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1 Introduction

According to the Cambridge Dictionary, segregation is defined as a policy of separating one group
of people from another and treating them differently, especially because of race, sex, or religion.
Segregation can be categorized into two types: organized and unorganized. The definition provided
refers to organized segregation, which is intentionally enforced, often by institutions or governments.
In contrast, unorganized segregation results from individual choices, often influenced by personal
preferences.

Because people from a particular population have characteristics that differ from those of other
populations, they may exhibit discriminatory behavior toward individuals from other groups. Based
on this discriminatory behavior people make decisions about where to live and whom to interact
with, resulting in unorganized segregation. This can have both negative and positive effects. On
one hand, it can create challenges for integration, particularly for immigrants, as people remain
isolated from those in other populations which only deepens the differences. On the other hand,
segregation can provide a sense of safety and belonging through stronger connections within one’s
own group [3].

In this study, we will explore a segregation model introduced by Schelling, known as the Bounded
Neighborhood (BN) Model. In this model people from one neighborhood are split into two distinct
populations. It assumes that individuals consider the proportion of people from their own popu-
lation compared to others when deciding whether to remain in a neighborhood or move out. The
maximum level of tolerance they have for a particular population is referred to as the tolerance
limit. Additionally, it assumes that the original neighborhood is always preferred over others, and
the population ratio in outside areas is irrelevant [1]. Analyzing this model illustrates how individual
preferences and their resulting actions can lead to segregation. We begin by defining the differential
equations of the model, then investigate the equilibrium points and assess their stability. Finally,
we use this analysis to derive the bifurcation diagram.

2 Sociological model

We examine the planar model for self-organized segregation, which involves two time-dependent
population variables, x and y. Their tolerance schedule is represented by:

ẋ = P (x, y) := x2 − x3 − xy (1)

ẏ = Q(x, y) := βy2 − αβy3 − xy (2)

The first equation models the growth of population x as a balance of three factors. The self-
reinforcing growth (x2) indicates that as the number of individuals from x increases, more are likely
to join the neighborhood. However, growth is limited by a certain saturation (−x3) and competition
with the other population (−xy), which slows or halts the expansion of x. Interpretation of the
second equation shows a similar pattern. The first term (βy2) represents the growth of population
y, with a higher tolerance of the minority, β, enabling y to grow more easily. The second term
(−αβy3) limits the growth of y, with α determining the population ratio [2]. A higher α causes
quicker saturation, as the upper limit for the y-population is given by 1

α . By definition, both α and
β are positive. The last term (−xy) is equal to the last term in the first equation and represents
the competition between the y- and the x-population.

2.1 Equilibrium points

We are interested in the steady-state solutions, as they represent the situation where a neighborhood
is stable and there is no further movement of individuals from either population. For a solution
to be considered a steady-state the right hand side of both differential equations must be equal to
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zero. In case of the first equation, this implies

ẋ = 0

x2 − x3 − xy = 0

x = 0 or y = x− x2.

And for the second equation

ẏ = 0

βy2 − αβy3 − xy = 0

y = 0 or x = βy − αβy2.

This readily results in three equilibria: (0, 0), (1, 0), (0, 1
α), representing cases where neither popula-

tion is present, only the x-population exists, or only the y-population exists. The fourth equilibrium
is more challenging to derive. It corresponds to the intersection of y = x− x2 and x = βy − αβy2,
which occurs when there is a solution to x = β(x−x2)−αβ(x−x2)2. Notably, this equation had a
trivial solution at x = 0 and a second, nontrivial solution. Rewriting the equation leads to the form

x = 0 (3)

or

x3 − 2x2 +
1 + α

α
x+

1− β

αβ
= 0 (4)

To solve the nontrivial solution, we observe that since we are dealing with a cubic equation, we
must calculate the discriminant D first. When D < 0, the equation has three real roots, and when
D > 0, it has only one real root. The discriminant for an equation of the form ax3 + bx2 + cx+ d
is defined as

D = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd,

so in this case we have

D = (−2)2 ·
(
1 + α

α

)2

− 4 ·
(
1 + α

α

)3

− 4 · (−2)3 ·
(
1− β

αβ

)
− 27 ·

(
1− β

αβ

)3

+ 18 · −2 ·
(
1 + α

α

)
·
(
1− β

αβ

)
.

