂ϵ

∣∣∣
ϵ=0

− ∂qsϵ
∂ϵ

∣∣∣
ϵ=0

)
∥(DH(q0(−t0))∥

=
M(t0, ϕ0)

∥(DH(q0(−t0))∥
, (17)

where M(t0, ϕ0) represents the Melnikov function.

We note that DH(q0(−t0)) = (Hx(q0(−t0)), Hy(q0(−t0)) is never equal to 0 on q0(−t0). The point
q0(−t0) lies on the homoclinic orbit in the unperturbed system. At q0, the system is moving along the
orbit towards the saddle point. This means that motion occurs, thus either Hx ̸= 0 or Hy ̸= 0, as
these derivatives determine the velocity of the system. It follows that, for a finite t0, if the Melnikov
function M(t0, ϕ0) approaches zero, then ∂d

∂ϵ (t0, ϕ0, 0) = 0. Thus, aside from the nonzero scaling factor
∥(DH(q0(−t0))∥, the Melnikov function is constructed as the first nonzero term in the Taylor expansion
of the distance between Wu(γϵ(t)) and W s(γϵ(t)) at the point p.

In order to express the Melnikov function such that the definition is not dependent on a solution of the
perturbed vector field, we want to redefine the Melnikov function M(t0, ϕ0) in a way that it depends on
time by using the flow that is produced by the perturbed vector field as well as the unperturbed vector
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field. Subsequently, we derive an ordinary differential equation which this time-dependent function must
satisfy. The solution of this differential equation at the proper time yields the final Melnikov function.
Orbits in the stable manifold W s(γϵ(t)) are referred to as qsϵ (t). Similarly, orbits in the unstable manifold
Wu(γϵ(t)) are denoted by quϵ (t). We define the time-dependent Melnikov function as

M(t; t0, ϕ0) = DH(q0(t− t0)) ·
(∂quϵ (t)

∂ϵ

∣∣∣
ϵ=0

− ∂qsϵ (t)

∂ϵ

∣∣∣
ϵ=0

)
, (18)

where M(0; t0, ϕ0) = M(t0, ϕ0). Equation 18 contains the partial derivatives of qsϵ (t) and quϵ (t) with
respect to ϵ, evaluated at ϵ = 0, which evolve in time under the dynamics of the perturbed system.
Observe the expression DHq0(t − t0)) is also contained in M(t; t0, ϕ0) and advances in time under the
dynamics of the unperturbed vector field. To shorten the notation, we define

∂qsϵ (t)

∂ϵ

∣∣∣
ϵ=0

= qsd(t)

∂quϵ (t)

∂ϵ

∣∣∣
ϵ=0

= qud (t)

(19)

and
∆s,u(t) = DH(q0(t− t0)) · qs,ud (t). (20)

Now, we can write equation (18) as

M(t; t0, ϕ0) = DH(q0(t− t0)) · (qud (t)− qsd(t)) = ∆u(t)−∆s(t). (21)

Next, to define our final form of the Melnikov function, we differentiate expression ∆s,u(t) with respect
to t. Using the chain rule, we find

d∆s,u(t)

dt
=

d(DH(q0(t− t0)))

dt
· qs,ud (t) +DH(q0(t− t0)) ·

dqs,ud (t)

dt
. (22)

Recall that qs,uϵ (t) solves
dqs,uϵ (t)

dt
= JDH(qs,uϵ (t)) + ϵf(qs,uϵ (t), ϕ(t), ϵ) (23)

in system (5), where ϕ(t) = ωt+ ϕ0. Since we assume that qs,uϵ (t) is sufficiently smooth in both ϵ and in
t, we are allowed to interchange the order of differentiation between ϵ and t. Differentiation of equation
(23) with respect to ϵ, by applying the chain rule, gives

dqs,ud (t)

dt
= JD2H(q0(t− t0))q

s,u
d (t) + f(q0(t− t0), ϕ(t), 0). (24)

Note that qud solves (24) for t ∈ (−∞, 0] and qsd for t ∈ [0,∞). Now that we have found an expression
for d

dtq
s,u
d (t), we substitute (24) into equation (22) to obtain

d∆s,u(t)

dt
=

dDH(q0(t− t0))

dt
·qs,ud (t)+DH(q0(t−t0))·JD2H(q0(t−t0))q

s,u
d (t)+DH(q0(t−t0))·f(q0(t−t0), ϕ(t), 0).

