
Conservative Dynamical Systems

The last exercise is homework, to be handed in on 10 March.

5.1 The spherical pendulum

A spherical pendulum has length ` and mass m. Let g be the acceleration of gravity.

1. Derive the equations of motion from the variational principle.

2. Determine two (first) integrals, or conserved quantities.

3. Give the Hamiltonian equations for the system, in which the conservation laws are
well expressed. Reduce to one degree of freedom (as in the central force field problem).

4. Describe the dynamics of the spherical pendulum in terms of this reduction. First
describe the geometry of the invariant level sets defined by the conserved quantities
and second characterise the corresponding dynamics. Interprete these findings in the
configuration space. Why is this description not complete?

5.2 Geodesics on a surface of revolution

Let r, ϕ and z be cylindrical coordinates on R
3 = {x, y, z}, so where x = r cos ϕ and

y = r sin ϕ. In the (x, z)–plane a parametrised curve x = f(v), z = g(v) is given, where v

varies over an open interval; we assume that here always f(v) > 0. Without limitation of
generality we also assume that (f ′(v))2+(g′(v))2 = 1, which expresses that v is an arclength
parameter. This curve is revolved around the z–axis, yielding the surface S parametrised
as

x = f(v) cosϕ , y = f(v) sinϕ , z = g(v)

by v and ϕ. We now investigate when a curve t ∈ R 7→ R(t) ∈ S is a geodesic. By
definition the curve R is a geodesic if for all t

R̈(t) ⊥ S .

Comment. In the mechanical interpretation we look at a ‘free particle’ (a point mass of mass
1) moving over S, i.e. without external forces like gravity. According to the d’Alembert
principle, the point mass is kept on the surface S by the perpendicular force R̈(t).

1. Show that for a geodesic t ∈ R 7→ R(t) ∈ S one has

Ṙ = ṙer + rϕ̇eϕ + żez

R̈ = (r̈ − rϕ̇2)er + (2ṙϕ̇ + rϕ̈)eϕ + z̈ez .
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2. Show that r2ϕ̇ and 1

2
〈Ṙ | Ṙ〉 = 1

2
(ṙ2 + r2ϕ̇2 + ż2) are two (first) integrals of the

system and that moreover

f ′r̈ − f ′rϕ̇2 + g′z̈ = 0 .

From now on we write r(t) = f(v(t)), z(t) = g(v(t)).

3. Show that the statements in item 2 are equivalent to

2ff ′v̇ϕ̇ + f 2ϕ̈ = 0

v̈ − ff ′ϕ̇2 = 0 .

4. Show that from 3, in reverse, it follows that R̈(t) ⊥ S.

5. Define q1, q2, p1 and p2 by

q1 = v , q2 = ϕ , p1 = v̇ , p2 = f 2(v)ϕ̇

and express H = 1

2
〈Ṙ | Ṙ〉 in q1, q2, p1 and p2. Show that 3 is equivalent to the

canonical form

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

(i = 1, 2) .

Now re-interprete the conservation laws found under 2.

6. Let θ = θ(t) be the angle that the geodesic makes with the ‘meridian’. Show that
|fϕ̇| = |Ṙ| sin θ. Next show that C = f sin θ is another first integral (this is the
celebrated theorem of Clairaut).

7. Show that all meridians of S are geodesics and that a parallel circle v = v0 of S is a
geodesic precisely when f ′(v0) = 0.

8. Fix p2 = M , taking M 6= 0. Reduce to one degree of freedom with the effective

potential VM(q1) =
M2

2f2(q1)
(compare with the case of the central force field).

(a) Show that if v0 is a critical point, then the reduced system has an equilibrium
(q1, p1) = (v0, 0). Compare with 7.

(b) Describe the dynamics of the reduced system near such equilibria in the cases
where v0 is a maximum or a minimum.

(c) Re-interprete the above findings for the original, unreduced system. Here de-
scribe the phase space and its decomposition in invariant level sets p2 = M ,
H = E. What is the geometry of these sets and what is the corresponding
dynamics? Also interprete the findings in the configuration space. Why is this
description incomplete?

9. Explain the relationship of the items 1 - 5 with the calculus of variations.
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