
Dynamical Systems 2007

This one extended exercise is homework, to be handed in on 12 March.

5.1 Geodesics on a surface of revolution

Let r, ϕ and z be cylindrical coordinates on R
3 = {x, y, z} : so where x =

r cos ϕ and y = r sin ϕ. In the (x, z)-plane a parametrized curve x = f(v), z =
g(v) is given, where v varies over an open interval; we assume that here always
f(v) > 0. Without limitation of generality we also assume that (f ′(v))2 +
(g′(v))2 = 1, which expresses that v is an arclength parameter. This curve is
revolved around the z-axis, yielding the surface S

x = f(v) cosϕ, y = f(v) sinϕ, z = g(v),

parametrized by v and ϕ. We now investigate when a curve t ∈ R 7→ R(t) ∈ S
is a geodesic. By definition the curve R is a geodesic if for all t

R̈(t) ⊥ S.

Comment. In the mechanical interpretation we look at a ‘free particle’ (a
point mass of mass 1) moving over S, i.e., without external forces like gravity.
According to the d’Alembert principle, the point mass is kept on the surface
S by the perpendicular force R̈(t).

1. Show that for a geodesic t ∈ R 7→ R(t) ∈ S one has

Ṙ = ṙer + rϕ̇eϕ + żez

R̈ = (r̈ − rϕ̇2)er + (2ṙϕ̇ + rϕ̈)eϕ + z̈ez.

2. Show that r2ϕ̇ and 1

2
〈ṘṘ〉 = 1

2
(ṙ2 + r2ϕ̇2 + ż2) are two (first) integrals

of the system and that moreover

f ′r̈ + g′z̈ − f ′rϕ̇2 = 0.

From now on we write r(t) = f(v(t)), z(t) = g(v(t)).
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3. Show that the statements in item 2 are equivalent to

2ff ′v̇ϕ̇ + f 2ϕ̈ = 0

v̈ − ff ′ϕ̇2 = 0.

4. Show that from 3, in reverse, it follows that R̈(t) ⊥ S.

5. Define q1, q2, p1 and p2 by

q1 = v, q2 = ϕ, p1 = v̇, p2 = f 2(v)ϕ̇

and express H = 1

2
〈ṘṘ〉 in q1, q2, p1 and p2. Show that 3 is equivalent

to the canonical form

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

(i = 1, 2).

Now reinterprete the conservation laws found under 2.

6. Let θ = θ(t) be the angle that the geodesic makes with the ‘meridian’.
Show that |fϕ̇| = |Ṙ| sin θ. Next show that

C = f sin θ

is another (first) integral; this is the celebrated theorem of Clairaut.

7. Show that all meridians of S are geodesics and that a parallel circle
v = v0 of S is a geodesic precisely when f ′(v0) = 0.

8. Fix p2 = M, taking M 6= 0. Reduce to 1 degree of freedom by the
effective potential VM(q1) = M2/(2f 2(q1)) (compare with the case of
the central force field).

(a) Show that if v0 is a critical point, then the reduced system has an
equilibrium (q1, p1) = (v0, 0). Compare with 7.

(b) Describe the dynamics of the reduced system near such equilibria
in the cases where v0 is a maximum or a minimum.

(c) Reinterprete the above findings for the original, unreduced system.
Here describe the phase space and its decomposition in invariant
level sets p2 = M, H = E. What is the geometry of these sets and
what is the corresponding dynamics? Also interprete the findings
in the configuration space. Why is this description incomplete?

9. Explain the relationship of the items 1 - 5 with the calculus of variati-
ons.
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