(25)

Let us note that

d(DH(q0(t− t0)))

dt
= D2H(q0(t− t0)

dq0(t− t0)

dt

= (D2H(q0(t− t0))(JDH(q0(t− t0))),

which follows from substitution of system 5 with ϵ = 0 for q0. We can decompose qs,ud (t) into (xs,u
d (t), ys,ud (t))

such that computing the first term in (25) gives
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(D2H)(JDH) · qs,ud =

(
∂2H
∂x2

∂2H
∂x∂y

∂2H
∂y∂x

∂2H
∂y2

)( ∂H
∂y

− ∂H
∂x

)
·
(

xs,u
d

ys,u
d

)
=

(
∂2H
∂x2

∂H
∂y − ∂2H

∂x∂y
∂H
∂x

∂2H
∂y∂x

∂H
∂y − ∂2H

∂y2
∂H
∂x

)
·
(

xs,u
d

ys,u
d

)
= xs,u

d

[
∂2H

∂x2

∂H

∂y
− ∂2H

∂x∂y

∂H

∂x

]
+ ys,ud

[
∂2H

∂y∂x

∂H

∂y
− ∂2H

∂y2
∂H

∂x

]
.

(26)

Also, we find that the second term in (25) translates to

DH · (JD2H)qs,ud =
( ∂H

∂x
∂H
∂y

)
·

(
∂2H
∂y∂x

∂2H
∂y2

− ∂2H
∂x2 − ∂2H

∂x∂y

)(
xs,u
d

ys,u
d

)
=
( ∂H

∂x
∂H
∂y

)
·

(
∂2H
∂y∂xxs,u

d + ∂2H
∂y2 ys,u

d

− ∂2H
∂x2 xs,u

d − ∂2H
∂x∂y ys,u

d

)

= xs,u
d

[
∂2H

∂y∂x

∂H

∂x
− ∂2H

∂x2

∂H

∂y

]
+ys,ud

[
∂2H

∂y2
∂H

∂x
− ∂2H

∂x∂y

∂H

∂y

]
.

(27)

Addition of (26) and (27) confirms that the first two terms in expression (25) cancel each other, so

dDH(q0(t− t0))

dt
· qs,ud (t) +DH(q0(t− t0)) · JD2H(q0(t− t0))q

s,u
d (t) = 0. (28)

Accordingly, expression (25) reduces to

d∆s,u(t)

dt
= DH(q0(t− t0)) · f(q0(t− t0), ϕ(t), 0). (29)

Recall that from equation (21), we have

M(t0, ϕ0) = M(0; t0, ϕ0) = ∆u(0)−∆s(0). (30)

Subsequently, we choose to integrate ∆u(t) from −τ to 0 and ∆s(t) from 0 to τ for some τ > 0 in order
to substitute these expressions into (30).

As we substitute ϕ(t) = ωt+ ϕ0 into the integrands, we obtain

∆u(0)−∆u(−τ) =

∫ 0

−τ

DH(q0(t− t0)) · f(q0(t− t0), ωt+ ϕ0, 0)dt (31)

and

∆s(τ)−∆s(0) =

∫ τ

0

DH(q0(t− t0)) · f(q0(t− t0), ωt+ ϕ0, 0)dt (32)

Adding expressions (31) and (32) yields

M(t0, ϕ0) =

∫ τ

−τ

DH(q0(t− t0)) · f(q0(t− t0), ωt+ ϕ0, 0)dt−∆s(τ) + ∆u(−τ). (33)

Now, we have almost reached our desired expression to define the Melnikov function. We carry on by
investigating the limit of 33 as τ → ∞. Recall that ∆s,u(τ) is defined as DH(q0(τ − t0)) · qs,ud (τ). We
see that as τ goes to ±∞ , DH(q0(t− t0)) will set off to zero. For, as τ → ±∞, the trajectory q0(τ − t0)
asymptotically approaches the hyperbolic fixed point p0. As the gradient of the Hamiltian vanishes
at the fixed point p0, it follows that DH(q0(t − t0) → DH(p0) = 0. Furthermore, as τ goes to ∞ (
−∞, respectively), we note that qsd(τ) (qud (τ), respectively) is bounded. This ensures that as τ → ∞,
∆s,u(τ) → 0.

