Analyse in meer variabelen

51. Let $(V,+, 0, \cdot)$ be a vector space of finite dimension $\operatorname{dim} V=n$. Show that an associative unital algebra $(\Lambda,+, 0, \cdot, \wedge, 1)$ together with a linear mapping $\varphi: V \longrightarrow \Lambda$ are uniquely determined - up to canonical isomorphy - by the two properties
(i) $\bigwedge_{v \in V} \varphi(v) \wedge \varphi(v)=0 \quad($ so $\varphi(w) \wedge \varphi(v)=-\varphi(v) \wedge \varphi(w))$
(ii) for every linear mapping $h: V \longrightarrow A$ into an associative unital algebra $(A,+, 0, \cdot, *, 1)$ satisfying

$$
\bigwedge_{v \in V} h(v) * h(v)=0
$$

there is a unique 1-preserving algebra-homomorphism $\hat{h}: \Lambda \longrightarrow A$ with $\hat{h} \circ \varphi=h$.
52. Denote by $\mathcal{P}=\mathcal{P}(\{1, \ldots, n\})$ the set of all subsets of $\{1, \ldots, n\}$ and by $\left\{e_{T} \mid T \in \mathcal{P}\right\}$ a fixed basis of $\mathbb{R}^{2^{n}}$. For $r, s \in\{1, \ldots, n\}$ put

$$
\sigma(r, s):=\left\{\begin{array}{ccc}
1 & & \begin{array}{c}
r<s \\
0
\end{array} \\
\text { if } & r=s \\
-1 & & r>s
\end{array}\right.
$$

and

$$
\tau(R, S):=\prod_{r \in R} \prod_{s \in S} \sigma(r, s)
$$

for $R, S \in \mathcal{P}$. Show that

$$
e_{R} \wedge e_{S}:=\tau(R, S) \cdot e_{R \cup S}
$$

turns $\mathbb{R}^{2^{n}}$ into an associative unital algebra $\Lambda\left(e_{T} \mid T \in \mathcal{P}\right)$ with $e_{\emptyset}=1$. Check that

$$
\bigwedge_{i, j \in\{1, \ldots, n\}} e_{\{j\}} \wedge e_{\{i\}}=-e_{\{i\}} \wedge e_{\{j\}}
$$

and that

$$
e_{T}=e_{\left\{i_{1}\right\}} \wedge e_{\left\{i_{2}\right\}} \wedge \ldots \wedge e_{\left\{i_{k}\right\}}
$$

for all $T=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<\ldots<i_{k}$. Let V be a vector space with basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Prove that $\Lambda:=\Lambda\left(e_{T} \mid T \in \mathcal{P}\right)$ together with $\varphi: V \longrightarrow \Lambda$ defined by $\varphi\left(e_{i}\right)=e_{\{i\}}$, $i=1, \ldots, n$ satisfy (i) and ($i i$) of the previous exercise.
This unique algebra $\Lambda=\Lambda(V)$ is called the exterior (or Graßmann) algebra of V. Generalize from \mathbb{R} to any field K. Can you also generalize to a ring R ? How important is the assumption of finite dimension?
53. Let Λ be the exterior algebra of an n-dimensional vector space V with basis $\left\{e_{1}, \ldots, e_{n}\right\}$.
(i) Explain that the $e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}, i_{1}<\ldots<i_{k}$ together with 1 form a basis of Λ.
(ii) Check that for all subsets $\left\{i_{1}<\ldots<i_{k}\right\},\left\{j_{1}<\ldots<j_{\ell}\right\} \subseteq\{1, \ldots, n\}$ one has

$$
e_{j_{1}} \wedge \ldots \wedge e_{j_{\ell}} \wedge e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}=(-1)^{k l} e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \wedge e_{j_{1}} \wedge \ldots \wedge e_{j_{\ell}}
$$

(iii) Show that $\left\{v_{1}, \ldots, v_{m}\right\} \subseteq V$ is linear dependent if and only if $v_{1} \wedge \ldots \wedge v_{m}=0$.
(iv) Let $\left\{u_{1}, \ldots, u_{m}\right\},\left\{v_{1}, \ldots, v_{m}\right\} \subseteq V$ with $\left\{u_{1}, \ldots, u_{m}\right\}$ linear independent. Prove that $\left\langle u_{1}, \ldots, u_{m}\right\rangle=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ have the same linear span if and only if $u_{1} \wedge \ldots \wedge u_{m}$ is a scalar multiple of $v_{1} \wedge \ldots \wedge v_{m}$.

Define $\Lambda^{k} V:=\left\langle v_{1} \wedge \ldots \wedge v_{k} \mid v_{i} \in V\right\rangle$, the k th exterior power of V.
(v) Show that $\Lambda^{k} V=0$ for $k>n$ and that for $k \leq n$ the $e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}, i_{1}<\ldots<i_{k}$ with the now fixed index k form a basis of $\Lambda^{k} V$. Conclude $\operatorname{dim} \Lambda^{k} V=\binom{n}{k}$. Identify $V=\Lambda^{1} V$ and check

$$
\Lambda=\bigoplus_{k=0}^{n} \Lambda^{k} V
$$

and

$$
\bigwedge_{k, \ell \in \mathbb{N}_{0}} \Lambda^{k} V \wedge \Lambda^{\ell} V=\Lambda^{k+\ell} V
$$

where $A \wedge B:=\langle a \wedge b \mid a \in A, b \in B\rangle$.
(vi) For $\varphi: V \longrightarrow \Lambda(V)$ and $\psi: W \longrightarrow \Lambda(W)$ show that for every $f \in L(V, W)$ there is a unique 1 -preserving algebra-homomorphism $\Lambda(f): \Lambda(V) \longrightarrow \Lambda(W)$ satisfying $\Lambda(f) \circ \varphi=\psi \circ f$.
(vii) Prove that $\Lambda(f \circ g)=\Lambda(f) \circ \Lambda(g)$ if $g \in L(U, V)$ for some other vector space U with exterior algebra $\Lambda(U)$.
(viii) Check that $\Lambda(f)\left(\Lambda^{k} V\right) \subseteq \Lambda^{k} W$, yielding $\Lambda^{k} f \in L\left(\Lambda^{k} V, \Lambda^{k} W\right)$ and the splitting $\Lambda(f)=\bigoplus \Lambda^{k}(f)$. How is $\Lambda^{n}(f)$ for $f \in L(V)$ related to $\operatorname{det}(f) ?$
(ix) Explain why $v_{1} \wedge \ldots \wedge v_{m}$ can be interpreted as the m-dimensional parallelepiped with sides v_{1}, \ldots, v_{m}.
(x) Let $V^{*}=L(V, \mathbb{R})$ be the dual space of V. Validate

$$
\bigoplus_{k=0}^{n}\left(\Lambda^{k} V\right)^{*}=(\Lambda V)^{*}=\Lambda\left(V^{*}\right)=\bigoplus_{k=0}^{n} \Lambda^{k} V^{*}
$$

and prove that

$$
\left(\alpha_{1} \wedge \ldots \wedge \alpha_{k}\right)\left(v_{1}, \ldots, v_{k}\right):=\left(\alpha_{1} \wedge \ldots \wedge \alpha_{k}\right)\left(v_{1} \wedge \ldots \wedge v_{k}\right)=\operatorname{det}\left(\alpha_{i}\left(v_{j}\right)\right)_{i, j=1, \ldots, k}
$$

for all $\alpha_{1}, \ldots, \alpha_{k} \in V^{*}$ and $v_{1}, \ldots, v_{k} \in V$.

