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1 Introduction

The Poincaré-Bendixson theorem is a classical result that describes the long term behaviour
of bounded orbits in the plane. It is especially relevant as it rules out chaos for planar
systems, limiting the evolution of bounded orbits to three cases and proving that there
cannot exist strange attractors in R2.

A first version of the theorem, for polynomial systems, was proved by Henri Poincaré
in [4] at the end of the XIX century. The proof was later completed by Ivar Bendixson in
[1] for continuous systems. We prove the following version.

Theorem 1.1 (Poincaré-Bendixson). A bounded forward orbit of a smooth planar system

Ẋ = F (X) , X ∈ R2 , (1)

with a finite number of equilibria, as t −→ +∞ tends to one of the following invariant sets
in the phase plane:

1. an equilibrium point;

2. a periodic orbit;

3. a union of equilibria and their connecting orbits.

We start by defining ω-limit sets to describe the evolution of bounded orbits as t −→
+∞ and prove relevant properties. We then define transverse lines and use geometric
considerations, in particular the Jordan curve theorem, to prove a series of technical lem-
mas that constitute the backbone of the proof. By combining such results, we obtain an
equivalent formulation of the theorem.

2 Preliminary results

2.1 ω-limit sets

We start by defining ω-limit sets and studying their properties.

Definition 2.1 (ω-limit sets). Given a smooth system with flow φt, we say that P ∈
ω(X) ⊂ R2 if there exists an increasing sequence of times (tj), such that tj −→ +∞ and
Pj := φtj (X) −→ P as j −→ +∞. We call ω(X) the ω-limit set of the orbit starting at
X.

We list here properties of ω-limit sets of a smooth systems hold in general for n-
dimensional systems.
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Property 2.2. Let X ∈ R2 and assume that the forward orbit of (1) starting at X is
bounded, then

1. ω(X) is non-empty, bounded, closed, and connected;

2. ω(X) is an invariant set for the planar system, that is, if Y ∈ ω(X) then φt(Y ) ∈
ω(X) for all t ∈ R;

3. the forward orbit starting at X tends to ω(X), that is

dist(φt(X), ω(X)) = inf
P∈ω(X)

||φt(X)− P || −→ 0 ,

as t −→ +∞;

4. if Z ∈ ω(Y ) and Y ∈ ω(X), then Z ∈ ω(X).

Proof. Let X ∈ R2 and assume that the forward orbit starting at X is bounded.

1. • As the orbit is bounded, there exists a bounded sequence (φtj (X)) such that
(tj) is increasing and tj −→ +∞. Then, by the Bolzano-Weierstrass Theo-
rem, (φtj (X)) has a convergent subsequence (φtjk (X)). Let P be the limit
of such convergence subsequence, then (tjk) is increasing, tjk −→ +∞, and
(φtjk (X)) −→ P , i.e. P ∈ ω(X). Therefore, ω(X) ̸= ∅.

• By definition, ω(X) is a subset of the closure of the orbit. As the orbit is
bounded, ω(X) is also bounded.

• By definition, we can write the ω-limit set as

ω(X) =
⋂
τ≥0

{u(t) : t ≥ τ} ,

where u(t) is the solution to the system at time t. As it an intersection of closed
sets, ω(X) is also closed.

• We want to prove that ω(X) is connected, we do so by assuming it is not and
finding a contradiction. Assume ω(X) is not connected, then, there exist open
and disjoint A,B such that ω(X) ⊂ A ∪ B. Therefore, there exist increasing
(tj), (sj) −→ +∞ such that tj < sj < tj+1 and φtj (X) ∈ A,φsj (X) ∈ B for all
j. Moreover,

{φt(X) : t ∈ [tj , sj ]}
is a continuous curve connecting A and B. Since they are disjoint, for all j
there exists rj ∈ ]tj , sj [ such that φrj (X) ̸∈ A ∪ B. Then, (rj) −→ +∞ and it
is increasing.
As the orbit is bounded, the sequence (φrj (X)) is also bounded, and by the
Bolzano-Weierstrass Theorem it has a convergent subsequence (φrjk (X)) −→ P .
As X\(A∪B) is closed, P ̸∈ A∪B, but by definition P ∈ ω(X), this contradicts
ω(X) ⊂ A ∪B. Therefore, ω(X) is connected.

2. Assume Y ∈ ω(X). By definition, there exists an increasing sequence of times
(tj) −→ +∞ such that φtj (X) −→ Y as j −→ +∞. For all t ∈ R, (t + tj) is also
an increasing sequence of times that tends to +∞ and, using the properties and
continuity of the flow,

φt+tj (X) = φt(φtj (X)) −−−−→
j→+∞

φt(Y ) .

