Dynamical Systems 2007

These two exercises are homework, to be handed in on 19 March.

6.1 Collision time

Two particles P_i with mass m_i , (i = 1, 2) attract each other according to Newton's law with attraction constant f. In the initial position, they are at rest and their distance is 2a. When do they meet?

6.2 The orthogonal group $O(n, \mathbb{R})$

Let $gl(n, \mathbb{R})$ be the set of all real $n \times n$ -matrices. Further define

 $Gl(n, \mathbb{R}) = \{S \in gl(n, \mathbb{R}) \mid \det S \neq 0\},\$ $O(n, \mathbb{R}) = \{S \in gl(n, \mathbb{R}) \mid S^t S = \mathrm{id}\},\$ $o(n, \mathbb{R}) = \{A \in gl(n, \mathbb{R}) \mid A^t = -A\},\$ $Sym(n, \mathbb{R}) = \{A \in gl(n, \mathbb{R}) \mid A^t = A\}.\$

- 1. Show that $o(n, \mathbb{R})$ and $Sym(n, \mathbb{R})$ are real vector spaces. Give their dimensions.
- 2. Show that $Gl(n, \mathbb{R})$ is an n^2 -dimensional manifold. Show how $gl(n, \mathbb{R})$ can be regarded as the tangent space $T_{id}Gl(n, \mathbb{R})$.
- 3. Let $F : gl(n, \mathbb{R}) \to gl(n, \mathbb{R})$ be defined by $F(S) = S^t S$. Show that F is a smooth map and that the image of F is a subset of $Sym(n, \mathbb{R})$.
- 4. Show that the derivative $D_{id}F : gl(n,\mathbb{R}) \to gl(n,\mathbb{R})^1$ is given by $D_{id}F(B) = B^t + B$. What is the rank of this derivative?
- 5. Show that the rank of the derivative $D_S F : gl(n, \mathbb{R}) \to gl(n, \mathbb{R})$ is independent of $S \in O(n, \mathbb{R})$. (Hint: Use the fact that $O(n, \mathbb{R})$ is a group.)
- 6. Show that $O(n, \mathbb{R})$ is a manifold, also determining its dimension. In what sense can $o(m, \mathbb{R})$ be regarded as the tangent space $T_{id}O(n, \mathbb{R})$?

¹In another notation, $D_{id}F = F_{*,id}$.