Dynamical Systems 2007

These two exercises are homework, to be handed in on 14 May.

11.1 A Poincaré-Birkhoff fixed point theorem

Consider the annulus $A:=[1,2] \times \mathbb{S}^{1}$, with coordinates (I, φ), where φ is counted mod 2π. Consider a smooth, boundary preserving diffeomorphism $T_{\varepsilon}: A \rightarrow A$, of the form $T_{\varepsilon}:(I, \varphi) \mapsto(I, \varphi+2 \pi \rho(I))+\varepsilon(f(I, \varphi, \varepsilon), g(I, \varphi, \varepsilon))$ and such that

- $\rho^{\prime}(I) \neq 0$, saying that T_{ε} is a twist-map (for simplicitiy we take ρ increasing);
- $\oint_{\gamma} I d \varphi=\oint_{T_{\varepsilon}(\gamma)} I d \varphi$, which means that T_{ε} is preserves area.

Show that for each rational number p / q, with

$$
\rho(1) \leq \frac{p}{q} \leq \rho(2),
$$

in A there exists a periodic point of T_{ε}, of period q, provided that $|\varepsilon|$ is sufficiently small. (Hint: Abbreviating $T_{\varepsilon}^{q}(I, \varphi)=\left(I+O(\varepsilon), \Phi_{q, \varepsilon}(I, \varepsilon)\right.$, with $\Phi_{q, \varepsilon}(I, \varphi)=\varphi+2 \pi q \rho(I)+O(\varepsilon)$, consider the equation $\Phi_{q, \varepsilon}(I, \varphi)=\varphi+2 \pi p$, for $P \in \mathbb{Z}$. Use the implicit function theorem in order to obtain a curve $C=I=F(\varphi, \varepsilon)$ of solutions. Then study the intersection of C and $T_{\varepsilon}^{q}(C)$.)

11.2 A small divisor problem by Sternberg

On \mathbb{T}^{2}, with coordinates $\left(\varphi_{1}, \varphi_{2}\right)$, a vector field X is given, with the following property. If C_{1} denotes the circle $C_{1}:=\left\{\varphi_{1}=0\right\}$, then the Poincaré return map $P: C_{1} \rightarrow C_{1}$ with respect to X is a rigid rotation $\varphi_{2} \mapsto P\left(\varphi_{2}\right)=\varphi_{2}+2 \pi \rho$, everything counted mod 2π. From now on we abbreviate $\varphi:=\varphi_{2}$. Let $f(\varphi)$ be the return time of the integral curve connecting the points φ and $P(\varphi)$ in C_{1}. A priori, f does not have to be constant. The problem now is to construct a(nother) circle C_{2}, that does have a constant return time. To this purpose let ϕ^{t} denote the flow of X and express P in terms of ϕ^{t} and f. Let us look for a circle C_{2} of the form

$$
C_{2}=\left\{\phi^{\alpha(\varphi)} \mid \varphi \in C_{1}\right\}
$$

So the search is for a (periodic) function α and a constant c, such that

$$
\phi^{c}\left(C_{2}\right)=C_{2} .
$$

Rewrite this equation explicitly in terms of α and c. Solve this equation formally in terms of Fourier series. What condition on ρ in general will be needed? Give conditions on ρ, such that for a real analytic function f a real analytic solution α exists.