It follows that, condsidering the limit of 33 as τ → ∞, the expression reduces to the improper integral

M(t0, ϕ0) =

∫ ∞

−∞
DH(q0(t− t0)) · f(q0(t− t0), ωt+ ϕ0, 0)dt. (34)

This integral is absolutely convergent, as f(q0(t − t0), ωt + ϕ0, 0) is bounded for all t ∈ R and again,
DH(q0(t− t0) → 0 as t → ±∞.
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Properties of the Melnikov function

To complete the introduction to the Melnikov function, a few interesting properties will be considered.
Firstly, we note that under the transformation t −→ t+ t0 the Melnikov function (34) converts to

M(t0, ϕ0) =

∫ ∞

−∞
DH(q0(t)) · f(q0(t), ω(t+ t0) + ϕ0, 0)dt. (35)

Now, we recall that the function f(q, t, ϵ) is periodic in t. Thus, it follows that M(t0, ϕ0) is periodic in
t0 with period 2π/ω and periodic in ϕ0 with period 2π. From expression 35, we see that varying t0 and
ϕ0 provide the same results, as t0 is multiplied with ω. As a result, we obtain the following property:

∂M(t0, ϕ0)

∂t0
= ω

∂M(t0, ϕ0)

∂ϕ0
. (36)

Correspondingly, we observe that ∂M(t0,ϕ0)
∂t0

= 0 if and only if ∂M(t0,ϕ0)
∂ϕ0

= 0.

Secondly, as mentioned before, the Melnikov function is a signed measure of the distance between stable
and unstable manifolds as it provides not only the magnitude of the separation, but also indicates the
direction of the disengagement. As seen before in (15) , (16) and (17), the distance between W s(γϵ(t))
and Wu(γϵ(t)) at the point p = (q0(−t0), ϕ0) is given by

d(t0, ϕ0, ϵ) =
(DH(q0(−t0)) · (quϵ − qsϵ )

∥(DH(q0(−t0))∥

= ϵ
M(t0, ϕ0)

∥(DH(q0(−t0))∥
+O(ϵ2)

(37)

Thus, we note that for ϵ sufficiently small, M(t0, ϕ0) > 0 implies d(t0, ϕ0, ϵ) > 0 . As d(t0, ϕ0, ϵ) > 0
connotes that quϵ > qsϵ , these inequalities tell us that the unstable manifold curves wraps around the
stable manifold on the outside, see Figure 3. Equivalently, M(t0, ϕ0) < 0 implies d(t0, ϕ0, ϵ) < 0 and
quϵ < qsϵ . Thus, in this case, it is the stable manifold that bends along the outside of the unstable
manifold.

Figure 3: Relative orientations of W s(γϵ(t)) and Wu(γϵ(t)) near p. On the left, M(t0, ϕ0) > 0 and on
the right M(t0, ϕ0) < 0 (Fig 28.1.10 from [1]).

Thirdly, if we presume that the perturbation in our system is autonomous, so ϵf(q, ϵ) does not depend
explicitly on t, then the Melnikov function is given by

M =

∫ ∞

−∞
DH(q0(t)) · f(q0(t), 0)dt. (38)

We find that M is a number instead of a function of the initial conditions t0 and ϕ0. In autonomous two-
dimensional vector fields, the stable and unstable manifolds of a hyperbolic saddle point either coincide
to form a homoclinic orbit when M = 0, or do not intersect at all.

Lastly, we consider the case where the vector field is Hamiltonian, so the perturbation f is derived from
a time-dependent Hamiltonian function H̃(x, y). The perturbed vector field is given by{

ẋ = Hy(x, y) + ϵH̃y(x, y, t, ϵ)

ẏ = −Hx(x, y)− ϵH̃x(x, y, t, ϵ),
(39)
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with the Cr+1 function Hϵ(x, y, t) = H(x, y) + ϵH̃(x, y, t, ϵ) periodic in t with period T = 2π
ω . The

corresponding Melnikov function is

M(t0, ϕ0) =

∫ ∞

−∞
DH(q0(t)) · f(q0(t), ω(t+ t0) + ϕ0, 0)dt

=

∫ ∞

−∞

( ∂H
∂x
∂H
∂y

)
·
( ∂H̃

∂y

− ∂H̃
∂x

)
(q0(t), ω(t+ t0) + ϕ0, 0)dt

=

∫ ∞

−∞
{H, H̃}(q0(t), ω(t+ t0) + ϕ0, 0)d,

(40)

where {H, H̃} = HxH̃y −HyH̃x denotes the Poisson bracket of H with H̃.

