Conservative Dynamical Systems

The last two exercises are homework, to be handed in on 17 February.

2.1 The Legendre transformation

Let $H(x, p)=\frac{p^{2}}{2 m}+V(x)$ be the energy function on \mathbb{R}^{2}, where $V: \mathbb{R} \longrightarrow \mathbb{R}$ is the potential energy. Compute the Legendre transformation

$$
L(x, v):=\sup _{p \in \mathbb{R}}(v \cdot p-H(x, p))
$$

and clarify the situation with a figure. The function L obtained this way is the Lagrangean function of the system. Show that Hamilton's equations $\dot{x}=\frac{\partial H}{\partial p}, \dot{p}=-\frac{\partial H}{\partial x}$ turn into

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial v}=\frac{\partial L}{\partial x}
$$

2.2 Asymptotics of the period of the pendulum

Consider the Hamiltonian function $H(x, y)=\frac{1}{2} y^{2}-\omega^{2} \cos x$ of the pendulum. For $|z|<\omega^{2}$ consider the level set $H^{-1}(z)$. What is the amplitude of oscillation in this level? If $T(z)$ denotes the period of oscillation in this level, then give an explicit integral expression for this. Determine $\lim _{z \rightarrow-\omega^{2}} T(z)$ and $\lim _{z \rightarrow \omega^{2}} T(z)$.

2.3 Isoperimetric problem

In $\mathbb{R}^{3}=\{x, y, z\}$ consider the (x, y)-plane. In the (x, y)-plane a curve is given, connecting the points $\left(x_{1}, y_{1}, 0\right)$ and $\left(x_{2}, y_{2}, 0\right)$. Revolve this curve around the x-axis. For which curve does the corresponding surface of revolution have minimal area.

2.4 Rotating pendulum

Analyse the dynamics of the rotating pendulum $\ddot{x}=M-\sin x$ in dependence of $M \in \mathbb{R}$. Identify the values of the parameter M where the dynamical behaviour of the system changes and give for each of the resulting open regions in parameter space at least one phase portrait (drawn by hand or using a computer, at your choice). Is it possible to write the system as a Lagrangean system on the cyinder $S^{1} \times \mathbb{R}$?

