Dynamical Systems 2007

This one extended exercise is homework, to be handed in on 12 March.

5.1 Geodesics on a surface of revolution

Let r, φ and z be cylindrical coordinates on $\mathbb{R}^3 = \{x, y, z\}$: so where $x = r \cos \varphi$ and $y = r \sin \varphi$. In the (x, z)-plane a parametrized curve x = f(v), z = g(v) is given, where v varies over an open interval; we assume that here always f(v) > 0. Without limitation of generality we also assume that $(f'(v))^2 + (g'(v))^2 = 1$, which expresses that v is an arclength parameter. This curve is revolved around the z-axis, yielding the surface S

$$x = f(v)\cos\varphi, y = f(v)\sin\varphi, z = g(v),$$

parametrized by v and φ . We now investigate when a curve $t \in \mathbb{R} \mapsto \mathbf{R}(t) \in \mathcal{S}$ is a geodesic. By definition the curve \mathbf{R} is a geodesic if for all t

 $\ddot{\mathbf{R}}(t) \perp \mathcal{S}.$

COMMENT. In the mechanical interpretation we look at a 'free particle' (a point mass of mass 1) moving over S, i.e., without external forces like gravity. According to the d'Alembert principle, the point mass is kept on the surface S by the perpendicular force $\ddot{\mathbf{R}}(t)$.

1. Show that for a geodesic $t \in \mathbb{R} \mapsto \mathbf{R}(t) \in \mathcal{S}$ one has

$$\mathbf{R} = \dot{r}\mathbf{e}_r + r\dot{\varphi}\mathbf{e}_{\varphi} + \dot{z}\mathbf{e}_z$$
$$\ddot{\mathbf{R}} = (\ddot{r} - r\dot{\varphi}^2)\mathbf{e}_r + (2\dot{r}\dot{\varphi} + r\ddot{\varphi})\mathbf{e}_{\varphi} + \ddot{z}\mathbf{e}_z.$$

2. Show that $r^2 \dot{\varphi}$ and $\frac{1}{2} \langle \dot{\mathbf{R}} \dot{\mathbf{R}} \rangle = \frac{1}{2} (\dot{r}^2 + r^2 \dot{\varphi}^2 + \dot{z}^2)$ are two (first) integrals of the system and that moreover

$$f'\ddot{r} + g'\ddot{z} - f'r\dot{\varphi}^2 = 0.$$

From now on we write r(t) = f(v(t)), z(t) = g(v(t)).

3. Show that the statements in item 2 are equivalent to

$$2ff'\dot{v}\dot{\varphi} + f^2\ddot{\varphi} = 0$$
$$\ddot{v} - ff'\dot{\varphi}^2 = 0.$$

- 4. Show that from 3, in reverse, it follows that $\mathbf{R}(t) \perp S$.
- 5. Define q_1, q_2, p_1 and p_2 by

$$q_1 = v, q_2 = \varphi, p_1 = \dot{v}, p_2 = f^2(v)\dot{\varphi}$$

and express $H = \frac{1}{2} \langle \dot{\mathbf{R}} \dot{\mathbf{R}} \rangle$ in q_1, q_2, p_1 and p_2 . Show that 3 is equivalent to the canonical form

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \dot{p}_i = -\frac{\partial H}{\partial q_i} \ (i = 1, 2).$$

Now reinterprete the conservation laws found under 2.

6. Let $\theta = \theta(t)$ be the angle that the geodesic makes with the 'meridian'. Show that $|f\dot{\varphi}| = |\dot{\mathbf{R}}|\sin\theta$. Next show that

$$C = f \sin \theta$$

is another (first) integral; this is the celebrated theorem of Clairaut.

- 7. Show that all meridians of S are geodesics and that a parallel circle $v = v_0$ of S is a geodesic precisely when $f'(v_0) = 0$.
- 8. Fix $p_2 = M$, taking $M \neq 0$. Reduce to 1 degree of freedom by the effective potential $V_M(q_1) = M^2/(2f^2(q_1))$ (compare with the case of the central force field).
 - (a) Show that if v_0 is a critical point, then the reduced system has an equilibrium $(q_1, p_1) = (v_0, 0)$. Compare with 7.
 - (b) Describe the dynamics of the reduced system near such equilibria in the cases where v_0 is a maximum or a minimum.
 - (c) Reinterprete the above findings for the original, unreduced system. Here describe the phase space and its decomposition in invariant level sets $p_2 = M, H = E$. What is the geometry of these sets and what is the corresponding dynamics? Also interpret the findings in the configuration space. Why is this description incomplete?
- 9. Explain the relationship of the items 1 5 with the calculus of variations.