Existence of a transverse homoclinic orbit to the saddle periodic
orbit

This section is dedicated to the proof of the following Theorem.

Theorem. Suppose there is a point (t0, ϕ0) = (t̄0, ϕ̄0) where the Melnikov function has a simple zero,

so M(t̄0, ϕ̄0) = 0 and ∂M(t̄0,ϕ̄0)
∂t0

̸= 0. Then for ϵ sufficiently small, the stable and unstable manifolds of
γϵ(t), W

s(γϵ(t)) and Wu(γϵ(t)), intersect transversely.

With this Theorem, we aim to prove the existence of a transverse homoclinic orbit to this cycle. As
the Melnikov function is used to measure the distance between the stable and unstable manifolds in
a perturbed system, a non-degenerate root of this function indicates a transverse intersection of these
manifolds. The two manifolds meet at a point and cross each other with a non-zero angle. For a simple
zero of the Melnikov function, we require that at (t̄0, ϕ̄0) the functionM(t0, ϕ0) vanishes and the Jacobian

of M(t0, ϕ0), given by
(
∂M
∂t0

, ∂M
∂ϕ0

)
is not equal to (0, 0). In consequence of the property that ∂M(t0,ϕ0)

∂t0
= 0

if and only if ∂M(t0,ϕ0)
∂ϕ0

= 0, if either of the partial derivatives is nonzero, then so is the other. A choice

was made to state the theorem in terms of M(t0,ϕ0)
∂t0

̸= 0.

Let us recall from (16) and (17) that we defined the distance between W s(γϵ(t)) and Wu(γϵ(t)) at point
p ∈ Γγ through the distance function

d(t0, ϕ0, ϵ) = ϵ
∂d

∂ϵ
(t0, ϕ0, 0) +O(ϵ2)

= ϵ
M(t0, ϕ0)

∥(DH(q0(−t0))∥
+O(ϵ2),

where each point p is parametrized in accordance with p = (q0(−t0), ϕ0) for t0 ∈ R and ϕ0 ∈ (0, 2π].

Now, we define

d̃(t0, ϕ0, ϵ) =
M(t0, ϕ0)

∥(DH(q0(−t0))∥
+O(ϵ), (41)

such that d(t0, ϕ0, ϵ) = ϵd̃(t0, ϕ0, ϵ). It is evident that d̃(t0, ϕ0, ϵ) = 0 implies that d(t0, ϕ0, ϵ) = 0. Thus
we continue our argument with the reduced form d̃(t0, ϕ0, ϵ) = 0. Suppose there exists a point (t0, ϕ0) =

(t̄0, ϕ̄0) where a simple zero of the Melnikov function occurs, hence M(t̄0, ϕ̄0) = 0 and ∂M
∂t0

∣∣∣
(t̄0,ϕ̄0)

̸= 0.

Then at the point(t0, ϕ0, ϵ) = (t̄0, ϕ̄0, 0), expression (41) reduces to

d̃(t̄0, ϕ̄0, 0) =
M(t̄0, ϕ̄0)

∥(DH(q0(−t̄0))∥
= 0,

and

∂d̃(t̄0, ϕ̄0, 0)

∂t0
=

1

∥(DH(q0(−t̄0))∥
∂M(t̄0, ϕ̄0)

∂t0
̸= 0.
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This prerequisite ensures that d̃(t̄0, ϕ̄0, ϵ = 0) can be solved locally, so for small deviations from ϕ0 and
for small values of ϵ, for t0 as a function of ϕ0 and ϵ. Henceforth, by the implicit function theorem, it
follows that for |ϕ− ϕ0| < ϵ, ϵ sufficiently small, there exists a function t0 = t0(ϕ0, ϵ) such that

d̃(t0(ϕ0, ϵ), ϕ0, ϵ) = 0.

