Conservative Dynamical Systems 2010/2011

Heinz Hanßmann and Holger Waalkens

The last two exercises are homework, to be handed in on Tuesday 15 November.

10.1 Motion of a charge in an electromagnetic field

Consider a particle of mass m and charge e moving in \mathbb{R}^3 under the influence of a magnetic field $\mathbf{B} = (B_x, B_y, B_z)$ and an electric field $\mathbf{E} = (E_x, E_y, E_z)$. The electric field is conservative and can thus be written as $\mathbf{E} = -\nabla \phi$ where $\phi : \mathbb{R}^3 \to \mathbb{R}$ is called the electric potential. From physics we know that Newton’s equations of motion for the particle are

$$m \ddot{\mathbf{r}} = e \dot{\mathbf{r}} \times \mathbf{B} + e \mathbf{E}.$$

Define the symplectic 2-form

$$\omega = dp_x \wedge dx + dp_y \wedge dy + dp_z \wedge dz + e (B_x dy \wedge dz + B_y dz \wedge dx + B_z dx \wedge dy)$$

and the Hamilton function $H(p, q) = \frac{p^2}{2m} + D_e (e^{-2a} - 2e^{-aq})$, where D_e and a are positive constants, and $(p, q) \in \mathbb{R}^2$.

1. A Morse oscillator is often used to describe a chemical bond. What is the meaning of D_e in this case?

2. Show that there are two critical energies, $E_1 < E_2$, such that the level sets $M_E = \{(p, q) \in \mathbb{R}^2 : H(p, q) = E\}$ are empty if $E < E_1$, topological circles if $E_1 < E < E_2$, and topological lines for $E > E_2$. Plot the level sets for the energies E_1, E_2, an energy between E_1 and E_2, and an energy greater than E_2.

10.2 The Morse oscillator

Consider the Morse oscillator described by the Hamilton function

$$H = \frac{p^2}{2m} + D_e (e^{-2a} - 2e^{-aq}) ,$$

where D_e and a are positive constants, and $(p, q) \in \mathbb{R}^2$.

1. A Morse oscillator is often used to describe a chemical bond. What is the meaning of D_e in this case?

2. Show that there are two critical energies, $E_1 < E_2$, such that the level sets

$$M_E = \{(p, q) \in \mathbb{R}^2 : H(p, q) = E\}$$

are empty if $E < E_1$, topological circles if $E_1 < E < E_2$, and topological lines for $E > E_2$. Plot the level sets for the energies E_1, E_2, an energy between E_1 and E_2, and an energy greater than E_2.
3. For $E_1 < E < E_2$, compute the area, $A(E)$, of the region enclosed by the level set M_E in the (p,q) plane. For such energies, compute the period

$$T(E) = \frac{dA(E)}{dE}.$$

Sketch and interpret the graph of the period $T(E)$ for energies $E_1 < E < E_2$.

10.3 Reduced Euler top

Analyse the dynamics of the “reduced Euler top”

$$H(x,y,z) = \frac{x^2}{2a} + \frac{y^2}{2b} + \frac{z^2}{2c}, \quad 0 < a \leq b \leq c$$
on S^2 in the limiting cases $a \to b$ and $b \to c$.

10.4 Another Hamiltonian system on S^2

In this exercise we study another Hamiltonian system defined on S^2 which is not a cotangent bundle.

In \mathbb{R}^3 with coordinates (x_1, x_2, x_3) consider the submanifold $S^2 = \{x \in \mathbb{R}^3 : x^2 = 1\}$ and the 2-form

$$\omega = x_1 dx_2 \wedge dx_3 + x_2 dx_3 \wedge dx_1 + x_3 dx_1 \wedge dx_2.$$

1. Show that ω is not closed. Show that ω is degenerate in \mathbb{R}^3 by finding at each point $x \in \mathbb{R}^3$ the space $N_x = \{\xi \in T_x \mathbb{R}^3 : \omega(\xi, -) = 0\}$. Show that the restriction $\varpi = \omega|_{S^2}$ of ω to S^2 is closed and non-degenerate. Show that ϖ is not exact.

2. Let $H : S^2 \to \mathbb{R}$. Find the Hamiltonian vector field X_H on S^2 that satisfies $\varpi(X_H, -) = dH(-)$.

3. Compute the Poisson brackets $\{x_i, x_j\}, \ i,j = 1,2,3$ with respect to ϖ and then compute the Poisson bracket $\{F,G\}$ for two arbitrary functions $F,G : S^2 \to \mathbb{R}$.

4. Describe the dynamics of the Hamiltonian function $H = x_1$ on S^2.

5. Show that every locally Hamiltonian vector field X on S^2 is globally Hamiltonian, given that every boundaryless 1-chain on S^2 is the boundary of a 2-chain.

Hint. Use appropriate coordinates on S^2 (but be careful!).