Solving this results in

D =
β2(4− α) + β(4α2 − 18α) + 27α

α3β2
,

which is negative, implying that the cubic equation has three real roots, when

β− < β < β+

with

β± =
9α− 2α2 ± 2

√
α(α− 3)3

4− α

The calculation behind this is as follows: β± are the values of β for which the discriminant equals
zero, i.e. the numerator is zero. Plotting the discriminant against α and β, see Figure 1, we deduce
that for β− < β < β+ the discriminant is negative. We impose the restriction α > 3 because, given
that α > 0, the square root term

√
α(α− 3)3 remains real-valued only for α > 3; otherwise, the

expression inside the square root becomes negative. Consequently, the square root function is not
continuous for α < 3. Thus for α > 3, β± remains real. Additionally, if α = 3, β− and β+ coincide,
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meaning there is no β such that β− < β < β+. Consequently, the discriminant satisfies D ≥ 0.
When D = 0, the equation has a double root, implying that instead of three distinct real roots,
two roots merge into a double root while the third remains distinct. In the context of dynamical
systems, this merging of roots indicates a transition, such as a bifurcation. Lastly, there is a vertical
asymptote at α = 4.

Figure 1: Visualization of the discriminant D along the z-axis, plotted against α and β, with the
gray-blue region representing D < 0 and the bright blue region representing D > 0.

We have now defined two scenarios: when D > 0, there are four equilibria, and when D < 0, i.e.
β− < β < β+, there are six equilibria. The always-present equilibria are (0, 0), (1, 0) and (0, 1

α),
while the fourth, and occasionally the fifth and sixth, equilibria can be determined by solving the
roots of the cubic equation. We will proceed with analyzing the stability of these equilibria.

2.2 Stability

To investigate stability we construct the Jacobian matrix of the planar system and substitute the
steady states into it. The Jacobian matrix is given by

J =

(
2x− 3x2 − y −x

−y 2βy − 3αβy2 − x

)
.

Substituting (0, 0) gives the eigenvalues λ1,2 = 0, which implies that this is a nonhyperbolic equi-
librium and that the stability of this equilibrium depends on the type of perturbation. Additional
second order analysis by H. Hanßmann and A. Momin (2024) [3] reveals that (0, 0) is stable for
β < 1. However, it is important to note that this equilibrium represents the scenario of an empty
neighborhood, making it less significant for practical consideration. Evaluating the second equi-
librium (1, 0), which represents the scenario where the entire neighborhood is occupied by the
x-population, gives the eigenvalues λ1,2 = −1, indicating that this is a stable node. Similarly, the
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equilibrium (0, 1
α), where the entire neighborhood is occupied by the y-population, is also a stable

node, as J(0, 1
α) yields the eigenvalues λ1 = − 1

α and λ2 = −β
α .

Next, we examine the remaining possible equilibria, which correspond to the solutions of the cubic
equation. Determining the stability of these equilibria is significantly more challenging compared to
the others. However, numerical analysis reveals that the stability of the equilibria is not influenced
by their exact location. In the article "A Dynamical Systems Model of Unorganized Segregation"
[2], D.J. Haw and S.J. Hogan derived the equilibria for each (α, β) and evaluated the corresponding
Jacobian. By plotting the determinant of the Jacobian as a function of (α, β) they discovered that
in the region with three equilibria, one is stable while the other two are saddle points. Outside this
region, where only a single real solution exists, the equilibrium is a saddle point. In both cases, the
regions of attraction for the stable equilibrium points are bounded by the stable manifolds of either
two or one saddle points, respectively. This observation by D.J. Haw and S.J. Hogan is validated
by the phase portraits we generated. Specifically, for D < 0, we observe three mixed equilibrium
points: two saddles and one stable node (see Figure 2(c)). Conversely, for D > 0, there is one mixed
equilibrium point, a saddle (see Figures 2(a) and 2(g)). Evaluating the stability of the equilibrium
points brings us to the final step in analyzing the planar model: deriving a bifurcation diagram.

2.3 Bifurcation diagram

Bifurcations happen when the system loses stability, meaning that near a bifurcation point, even a
small perturbation in parameters can change the stability of equilibrium points. We have established
that inside the region where β− < β < β+, there are six equilibrium points, while outside this region
there are four. This indicates that bifurcations occur along the lines β− and β+. To illustrate this,
we generated six phase portraits with varying values of (α, β).
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Figure 2: Phase portraits corresponding to different points (α, β).

(a) Outside the region where D < 0 (2,10). (b) On the bifurcation curve β+ (3.5,15.3).

(c) Inside the region where D < 0 (5,20). (d) Inside the region where D < 0 (5,19).

(e) Inside the region where D < 0 (5,18). (f) On the bifurcation curve β− (5,17.6).