Therefore, by definition φt(Y ) ∈ ω(X) for all t ∈ R.
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3. By contradiction, suppose there exists ε > 0 and an increasing sequence (tj) −→ +∞
such that dist(φtj (X), ω(X)) > ε, but, as the orbit is bounded, (φtj (X)) has a
convergent subsequence (φtjk (X)) −→ Q for some Q ∈ ω(X). This contradicts
dist(φtj (X), ω(X)) > ε, therefore dist(φt(X), ω(X)) −→ 0.

4. As Y ∈ ω(X), by invariance φt(Y ) ∈ ω(X) for all t ∈ R. As Z ∈ ω(Y ), there exists
an increasing sequence (tj) −→ +∞ such that φtj (Y ) −→ Z, but φtj (Y ) ∈ ω(X) for
all tj and ω(X) is closed, therefore Z ∈ ω(X).

2.2 Transverse lines and the Jordan curve theorem

In this section we define transverse lines and use geometric considerations, in particular
the Jordan curve theorem, to prove three technical lemmas required to complete the proof.

Definition 2.3 (Transverse line). A closed segment L is called transverse for (1) if the
vector field F does not vanish on L and it is nowhere tangent to L.

Definition 2.4 (Jordan curve). A Jordan curve is the image of a continuous map φ :
[0, 1] → R2 such that φ(0) = φ(1) and the restriction of φ to [0, 1[ is injective. That is, a
planar closed curve without self-intersections.

The following theorem can be found in [5] and we report it here without proof, as the
proof is quite long and not particularly relevant in this context.

Theorem 2.5 (Jordan Curve Theorem). Let Γ be a Jordan curve in R2, then R2\Γ is
disconnected and consists of exactly two connected components, the interior (bounded) and
the exterior (unbounded).

The following lemma is the main result we need to prove the Poincaré-Bendixson The-
orem, in particular it requires the Jordan Curve Theorem, that holds only in R2. This is
the main reason why the theorem does not generalise for higher dimensions.

Lemma 2.6 (Monotonicity). If an orbit intersects L for an increasing sequence of times
(tj), then the corresponding sequence of intersection points (Qj) is either constant or strictly
monotone.

Proof. We partially follow a proof from [5]. If Q0 = Q1, then the orbit is periodic and
(Qn) is constant.

Assume Q0 ̸= Q1 and define the curve Γ as the union of the the section of the orbit
from Q0 to Q1 along φt(Q0) and the segment from Q1 to Q0 along the transverse L. Then,
it is a closed curve, without self intersections because of uniqueness of solutions and the
definition of transverse line, i.e. it is a Jordan curve. By the Jordan Curve Theorem 2.5,
Γ divides R2 into two connected components D1 and D2.

Let u(t) be the solution to the system (1) starting from Q0. Since F (Q1) is transversal
to L, the vector field F points either to D1 or D2 and u must enter either D1 or D2 after
t1. Call D1 the region that u enters (either the interior or the exterior), we claim that
u(t) ∈ D1 for all t > t1. By contradiction, assume there exists t2 > t1 such that u(t2) ∈ D2,
therefore there is a t∗ ∈ ]t1, t2[ such that u(t∗) ∈ Γ by the Intermediate Value Theorem.
But this is impossible, because u(t∗) cannot belong to the orbit as it would contradict
uniqueness of solutions and it cannot belong to the segment as F points towards D1 on L.

Therefore, Q2 = u(t2) ∈ D1 and Q0, Q1, Q2 are strictly monotone along L. By iterating
this procedure, we prove that the sequence (Qj) is strictly monotone.
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Figure 1: Lemma 2.6.

Lemma 2.7. Let P ∈ ω(X) and let L be a transverse segment through P . Then there is
an increasing sequence (tj) −→ +∞ such that, for Qj = φtj (X), we have (Qj) −→ P and
Qj ∈ L for all j.

Proof. First, we prove a result that holds for all P ∈ L, and later apply it in particular
to P ∈ ω(X) ∩ L. Let P ∈ L and let (y, z) be the coordinates on R2. Without loss of
generality, assume that P = (0, 0) and L is a subset of {(y, z) : y = 0}. For ε sufficiently
small to be determined, define a map ψ : BR(0, ε)×BR2(0, ε) → R by

ψ(t,X) = π(φt(X)) ,

where π : R2 → R is the projection such that π(y, z) = y. Then, ψ is a C1 map and, by
definition, ψ(0, 0) = 0. Moreover, as L is transversal, ∂ψ

∂t (0, 0) = π(F (X)) ̸= 0. Therefore,
by the implicit function theorem, there exists an open set U with P ∈ U and a C1 function
τ : U → R such that φτ(X)(X) ∈ L for all X ∈ U .

