Dynamical Systems 2007

These two exercises are homework, to be handed in on 14 May.

11.1 A Poincaré-Birkhoff fixed point theorem

Consider the annulus $A := [1,2] \times \mathbb{S}^1$, with coordinates (I,φ) , where φ is counted mod 2π . Consider a smooth, boundary preserving diffeomorphism $T_{\varepsilon} : A \to A$, of the form $T_{\varepsilon} : (I,\varphi) \mapsto (I,\varphi+2\pi\rho(I)) + \varepsilon(f(I,\varphi,\varepsilon),g(I,\varphi,\varepsilon))$ and such that

- $\rho'(I) \neq 0$, saying that T_{ε} is a twist-map (for simplicity we take ρ increasing);
- $\oint_{\gamma} I \, d\varphi = \oint_{T_{\varepsilon}(\gamma)} I \, d\varphi$, which means that T_{ε} is preserves area.

Show that for each rational number p/q, with

$$\rho(1) \le \frac{p}{q} \le \rho(2),$$

in A there exists a periodic point of T_{ε} , of period q, provided that $|\varepsilon|$ is sufficiently small. (Hint: Abbreviating $T_{\varepsilon}^{q}(I,\varphi) = (I + O(\varepsilon), \Phi_{q,\varepsilon}(I,\varepsilon))$, with $\Phi_{q,\varepsilon}(I,\varphi) = \varphi + 2\pi q \rho(I) + O(\varepsilon)$, consider the equation $\Phi_{q,\varepsilon}(I,\varphi) = \varphi + 2\pi p$, for $P \in \mathbb{Z}$. Use the implicit function theorem in order to obtain a curve $C = I = F(\varphi, \varepsilon)$ of solutions. Then study the intersection of C and $T_{\varepsilon}^{q}(C)$.)

11.2 A small divisor problem by Sternberg

On \mathbb{T}^2 , with coordinates (φ_1, φ_2) , a vector field X is given, with the following property. If C_1 denotes the circle $C_1 := \{\varphi_1 = 0\}$, then the Poincaré return map $P : C_1 \to C_1$ with respect to X is a rigid rotation $\varphi_2 \mapsto P(\varphi_2) = \varphi_2 + 2\pi\rho$, everything counted mod 2π . From now on we abbreviate $\varphi := \varphi_2$. Let $f(\varphi)$ be the return time of the integral curve connecting the points φ and $P(\varphi)$ in C_1 . A priori, f does not have to be constant. The problem now is to construct a(nother) circle C_2 , that does have a constant return time. To this purpose let ϕ^t denote the flow of X and express P in terms of ϕ^t and f. Let us look for a circle C_2 of the form

$$C_2 = \{ \phi^{\alpha(\varphi)} \mid \varphi \in C_1 \}.$$

So the search is for a (periodic) function α and a constant c, such that

$$\phi^c(C_2) = C_2.$$

Rewrite this equation explicitly in terms of α and c. Solve this equation formally in terms of Fourier series. What condition on ρ in general will be needed? Give conditions on ρ , such that for a real analytic function f a real analytic solution α exists.