Conservative Dynamical Systems

14.1 Normal forms for equilibria of area-preserving maps

Consider an area-preserving map

$$F: \mathbb{R}^2 \to \mathbb{R}^2: (q, p) \mapsto F(q, p) = (F_1(q, p), F_2(q, p))$$

Assume that the origin is an elliptic fixed point of F and that in complex coordinates z = q + ip, $\bar{z} = q - ip$, F can be written as

$$F(z,\bar{z}) = \Lambda \cdot (z,\bar{z})^T + \sum_{k\geq 2} F^{(k)}(z,\bar{z}),$$

with OC $\Lambda = \text{diag}(\exp(i(\omega + \varepsilon)), \exp(-i(\omega + \varepsilon))), \omega = 2\pi/3, \varepsilon$ small (but not necessarily positive), and $F^{(k)}$ homogeneous of degree k in z, \bar{z} .

Find up to terms of degree 2 the general form of a coordinate transformation

$$(z,\bar{z})^T = \Phi(\zeta,\bar{\zeta}) = (\zeta,\bar{\zeta})^T + \Phi^{(2)}(\zeta,\bar{\zeta}) + \cdots$$

such that in the coordinates ζ , $\overline{\zeta}$, the map F becomes $U(\zeta, \overline{\zeta}) = \Lambda \cdot (\zeta, \overline{\zeta})^T + U^{(2)}(\zeta, \overline{\zeta}) + \cdots$ with

$$\exp(i\omega)U(\zeta,\bar{\zeta}) - U(\exp(i\omega)\zeta,\exp(-i\omega\bar{\zeta})) = 0,$$

up to second degree terms. In particular show that $U^{(2)}(\zeta, \overline{\zeta}) = (u\overline{\zeta}^2, \overline{u}\zeta^2)$ for some $u \in \mathbb{C}$.

Then find a Hamiltonian function $H(\zeta, \overline{\zeta})$ such that $\exp(-i\omega)U$ is the time-1 flow of H up to second degree terms in $\zeta, \overline{\zeta}$ and first degree terms in ε . Show that H is an integral of U, i.e., $H \circ U = H$ up to third degree in $\zeta, \overline{\zeta}$ and first degree in ε .

Draw for u = 1, the level curves of H on \mathbb{C} for ε greater than, equal to, and less than 0. Compare with Figure 239, page 392 in Arnold's book.