This expresssion implies that d(t0(ϕ0, ϵ), ϕ0, ϵ) = 0, which proves that W s(γϵ(t)) and Wu(γϵ(t)) intersect
O(ϵ) close.

At this time, all that remains to show is the transversality of the intersection of the stable and unstable
manifolds. Recall that for any point p ∈ W s ∩ Wu, this intersection between the sets is transversal if
TpW

s + TpW
u = R3, where Tpw

W s and Tpw
Wu denote the tangent spaces of the stable and unstable

manifolds at p, respectively [1].

Note that, by definition, p = (qsϵ , ϕ0) = (quϵ , ϕ0), the point where the stable and the unstable manifolds
intersect. In this regard, qs,uϵ (t) are trajectories in W s,u(γϵ(t)), where qs,uϵ are points that are compliant
with qs,uϵ = qs,uϵ (0). The tangent space TpD of a manifold D consists of all tangent vectors at x0 and is
defined as

Tx0
D = {ẋ(0)|V ⊆ Dopen, x : V → Rn, 0 ∈ V, x(0) = x0, x(t) ∈ D,∀t ∈ V, x(t) is differentiable at t = 0},

according to Definition 4.1 in [3]. Applying this definition to our tangent spaces TpW
s,u(γϵ(t)) of the

stable and unstable manifolds associated with γϵ(t), we find that

TpW
s,u(γϵ(t)) = {ẋ(0)|x : (−ϵ, ϵ) → R3, x(0) = p, x(t) ∈ W s,u(γϵ(t)),∀t ∈ (−ϵ, ϵ), x(t) is differentiable at t = 0}

As the trajectories qs,uϵ (t) depend parametrically on t0 and ϕ0, we can form the derivatives of these
trajectories with respect to t0 and ϕ0 and evaluate at t = 0. For ϵ sufficiently small, the points on
W s(γϵ(t)) and Wu(γϵ(t)) that are closest to γϵ(t) in terms of time of flight can be parametrized by t0
and ϕ0. Thus, the vectors (∂qsϵ

∂t0
,
∂qsϵ
∂ϕ0

)
(42)

and (∂quϵ
∂t0

,
∂quϵ
∂ϕ0

)
(43)

form a basis for TpW
s(γϵ(t)) and TpW

u(γϵ(t)), respectively. To make sure that TpW
s(γϵ(t)) and

TpW
u(γϵ(t)) are not tangent at t, one of the transversality conditions

∂quϵ
∂t0

− ∂qsϵ
∂t0

̸= 0 (44)

or
∂quϵ
∂ϕ0

− ∂qsϵ
∂ϕ0

̸= 0 (45)

is required.

To check wether these conditions are fulfilled, we differentiate d(t0, ϕ0, ϵ) with respect to t0 and ϕ0 and
evaluate at the intersection point (t̄0 + O(ϵ), ϕ̄0) where the Melnikov function attains a simple zero.
Keeping expression (15) in mind, differentiation with respect to t0 gives

∂d(t̄0, ϕ̄0, ϵ)

∂t0
=

DH(q0(−̄t0)) ·
(∂quϵ
∂t0

− ∂qsϵ
∂t0

)
∥(DH(q0(−t̄0))∥

, (46)

so it follows that ∂d(t̄0,ϕ̄0,ϵ)
∂t0

̸= 0 is a sufficient condition for transversality. Considering expression (41),
we find that (46) is also equal to

∂d(t̄0, ϕ̄0, ϵ)

∂t0
= ϵ

∂d̃(t̄0, ϕ̄0, ϵ)

∂t0

=
ϵ

∥(DH(q0(−t̄0))∥
∂M(t̄0, ϕ̄0)

∂t0
+O(ϵ2).

(47)
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Similarly, differentiating d(t0, ϕ0, ϵ) with respect to ϕ0 and evaluating at (t̄0 +O(ϵ), ϕ0) gives

∂d(t̄0, ϕ̄0, ϵ)

∂ϕ0
=

DH(q0(−̄t0)) ·
(∂quϵ
∂ϕ0

− ∂qsϵ
∂ϕ0

)
∥(DH(q0(−t̄0))∥

= ϵ
∂d̃(t̄0, ϕ̄0, ϵ)

∂ϕ0

=
ϵ

∥(DH(q0(−t̄0))∥
∂M(t̄0, ϕ̄0)

∂ϕ0
+O(ϵ2).

