Analyse in meer variabelen

- 51. Let $(V, +, 0, \cdot)$ be a vector space of finite dimension dim V = n. Show that an associative unital algebra $(\Lambda, +, 0, \cdot, \wedge, 1)$ together with a linear mapping $\varphi : V \longrightarrow \Lambda$ are uniquely determined up to canonical isomorphy by the two properties
 - (i) $\bigwedge_{v \in V} \quad \varphi(v) \land \varphi(v) = 0 \quad (\text{so } \varphi(w) \land \varphi(v) = -\varphi(v) \land \varphi(w))$
 - (*ii*) for every linear mapping $h: V \longrightarrow A$ into an associative unital algebra $(A, +, 0, \cdot, *, 1)$ satisfying

$$\bigwedge_{v \in V} \quad h(v) * h(v) = 0$$

there is a unique 1-preserving algebra-homomorphism $\hat{h} : \Lambda \longrightarrow A$ with $\hat{h} \circ \varphi = h$.

52. Denote by $\mathcal{P} = \mathcal{P}(\{1, \ldots, n\})$ the set of all subsets of $\{1, \ldots, n\}$ and by $\{e_T \mid T \in \mathcal{P}\}$ a fixed basis of \mathbb{R}^{2^n} . For $r, s \in \{1, \ldots, n\}$ put

$$\sigma(r,s) \quad := \quad \left\{ \begin{array}{rrr} 1 & r < s \\ 0 & \mathrm{if} & r = s \\ -1 & r > s \end{array} \right.$$

and

$$\tau(R,S) := \prod_{r \in R} \prod_{s \in S} \sigma(r,s)$$

for $R, S \in \mathcal{P}$. Show that

$$e_R \wedge e_S := \tau(R,S) \cdot e_{R \cup S}$$

turns \mathbb{R}^{2^n} into an associative unital algebra $\Lambda(e_T | T \in \mathcal{P})$ with $e_{\emptyset} = 1$. Check that

$$\bigwedge_{i,j \in \{1,...,n\}} e_{\{j\}} \land e_{\{i\}} = -e_{\{i\}} \land e_{\{j\}}$$

and that

$$e_T = e_{\{i_1\}} \wedge e_{\{i_2\}} \wedge \ldots \wedge e_{\{i_k\}}$$

for all $T = \{i_1, \ldots, i_k\}$ with $i_1 < \ldots < i_k$. Let V be a vector space with basis $\{e_1, \ldots, e_n\}$. Prove that $\Lambda := \Lambda(e_T | T \in \mathcal{P})$ together with $\varphi : V \longrightarrow \Lambda$ defined by $\varphi(e_i) = e_{\{i\}}$, $i = 1, \ldots, n$ satisfy (i) and (ii) of the previous exercise.

This unique algebra $\Lambda = \Lambda(V)$ is called the *exterior (or Graßmann) algebra* of V. Generalize from \mathbb{R} to any field K. Can you also generalize to a ring R? How important is the assumption of finite dimension?

- 53. Let Λ be the exterior algebra of an *n*-dimensional vector space V with basis $\{e_1, \ldots, e_n\}$.
 - (i) Explain that the $e_{i_1} \wedge \ldots \wedge e_{i_k}$, $i_1 < \ldots < i_k$ together with 1 form a basis of Λ .
 - (*ii*) Check that for all subsets $\{i_1 < \ldots < i_k\}, \{j_1 < \ldots < j_\ell\} \subseteq \{1, \ldots, n\}$ one has

$$e_{j_1} \wedge \ldots \wedge e_{j_\ell} \wedge e_{i_1} \wedge \ldots \wedge e_{i_k} = (-1)^{kl} e_{i_1} \wedge \ldots \wedge e_{i_k} \wedge e_{j_1} \wedge \ldots \wedge e_{j_\ell}$$

- (*iii*) Show that $\{v_1, \ldots, v_m\} \subseteq V$ is linear dependent if and only if $v_1 \wedge \ldots \wedge v_m = 0$.
- (iv) Let $\{u_1, \ldots, u_m\}, \{v_1, \ldots, v_m\} \subseteq V$ with $\{u_1, \ldots, u_m\}$ linear independent. Prove that $\langle u_1, \ldots, u_m \rangle = \langle v_1, \ldots, v_m \rangle$ have the same linear span if and only if $u_1 \wedge \ldots \wedge u_m$ is a scalar multiple of $v_1 \wedge \ldots \wedge v_m$.

Define $\Lambda^k V := \langle v_1 \wedge \ldots \wedge v_k \mid v_i \in V \rangle$, the kth exterior power of V.

(v) Show that $\Lambda^k V = 0$ for k > n and that for $k \le n$ the $e_{i_1} \land \ldots \land e_{i_k}$, $i_1 < \ldots < i_k$ with the now fixed index k form a basis of $\Lambda^k V$. Conclude dim $\Lambda^k V = \binom{n}{k}$. Identify $V = \Lambda^1 V$ and check

$$\Lambda = \bigoplus_{k=0}^{n} \Lambda^{k} V$$

and

$$\bigwedge_{k,\ell\in\mathbb{N}_0} \quad \Lambda^k V \ \land \ \Lambda^\ell V \ = \ \Lambda^{k+\ell} V$$

where $A \wedge B := \langle a \wedge b \mid a \in A, b \in B \rangle$.

- (vi) For $\varphi : V \longrightarrow \Lambda(V)$ and $\psi : W \longrightarrow \Lambda(W)$ show that for every $f \in L(V, W)$ there is a unique 1-preserving algebra-homomorphism $\Lambda(f) : \Lambda(V) \longrightarrow \Lambda(W)$ satisfying $\Lambda(f) \circ \varphi = \psi \circ f$.
- (vii) Prove that $\Lambda(f \circ g) = \Lambda(f) \circ \Lambda(g)$ if $g \in L(U, V)$ for some other vector space U with exterior algebra $\Lambda(U)$.
- (viii) Check that $\Lambda(f)(\Lambda^k V) \subseteq \Lambda^k W$, yielding $\Lambda^k f \in L(\Lambda^k V, \Lambda^k W)$ and the splitting $\Lambda(f) = \bigoplus \Lambda^k(f)$. How is $\Lambda^n(f)$ for $f \in L(V)$ related to det(f)?
 - (*ix*) Explain why $v_1 \wedge \ldots \wedge v_m$ can be interpreted as the *m*-dimensional parallelepiped with sides v_1, \ldots, v_m .
 - (x) Let $V^* = L(V, \mathbb{R})$ be the dual space of V. Validate

$$\bigoplus_{k=0}^{n} (\Lambda^{k} V)^{*} = (\Lambda V)^{*} = \Lambda(V^{*}) = \bigoplus_{k=0}^{n} \Lambda^{k} V^{*}$$

and prove that

 $(\alpha_1 \wedge \ldots \wedge \alpha_k)(v_1, \ldots, v_k) := (\alpha_1 \wedge \ldots \wedge \alpha_k)(v_1 \wedge \ldots \wedge v_k) = \det (\alpha_i(v_j))_{i,j=1,\ldots,k}$ for all $\alpha_1, \ldots, \alpha_k \in V^*$ and $v_1, \ldots, v_k \in V$.