(g) Outside the region where D < 0 (5,9).
(h) At the apex

(3,9).
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The phase portraits illustrate the arising of a node and a saddle during the first fold bifurcation,
occurring as the bifurcation curve β+ is crossed from the region where D > 0. Within the region
where D < 0, we observe six equilibrium points as expected: three stable nodes, two saddles, and
an unstable node at (0, 0). When approaching β−, the node and the rightmost saddle move toward
each other, which can be seen in Figure 2(d) and 2(e). Along the bifurcation curve, they converge
and eventually vanish, as shown in the second last diagram outside the D < 0 region. This behavior
corresponds to the second fold bifurcation. At the apex, where (α, β) = (3, 9) and β− intersects with
β+, a transition occurs, leading to a change in the existence and stability of the equilibria. Here, the
two saddle points and the node merge, leaving only a single saddle point. This phenomenon is called
a dual-cusp bifurcation. In terms of our system this means that a change in tolerance limits (β)
and population ratio (α) causes reorganization of the population distribution. As individuals adjust
their decisions based on their tolerance limits it effects the stability and existence of equilibria.
Specifically, the merging of a stable node with two saddle points into a single saddle implies that
parameter changes can drive large-scale segregation. With only two stable nodes remaining—one
dominated by the x-population and the other by the y-population—the system evolves toward com-
plete segregation.
Identifying and analyzing the bifurcations present in the sociological model enables us to construct
the corresponding bifurcation diagram. We present the bifurcation diagram developed by H. Hanß-
mann and A. Momin (2024) [3], with the x-population represented on the vertical axis. In this
diagram, the green surface represents the saddle points of the system, while the red surface corre-
sponds to the stable nodes. The surfaces meet along the blue lines, indicating the occurrence of the
fold bifurcations. At the apex, where the two blue lines meet, the dual-cusp bifurcation takes place.

Figure 3: Bifurcation diagram, where k corresponds to α, b to β and X to the x-population [3].

To clarify the bifurcation diagram, we consider three separate cases for the value of α. As previously
noted, since α is positive, the restriction β− < β < β+ holds only when a > 3, and we also observed
the presence of a vertical asymptote at α = 4. Therefore, we consider the cases 0 < α < 3,
3 < α < 4, and α > 4, which correspond to moving from right to left along the k-axis in the
left-hand image of Figure 3. For each case, we will identify the projection of the 3D bifurcation
diagram onto 2D intersections, as is shown in Figure 4, while maintaining the same color scheme.
Green represents the saddles, red denotes the stable node, and the blue lines indicate the bifurcation
curves. The equilibrium points (0, 0), (1, 0), and

(
0, 1

α

)
are excluded from this analysis. We focus

exclusively on the equilibrium points obtained by solving the cubic equation.
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Figure 4: Intersections of the 3D bifurcation surface with β,X-planes for constant α.

(a) 0 < α < 3. (b) 3 < α < 4. (c) α > 4.

Figure 4(a) shows no bifurcation points, which aligns with the restriction that β− and β+ are only
defined for α > 3. Since we are in the region where D > 0, corresponding to the blue region in
Figure 1, we expect only one solution: the saddle node.
In Figure 4(b), we observe two bifurcation curves. In this interval for α, the vertical asymptote is
not yet present. As shown in Figure 1, for α in this interval, we cross both bifurcation curves as β
increases. Between these curves, we are in the region where D < 0, resulting in three equilibrium
points: two saddles and one stable node. The fold bifurcations occur along the blue lines, specifically
at β−, where two equilibrium points arise, and at β+, where two equilibrium points merge and vanish.
Finally, Figure 4(c) illustrates that for α > 4, we only cross β− because β+ has a vertical asymptote
at α = 4, as also seen in Figure 1. Here, we observe one fold bifurcation; the arising of two
equilibrium points. After crossing β−, we enter the region where D < 0, which persists as β
increases. In this region, there are three equilibrium points: two saddles and one stable node.

3 Conclusion

In this paper, we explored Schelling’s Bounded Neighborhood Model, beginning with an introduction
to the topic of segregation and the model itself. We then interpreted the differential equations
describing the system and calculated the equilibrium points. Our findings revealed that the system
can have four, five or six equilibrium points. There are always two stable nodes at (1, 0) and (0, 1

α),
and one unstable node at (0, 0) for β > 1. Additional equilibrium points, determined by solving
the cubic equation, may consist of either one saddle point or two saddles and one stable node.
The distinction between these cases is determined by the discriminant of the cubic equation. We
identified the curves where the number of equilibria changes, noticing two fold bifurcations. The first
fold bifurcation results in the emergence of a saddle point and a stable node, while the second fold
bifurcation leads to the merging and vanishing of a saddle and stable node. Finally, we described
a dual cusp bifurcation at the apex, where two saddles and one stable node merge, leaving only a
saddle node. We summarized all of these findings in a bifurcation diagram.
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