(48)

Thus, from (47) and (48) it is evident that when either ∂M(t̄0,ϕ̄0)
∂ϕ0

̸= 0 or ∂M(t̄0,ϕ̄0)
∂t0

̸= 0, W s(γϵ(t)) and

Wu(γϵ(t)) intersect transversely. This completes our proof of the Theorem, as these conditions were in
our assumptions.

Application of the Melnikov function to the Duffing oscillator

Let us now consider the Duffing oscillator with weak harmonic forcing and damping, which is given by
the second-order differential equation

ẍ− x+ x3 = ϵ(γ cos(ωt)− δẋ), (49)

with variable parameters γ, ω, δ > 0 and small parameter ϵ satisfies 0 < ϵ ≪ 1. The force amplitude
serves as γ, the frequency is denoted with ω and δ represents the damping. Equation (49) is equivalent
to the planar system {

ẋ = y

ẏ = x− x3 + ϵ(γ cos(ωt)− δy),
(50)

where f(x, y, t, ϵ) = (f1, f2) = (0, γ cos(ωt)− δy).

By introducing ϕ = ωt, we obtain the autonomous vector field


ẋ = y

ẏ = x− x3 + ϵ(γ cos(ϕ)− δy)

ϕ̇ = ω,

(51)

which does not explicitly depend on time.

For ϵ = 0, the unforced, undampened Duffing oscillator is a conservative system and (50) reduces to to
Hamiltonian system {

ẋ = y

ẏ = x− x3
(52)

with the Hamiltonian function

H(x, y) =
y2

2
− x2

2
+

x4

4
. (53)

If we define the potential energy V (x) = −x2

2 + x4

4 and view y2

2 as the kinetic energy, H(x, y) = y2

2 +V (x)
portrays the total energy of the system. For ϵ = 0, all solutions of the system lie on level curves ofH(x, y).
To determine the fixed points of (52), we set ẋ = 0 and ẏ = 0 and we obtain

ẋ = y = 0 =⇒ y = 0

ẏ = x(1− x2) = 0 =⇒ x = 0 ∨ x = ±1,

so we find the three equilibria (x, y) = (0, 0) and (x, y) = (±1, 0). To determine the stability, the Jacobian
matrix of (50)

J(x, y) =

(
0 1

1− 3x2 0

)
is evaluated at the fixed points. We find

J(−1, 0) = J(1, 0) =

(
0 1
−2 0

)
,
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with eigenvalues λ1,2 = ±i
√
2, which indicates that (x, y) = (±1, 0) are centers. Also, we obtain

J(0, 0) =

(
0 1
1 0

)
,

with eigenvalues λ1,2 = ±1, thus (x, y) = (0, 0) = p0 is a hyperbolic saddle point. We note that p0 is on

the level set H(x, y) = 0. By way of rewriting (53), we find that this level set is defined by y2 = x2− x4

2 .
To find the pair of homoclinic orbits at ϵ = 0, we substitutie this equation into the system (52), which
results in

y =
dx

dt
= ±

√
x2 − x4

2∫ √
2

|x|
√
2− x2

dx =

∫
±1dt

− tanh−1
(√

1− x2

2

)
= ±t+ C

x2

2
= 1− tanh2(±t) = sech2(t)

x = ±
√
2 sech(t).

(54)

Differentiating − tanh−1
(√

1− x2

2

)
verifies that our calculation is correct, as we indeed observe that

− d

dx
tanh−1

(√
1− x2

2

)
=

−1

1− (1− x2

2 )

−x

2
√
1− x2

2

=
2x

2x2

√
1− x2

2

=

√
2

x
√
2− x2

,

(55)

which was integrated in the second computation of (54). Now, we subsitute our expression for x into
(52) to find

ẏ = ±
√
2 sech(t)− (±

√
2 sech(t))3

= ±
√
2 sech(t)(1− 2 sech2(t)).

(56)

By integration of (56), we find the pair of homoclinic orbits

q±0 (t) = (x±
0 (t), y

±
0 (t)) = (±

√
2 sech(t),∓

√
2 sech(t) tanh(t)), (57)

shown in Figure 4.

