Conservative Dynamical Systems

14.1 Normal forms for equilibria of area-preserving maps

Consider an area-preserving map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(q, p) \mapsto F(q, p)=\left(F_{1}(q, p), F_{2}(q, p)\right)
$$

Assume that the origin is an elliptic fixed point of F and that in complex coordinates $z=q+i p, \bar{z}=q-i p, F$ can be written as

$$
F(z, \bar{z})=\Lambda \cdot(z, \bar{z})^{T}+\sum_{k \geq 2} F^{(k)}(z, \bar{z})
$$

withOC $\Lambda=\operatorname{diag}(\exp (i(\omega+\varepsilon)), \exp (-i(\omega+\varepsilon))), \omega=2 \pi / 3, \varepsilon$ small (but not necessarily positive), and $F^{(k)}$ homogeneous of degree k in z, \bar{z}.

Find up to terms of degree 2 the general form of a coordinate transformation

$$
(z, \bar{z})^{T}=\Phi(\zeta, \bar{\zeta})=(\zeta, \bar{\zeta})^{T}+\Phi^{(2)}(\zeta, \bar{\zeta})+\cdots
$$

such that in the coordinates $\zeta, \bar{\zeta}$, the map F becomes $U(\zeta, \bar{\zeta})=\Lambda \cdot(\zeta, \bar{\zeta})^{T}+U^{(2)}(\zeta, \bar{\zeta})+\cdots$ with

$$
\exp (i \omega) U(\zeta, \bar{\zeta})-U(\exp (i \omega) \zeta, \exp (-i \omega \bar{\zeta}))=0
$$

up to second degree terms. In particular show that $U^{(2)}(\zeta, \bar{\zeta})=\left(u \bar{\zeta}^{2}, \bar{u} \zeta^{2}\right)$ for some $u \in \mathbb{C}$.
Then find a Hamiltonian function $H(\zeta, \bar{\zeta})$ such that $\exp (-i \omega) U$ is the time-1 flow of H up to second degree terms in $\zeta, \bar{\zeta}$ and first degree terms in ε. Show that H is an integral of U, i.e., $H \circ U=H$ up to third degree in $\zeta, \bar{\zeta}$ and first degree in ε.

Draw for $u=1$, the level curves of H on \mathbb{C} for ε greater than, equal to, and less than 0 . Compare with Figure 239, page 392 in Arnold's book.

