Conservative Dynamical Systems

The last two exercises are homework, to be handed in on 19 May.

12.1 The orthogonal group $O(n, \mathbb{R})$

Let $g l(n, \mathbb{R})$ be the set of all real $n \times n$-matrices. Further define

$$
\begin{aligned}
G l(n, \mathbb{R}) & =\{S \in g l(n, \mathbb{R}) \mid \operatorname{det} S \neq 0\} \\
O(n, \mathbb{R}) & =\left\{S \in \operatorname{gl}(n, \mathbb{R}) \mid S^{T} S=\mathrm{id}\right\} \\
o(n, \mathbb{R}) & =\left\{A \in \operatorname{gl}(n, \mathbb{R}) \mid A^{T}=-A\right\} \\
\operatorname{Sym}(n, \mathbb{R}) & =\left\{A \in \operatorname{gl}(n, \mathbb{R}) \mid A^{T}=A\right\}
\end{aligned}
$$

1. Show that $o(n, \mathbb{R})$ and $\operatorname{Sym}(n, \mathbb{R})$ are real vector spaces. Give their dimensions.
2. Show that $G l(n, \mathbb{R})$ is an n^{2}-dimensional manifold. Show how $g l(n, \mathbb{R})$ can be regarded as the tangent space $T_{\mathrm{id}} G l(n, \mathbb{R})$.
3. Let $F: g l(n, \mathbb{R}) \longrightarrow g l(n, \mathbb{R})$ be defined by $F(S)=S^{T} S$. Show that F is a smooth map and that the image of F is a subset of $\operatorname{Sym}(n, \mathbb{R})$.
4. Show that the derivative ${ }^{1} D_{\mathrm{id}} F: g l(n, \mathbb{R}) \longrightarrow g l(n, \mathbb{R})$ is given by $D_{\mathrm{id}} F(B)=B^{T}+B$. What is the rank of this derivative?
5. Show that the rank of the derivative $D_{S} F: g l(n, \mathbb{R}) \longrightarrow g l(n, \mathbb{R})$ is independent of $S \in O(n, \mathbb{R})$. Hint: Use the fact that $O(n, \mathbb{R})$ is a group.
6. Show that $O(n, \mathbb{R})$ is a manifold, also determining its dimension. In what sense can $o(m, \mathbb{R})$ be regarded as the tangent space $T_{\mathrm{id}} O(n, \mathbb{R})$?

12.2 Rigid rotations on the circle, Constant vector fields on the torus

Let $P: \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}$ be the rigid rotation $\varphi \mapsto \varphi+2 \pi \rho$, where everything is counted $\bmod 2 \pi$. For $\rho \in \mathbb{R} \backslash \mathbb{Q}$, show that any orbit $\left\{\varphi, P(\varphi), P^{2}(\varphi), \cdots\right\}$ is dense in \mathbb{S}^{1}.

On \mathbb{T}^{2} with coordinates $\left(\varphi_{1}, \varphi_{2}\right)$, both counted $\bmod 2 \pi$, consider the constant vector field X given by

$$
\begin{aligned}
\dot{\varphi_{1}} & =\omega_{1} \\
\dot{\varphi_{2}} & =\omega_{2}
\end{aligned}
$$

[^0]Suppose that ω_{1} and ω_{2} are not rationally related, then show that any integral curve $\left\{\phi^{t} \mid t \in \mathbb{R}\right\}$ of X is dense in \mathbb{T}^{2}. Hint: use the Poincaré (return) map of the circle $\varphi_{1}=0$ and the first part of the present exercise.

12.3 Transformations in one degree of freedom

Let $H: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a given smooth function, with corresponding Hamiltonian vector field X_{H}. Here we use the standard symplectic structure on \mathbb{R}^{2}. Moreover, let $g: \mathbb{R}^{2} \longrightarrow$ \mathbb{R}^{2} be a diffeomorphism. Consider both the function $K:=H \circ g^{-1}$, together with the associated Hamiltonian vector field X_{K}, and the transformed vector field $g_{\star}\left(X_{H}\right)$, defined by $g_{\star}\left(X_{H}\right)(g(p)):=D_{p} g X_{H}(p)$. Show that

$$
g_{\star}\left(X_{H}\right)=\operatorname{det}(D g) X_{K}
$$

Hint: exploit a coordinate free formulation of the fact that X_{H} is the Hamiltonian vector field corresponding to H. Discuss the implication for the integral curves of $g_{\star}\left(X_{H}\right)$ and X_{K}. Also consider the time-parametrisation of these curves. What happens in the special case that g is canonical?

12.4 A Poincaré-Birkhoff fixed point theorem

Consider the annulus $A:=[1,2] \times \mathbb{S}^{1}$, with coordinates (I, φ), where φ is counted mod 2π. Consider a smooth, boundary preserving diffeomorphism $T_{\varepsilon}: A \longrightarrow A$, of the form $T_{\varepsilon}:(I, \varphi) \mapsto(I, \varphi+2 \pi \rho(I))+\varepsilon(f(I, \varphi, \varepsilon), g(I, \varphi, \varepsilon))$ and such that

- $\rho^{\prime}(I) \neq 0$, saying that T_{ε} is a twist-map (for simplicitiy we take ρ increasing);
- $\oint_{\gamma} I \mathrm{~d} \varphi=\oint_{T_{\varepsilon}(\gamma)} I \mathrm{~d} \varphi$, which means that T_{ε} is preserving area.

Show that for each rational number p / q, with

$$
\rho(1) \leq \frac{p}{q} \leq \rho(2)
$$

in A there exists a periodic point of T_{ε}, of period q, provided that $|\varepsilon|$ is sufficiently small. Hint: Abbreviating $T_{\varepsilon}^{q}(I, \varphi)=\left(I+O(\varepsilon), \Phi_{q, \varepsilon}(I, \varepsilon)\right)$, with $\Phi_{q, \varepsilon}(I, \varphi)=\varphi+2 \pi q \rho(I)+O(\varepsilon)$, consider the equation $\Phi_{q, \varepsilon}(I, \varphi)=\varphi+2 \pi p$, for $p \in \mathbb{Z}$. Use the implicit function theorem in order to obtain a curve $C=\{I=F(\varphi, \varepsilon)\}$ of solutions. Then study the intersection of C and $T_{\varepsilon}^{q}(C)$.

[^0]: ${ }^{1}$ In another notation, $D_{\mathrm{id}} F=F_{*, \mathrm{id}}$.