Now consider initial conditions X and let P ∈ ω(X), L transverse line through P and
U the open neighbourhood of P found from the previous part of the proof. Then, by
definition of ω-limit set, there exists an increasing sequence of times (tj) −→ +∞ such
that φtj (X) −→ P as tj → +∞ and φtj (X) ∈ U for all tj . Therefore

Qj := φτ(φ
tj (X))(φtj (X)) = φτ(φ

tj (X))+tj (X) ∈ L

for all j and |τ(φtj (X))| < ε.
Following the same argument used to prove Lemma 2.6, we find that the sequence of

times τ(φtj (X)) + tj −→ +∞ is increasing, possibly with repeated elements that we can
remove and redefine (Qj) accordingly. Then, by Lemma 2.6, the sequence (Qj) ⊂ L is
monotone and, as L is closed, (Qj) converges to P , proving the claim.

Lemma 2.8. The set ω(X) can intersect a transverse segment L in at most one point.

Proof. Assume there are two points of intersection P1 and P2. Then, there exist sequences
(Q1,j),(Q2,j) in the intersection of L and the orbit, converging to P1 and P2 respectively.
But this is impossible since both are subsequences of a monotone sequence (Qj) from
Lemma 2.6, and a monotone sequence cannot have two accumulation points.
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3 The Poincaré-Bendixson Theorem

We now use the previous lemmas to prove two theorems that cover the last two cases of
the Poincaré-Bendixson Theorem, namely the case when ω(X) is a periodic orbit and the
case when it is a union of equilibria and their connecting orbits.

Theorem 3.1 (Periodic orbits). If ω(X) does not contain equilibria, then it contains a
periodic orbit Γ0. Moreover, ω(X) = Γ0.

Proof. We follow the proof from [2]. Let Y ∈ ω(X) and consider Z ∈ ω(Y ) (they exist
because of Property 2.2.1), then, by Property 2.2.2, Z ∈ ω(X), therefore it is not an
equilibrium. Take L a transverse through Z and a sequence

Yj = φtj (Y ) −→ Z

such that Yj ∈ L for all tj , that exists thanks to Lemma 2.7. But as Yj ∈ L, by Lemma
2.6 the sequence (Yj) is either monotone or constant. It cannot be monotone as this
would mean that ω(X) and L have more than one intersection, contradicting Lemma 2.8,
therefore (Yj) is constant and equal to Z. This implies that the orbit starting at Y is a
periodic orbit and we denote it by Γ0.

There is a transverse segment MY through any point Y ∈ Γ0 and, by Lemma 2.8,
ω(X) ∩MY = Y . As for every point in Γ0 there is a closed transverse segment passing
through it, it is possible to trap Γ0 in an open annulus A ⊂

⋃
Y ∈Γ0

MY , and by choosing
the length of the segments to be sufficiently small, an open annulus in which Γ0 is the only
subset of ω(X). Since ω(X) is connected (Property 2.2.1), ω(X)\Γ0 is empty, proving the
claim.

L

Z

ω(X) X

Figure 2: Theorem 3.1.

We now define α-limit sets, an analogous to ω-limit sets for negative and decreasing
times, that we will need to prove the final part of the theorem.

Definition 3.2 (α-limit sets). Given a smooth system with flow φt, we say that P ∈
α(X) ⊂ R2 if there exists a decreasing sequence of negative times {tj}, such that tj −→ −∞
and Pj := φtj (X) −→ P as j −→ +∞. We call α(X) the α-limit set of the orbit starting
at X.
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Analogous properties and results to ω-limit sets hold. Consider the system with re-
versed time, then it has the same orbits but followed in reversed time. In particular,
every increasing sequence of times (tj) for the reversed system, such that tj −→ +∞ and
Pj := φtj (X) −→ P as j −→ +∞ corresponds to a decreasing sequence of times (tj) for
the original system, such that tj −→ −∞ and Pj := φtj (X) −→ P as j −→ −∞.

Then, for all X ∈ R2, α(X) in the original system is equal to ω(X) in the time-reversed
system. Therefore the same properties of ω-limit sets hold for α-limit sets (with reversed
time).

Theorem 3.3 (Union of equilibria and their connecting orbits). If ω(X) contains both
equilibrium and non-equilibrium points and Q ∈ ω(X) is not an equilibrium, then both
ω(Q) and α(Q) are equilibrium points.

Proof. We follow the proof from [2]. By Property 2.2.4, as Q ∈ ω(X), both ω(Q) ⊂ ω(X)
and α(Q) ⊂ ω(X). By contradiction, if ω(Q) does not contain equilibria, then it is a
periodic orbit, and thus ω(X) is also a periodic orbit, because of Theorem 3.1. But
we assumed that ω(X) contains equilibria, a contradiction. Therefore, ω(Q) contains an
equilibrium.

