Dynamical Systems 2007

The last two exercises are homework, to be handed in on 26 February.

3.1 Asymptotics of the period of the pendulum

Consider the Hamilton function $H(x, y)=\frac{1}{2} y^{2}-\omega^{2} \cos x$ of the pendulum. For $|z|<\omega^{2}$ we consider the level set $H^{-1}(z)$. What is the amplitude of oscillation in this level? If $T(z)$ denotes the period of oscillation in this level, then give an explicit integral expression for this. Determine $\lim _{z \rightarrow-\omega^{2}} T(z)$ and $\lim _{z \rightarrow \omega^{2}} T(z)$.

3.2 Isoperimetric problem

In $\mathbb{R}^{3}=\{x, y, z\}$ consider the (x, y)-plane. In the (x, y)-plane a curve is given, connecting the points $\left(x_{1}, y_{1}, 0\right)$ and $\left(x_{2}, y_{2}, 0\right)$. Revolve this curve arond the x-axis. For which curve does the corresponding surface of revolution have minimal area.

3.3 Period and area

Let $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function and assume that for $z_{0} \in \mathbb{R}$ the motion in the level $H^{-1}\left(z_{0}\right)$ is periodic. Then show that, for z near z_{0} the motion is periodic as well. Let $A(z)$ denote the area enclosed by the level $H^{-1}(z)$, while $T(z)$ denotes the period of oscillation in this level set. Show that $T=d A / d z$.

3.4 A minimum

Compare Arnold [MMCM]. Show that the uniform motion of a free mass point in \mathbb{R}^{3} is a minimum of the corresponding variational problem.

