Conservative Dynamical Systems

The last two exercises are homework, to be handed in on 26 May.

13.1 The simple pendulum

Consider the pendulum with Hamiltonian

$$
H=\frac{1}{2} p^{2}+(1-\cos q) .
$$

1. Write H as a series

$$
H=H_{0}+H_{1}+H_{2}+\cdots,
$$

by Taylor expanding H at the origin. Compute the series up to degree 6 terms.
2. Normalize H with respect to

$$
H_{0}=I=\frac{1}{2}\left(p^{2}+q^{2}\right)
$$

up to terms of degree 4. Express the normalized Hamiltonian in terms of I.
3. Compute the dependence on the energy E up to first degree terms of the frequency of periodic motions near the origin.

13.2 The 1:2:2 resonance

Consider in \mathbb{R}^{6} a Hamiltonian $H=H_{0}+H_{1}+H_{2}+\cdots$ that is a perturbation of the oscillator

$$
H_{0}=\frac{1}{2}\left(q_{1}^{2}+p_{1}^{2}\right)+q_{2}^{2}+p_{2}^{2}+q_{3}^{2}+p_{3}^{2}
$$

1. Show that if we normalize H with respect to H_{0} then the degree 3 terms in the normal form are

$$
\operatorname{Re}\left(a z_{1}^{2} \bar{z}_{2}+b z_{1}^{2} \bar{z}_{3}\right)
$$

where a, b are (complex) constants and $z_{k}=q_{k}+\mathrm{i} p_{k}$ for $k=1,2,3$.
2. Show that there is a linear transformation $\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(w_{1}, w_{2}, w_{3}\right)$ such that the normal form up to degree 3 terms becomes

$$
\mathcal{H}=\frac{1}{2} w_{1} \bar{w}_{1}+w_{2} \bar{w}_{2}+w_{3} \bar{w}_{3}+\operatorname{Re}\left(c w_{1}^{2} \bar{w}_{2}\right),
$$

where c is a constant that depends on a and b.
3. Show that \mathcal{H} is a Liouville integrable Hamiltonian system by finding three integrals of motion.

13.3 The Hénon-Heiles system

Consider in \mathbb{R}^{4} the Hamiltonian $H=H_{0}+H_{1}$ where

$$
H_{0}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}\right)
$$

and

$$
H_{1}=q_{1}^{2} q_{2}-\frac{1}{3} q_{2}^{3}
$$

1. Refer to Exercise 11.1. Why can you always express the normal form of H with respect to H_{0} in terms of R, S, T and J ?
2. Show (without doing the normal form computation) that the normal form can contain no third degree terms and this is due only to the form of H_{0} and not of H_{1}.
3. Use a software package like Mathematica to compute the normal form \mathcal{H} of H with respect to H_{0} up to fourth degree terms.
4. Consider the Poincaré surface of section Σ in \mathbb{R}^{4} defined by $q_{1}=0, p_{1}>0$. For a fixed value of $H_{0}=n$ compute the restriction of the normal form \mathcal{H} on Σ. Draw (using a software package) the level curves of \mathcal{H} on Σ for $n=\frac{1}{16}$.
5. Refer again to Exercise 11.1. Express \mathcal{H} in terms of R, S, T and J. Determine the dynamics of \mathcal{H} on the reduced space P_{j}.