Assume that ω(Q) also contains a non equilibrium point Y and take a transversal
L through Y . Because of Property 2.2.2, all point of the orbit starting at Q belong to
ω(X). By Lemma 2.7, the forward orbit starting at Q intersects L infinitely many times
in a neighbourhood of Y , and these intersection points must be different as otherwise the
orbit would be a periodic orbit, but we have proved that it is not. This means that ω(X)
intersects L more than once, a contradiction.

Therefore, ω(Q) contains only equilibria, thus, it is a union of a finite number of
points. However, ω(Q) is connected thanks to Property 2.2.1, so it is just one equilibrium.
A completely analogous argument proves that α(Q) is also a single equilibrium point.

Q

ω(Q) = α(Q)

ω(X)

Figure 3: Theorem 3.3, particular case where ω(Q) = α(Q).

Finally, combining the previous results we obtain the following version of the Poincaré-
Bendixson Theorem, that is equivalent to the one formulated in the introduction thanks
to properties 2.2.2 and 2.2.3.

Theorem 3.4 (Poincaré-Bendixson). Consider a smooth planar system that has only a
finite number of equilibrium points. Suppose that a forward orbit of this system starting at
a point X ∈ R2 is bounded. Then ω(X) is either

1. an equilibrium point;

2. a periodic orbit;

3. a union of equilibria and orbits having these equilibria as their α- and ω-limit sets.
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Proof. We want to verify that the first case is possible. Let P be an equilibrium point,
then φt(P ) = P for all t > 0, therefore ω(P ) = P is a single equilibrium point. Moreover,
if ω(X) contains only equilibria, it contains exactly one as it is connected by Property
2.2.1.

If ω(X) does not contain only equilibria (i.e. is not a single equilibrium point), then
it either does not contain equilibria or it contains both equilibrium and non-equilibrium
points.

If ω(X) does not contain equilibria, then it is a periodic orbit by Theorem 3.1. If ω(X)
contains both equilibrium and non-equilibrium points then, by Theorem 3.3, if Q ∈ ω(X)
is not an equilibrium both ω(Q) and α(Q) are equilibrium points. This means that Q
belongs to an orbit connecting the equilibria ω(Q) and α(Q), therefore ω(X) is a union of
equilibria and their connecting orbits.

We have covered all the possible cases, proving the theorem.

4 Examples and behaviour on other manifolds

4.1 Examples

For the first case, consider the system{
ẋ = x(6− x2 − y2)− 3y2

ẏ = y(4− x2 − y2) + 2x
,

it has three equilibria: a stable node in (−2.5,−1.3), an unstable node in (0, 0) and a
saddle in (1,−1.1). As shown in Figure (4), bounded forward and backwards orbits tend
to one and only one of the equilibria.

Figure 4: Phase portrait showing equilibria that are ω- and α-
limit sets for different initial conditions.

Now, for the second case, consider the slightly different system{
ẋ = x(6− x2 − y2)− 3y3

ẏ = y(4− x2 − y2) + 2x
,
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it has one unstable equilibrium in (0, 0) and, as we observe in Figure (5), bounded forward
orbits tend to a periodic orbit.

Figure 5: Phase portrait showing a periodic orbit that is ω-limit
set for different forward orbits.

Finally, for the third case consider the system{
ẋ = ∂H

∂y + µH ∂H
∂x

ẏ = −∂H
∂x + µH ∂H

∂y

,

with H(x, y) = 1
2y

2− 1
2x

2+ 1
4x

4 and µ = −0.1. It has a saddle point in (0, 0) and bounded
forward orbits tend the saddle and two homoclinic orbits connecting the saddle to itself,
as we observe in Figure (6).

Figure 6: Phase portrait showing a forward orbit tending to the
union of a saddle equilibrium and two homoclinic orbits.
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4.2 On different manifolds

We have proved that the Poincaré-Bendixson Theorem holds for differential systems in R2,
it is now natural to ask whether similar results hold for other manifolds. We show some
examples without going into detail about the proofs.

The theorem does not hold in higher dimensions, for example in R3, and famous ex-
amples are strange attractors and the Lorenz system

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

,

that shows chaotic behaviour for ρ = 28, σ = 10, β = 8
3 .

Regarding two-dimensional manifolds, an analogue of the theorem holds for the sphere
and the cylinder, but not for the torus, as shown in [3]. For example, on the torus the
smooth system in toroidal-poloidal coordinates{

θ̇1 = 1

θ̇2 = ν
,

when ν is irrational produces dense orbits.
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