Conservative Dynamical Systems 2010/2011

Heinz Hanßmann and Holger Waalkens

The last two exercises are homework, to be handed in on Tuesday 3 November.

8.1 Lie derivative and exterior derivative

Prove "Cartan's magic formula"

$$L_X \alpha = \mathrm{d}(\iota_X \alpha) + \iota_X \mathrm{d}\alpha$$

where $L_X \alpha$ is the Lie derivative of the differential form α along the vector field X and $\iota_X \alpha$ is the interior product of X with the k-form α , resulting in the (k-1)-form

$$\iota_X \alpha(Y_1, \ldots, Y_{k-1}) = \alpha(X, Y_1, \ldots, Y_{k-1}) .$$

8.2 Cotangent lifts

In the Lagrangian setting we can simplify the equations of motion by co-ordinate changes $q \mapsto Q = \varphi(q)$. The corresponding transformations of the velocities and the momenta are determined by φ . In the Hamiltonian setting we can perform more general symplectic co-ordinate changes in phase space \mathbb{R}^{2n} . In this exercise we explore the relation between these two types of transformations.

- 1. Consider a mechanical system in \mathbb{R}^n with co-ordinates (q_1, \ldots, q_n) given by a Lagrangian function $L(q, \dot{q})$. For an arbitrary co-ordinate transformation $q \mapsto Q = \varphi(q)$ compute the corresponding transformation of the momenta $p \mapsto P$. Show that the transformation $(q, p) \mapsto (Q, P) = \Phi(q, p)$ is symplectic with respect to the canonical symplectic form on \mathbb{R}^{2n} . The transformation Φ is called the *cotangent lift* of φ .
- 2. Assume that there is an one-parameter group of diffeomorphisms $\varphi_s : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that $L \circ \varphi_s = L$. Show that the corresponding mapping $(q, p) \mapsto \Phi^s(q, p)$ is the flow of a Hamiltonian vector field X_F on \mathbb{R}^{2n} and that $\{F, H\} = 0$ where H is the Legendre transform of L. Show that F is linear in p. What is the relation to Noether's theorem for Lagrangian systems?

8.3 Conditional Liouville measure in the energy level

Given a symplectic manifold (\mathcal{P}, ω) and a (Hamiltonian) function $H : \mathcal{P} \longrightarrow \mathbb{R}$. Let $c \in \mathbb{R}$ be a regular value of H and consider the level $E_c := H^{-1}(c)$. Show that E_c is a manifold. Of what dimension? Also show that for any $x \in E_c$ the tangent space at E_c is given by $T_x E_c = \ker dH_x$.

We consider the Liouville volume 2n-form $\Omega := \omega \wedge \omega \wedge \ldots \wedge \omega$, the *n*-fold wedge product. It is known that the flow φ_t of the Hamiltonian vector field X_H preserves Ω . Also, the level E_c is preserved by φ_t . The present aim is to construct a 'conditional' volume Ω_c on E_c that is preserved by the restriction $\varphi_t | E_c$. So we consider $x \in E_c$ and tangent vectors $\xi_1, \xi_2, \ldots, \xi_{2n-1} \in T_x E_c$, having to define $\Omega_{c,x}(\xi_1, \xi_2, \ldots, \xi_{2n-1})$. To this end we write the equation

$$\Omega_x(\eta, \xi_1, \xi_2, \dots, \xi_{2n-1}) = dH_x(\eta) \cdot \Omega_{c,x}(\xi_1, \xi_2, \dots, \xi_{2n-1})$$

where $\eta \in T_x \mathcal{P}$ is arbitrary. Show that this equation determines Ω_c in a unique way, independent of η . Also show that Ω_c is a nondegenerate (2n-1)-form, i.e. a volume form on E_c . Finally show that $\varphi_t | E_c$ preserves Ω_c .