Figure 4: The two centers (x, y) = (±1, 0) and the hyperbolic saddle point (x, y) = (0, 0) are shown,
as well as the pair of homoclinic orbits q±0 (t) = (x±

0 (t), y
±
0 (t)) = (±

√
2 sech(t),∓

√
2 sech(t) tanh(t)) (Fig

28.4.1 from [1]).
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We compute the Melnikov function for q±0 (t). Making use of (35), it follows that M±(t0, ϕ0) is given by

M±(t0, ϕ0) =

∫ ∞

−∞
DH(q±0 (t)) · f(q

±
0 (t), ω(t+ t0) + ϕ0, 0)dt

=

∫ ∞

−∞

(∂H
∂x
∂H
∂y

)
(q±0 (t)) ·

(
f1
f2

)
(q±0 (t), ω(t+ t0) + ϕ0, 0)dt

=

∫ ∞

−∞

(
−x+ x3

y

)
(x±

0 (t), y
±
0 (t)) ·

(
0

γ cos(ω(t+ t0) + ϕ0)− δy±0 (t)

)
dt

=

∫ ∞

−∞
y±0 (t)(γ cos(ω(t+ t0) + ϕ0)− δy±0 (t))dt

=

∫ ∞

−∞
γy±0 (t) cos(ω(t+ t0) + ϕ0)− δ(y±0 (t))

2dt.

(58)

Now, as we substitute y±0 (t) = ∓
√
2 sech(t) tanh(t) from (57), the Melnikov function becomes

M±(t0, ϕ0) =

∫ ∞

−∞
(∓

√
2 sech(t) tanh(t)γ cos(ω(t+ t0) + ϕ0)− δ(∓

√
2 sech(t) tanh(t))2)dt

= ∓γ
√
2

∫ ∞

−∞
sech(t) tanh(t) cos(ωt+ ωt0 + ϕ0)dt− 2δ

∫ ∞

−∞
sech(t)2 tanh(t)2dt

= ±γπω
√
2 sech

(πω
2

)
sin(ωt0 + ϕ0)−

4δ

3
.

(59)

Now, we consider the case δ = 0 and examine the cross-section Σϕ0 = {(q, ϕ) ∈ R2×S1|ϕ = ϕ0} as defined
in 10 with the corresponding Poincaré map Pϕ0

ϵ as described in 11. We find that the Melnikov function is
has a zero, meaning the stable and the unstable manifolds intersect, for sin(ωt+ϕ0) = 0 =⇒ ϕ0 = 0, π

2 , π
and 3π

2 at t = 0. Altering the cross-section Σϕ0 can change the symmetry properties of the Poincaré
map Pϕ0

ϵ : Σϕ0 → Σϕ0 [1].

From expression (59), we find that the critical condition in terms of parameters δ, γ, ω > 0, for which
the Melnikov function has a simple zero, causing the invariant manifolds to intersect, is given by

4δ

3
= ±

√
2γπω sech

(πω
2

)
sin(ωt0 + ϕ0)

δ =
±3

√
2γπω sech

(
πω
2

)
sin(ωt0 + ϕ0)

4( δ
γ

)
≤

3πω sech
(
πω
2

)
2
√
2

,

(60)

as | sin(ωt0 + ϕ0)| ≤ 1 and δ, γ > 0. This means for ϵ > 0 sufficiently small, system (51) has transverse
homoclinic orbits.

From (59), chaotic behavior is guaranteed for trajectories whose initial data are close enough to the
homoclinic orbits q±0 (t), when

δ

γ
≤
( δ
γ

)
crit

=
3πω sech

(
πω
2

)
2
√
2

. (61)

In this case,
(

δ
γ

)
crit

is a threshold function, see Figure 5 [4].
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Figure 5: (a) Graph of the critical surface δ =
3γπω sech

(
πω
2

)
2
√
2

with cross-sections where (b) γ is held

constant (c) ω is held constant and (d) δ is held constant (Fig 28.5.2 from [1]).

We want to ensure that δ/γ is small enough for the manifolds to interact dynamically. Note that this
criterion is independent of the specific cross-section Σϕ0 , as it should be. Thus, (61) poses as a criterion for
chaos in the Duffing oscillator with weak harmonic forcing and damping as a function of the parameters
(δ, ω, γ).
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