Conservative Dynamical Systems

The last two exercises are homework, to be handed in on 17 March.

6.1 Steiner ellipse

A particle P of unit mass moves in the plane of a given fixed triangle $A_{1} A_{2} A_{3}$. The force F_{i} on P is directed towards A_{i} and is equal to $\overline{P A_{i}}$ for $i=1,2,3$, where Γ is a positive constant, and $\overline{P A_{i}}$ denotes the distance between P and A_{i}. Prove that there is a motion of P the path of which coincides with the Steiner ellipse S of $A_{1} A_{2} A_{3}$ (the ellipse S passes through the vertices and the tangent at each vertex is parallel to the opposite side). Show moreover that P covers the three $\operatorname{arcs} A_{1} A_{2}, A_{2} A_{3}$ and $A_{3} A_{1}$ of S in equal time.

6.2 A harmonic n-body problem

The particles A_{i} with masses $m_{i}(i=1,2, \ldots, n)$ move in three-dimensional space. Any two distinct points A_{i}, A_{j} attract each other by the force $F_{i j}=\Gamma m_{i} m_{j} d_{i j}$, where $\Gamma>0$ and $d_{i j}$ denotes the distance $\overline{A_{i} A_{j}}$. We suppose that the motions of A_{i} and A_{j} are not disturbed if they pass simultaneously through the same point. Determine the general motion of the particles.

6.3 A special harmonic motion

In Euclidean 3-space, the lines $\ell_{i}(i=1,2,3)$ are given, all three passing through the point O. The angle between any of the two lines is $\alpha(0<\alpha<\pi / 2)$. Three particles P_{i} of unit mass move along the lines ℓ_{i}, respectively. Any two particles $P_{i}, P_{j}(i \neq j)$ attract each other by the force $\Gamma \overline{P_{i} P_{j}}$, where Γ is a positive constant and $\overline{P_{i} P_{j}}$ denotes the distance between P_{i} and P_{j}. Determine the general motion of the three particles.

6.4 Small oscillations

In a plane Π, a fixed homogeneous rod (length $2 a$, mass density s, midpoint O) is given. A particle P of mass M moves in Π. It is attracted by any mass element $d m$ at a point Q on the rod by the force $\Gamma M r^{\alpha} d m$. Here, Γ is a positive constant, $\overline{P Q}=r$ and $\alpha=2 n-1$ for $n=1,2,3, \ldots$. Obviously O is a stable equilibrium point. Determine the frequencies of small oscillations of P in the neighbourhood of O.

