1. A matrix $A \in M_{n \times n}(\mathbb{R})$ defines a linear differential equation $\dot{x}=A x$, write \mathcal{L}_{A} for the corresponding vector field. Next to the commutator $[A, B]=A B-B A$ of two matrices there is also the Lie bracket $\left[\mathcal{L}_{A}, \mathcal{L}_{B}\right]$ defined by how vector fields act as derivations on smooth functions f, given as

$$
\left[\mathcal{L}_{A}, \mathcal{L}_{B}\right](f):=\mathcal{L}_{A}\left(\mathcal{L}_{B}(f)\right)-\mathcal{L}_{B}\left(\mathcal{L}_{A}(f)\right)
$$

Show that

$$
\left[\mathcal{L}_{A}, \mathcal{L}_{B}\right]=-\mathcal{L}_{[A, B]} .
$$

Furthermore show that

$$
\varphi_{t} \circ \psi_{s}-\psi_{s} \circ \varphi_{t}=s t[A, B]+\mathcal{O}\left(\left(s^{2}+t^{2}\right)^{\frac{3}{2}}\right)
$$

for the flows φ of \mathcal{L}_{A} and ψ of \mathcal{L}_{B}. Hence, $\left[\mathcal{L}_{A}, \mathcal{L}_{B}\right]=0$ if these two flows commute.
2. A result of this exercise turns our to be that

$$
\mathfrak{s l}_{n}(\mathbb{R})=\left\{A \in M_{n \times n} \mid \operatorname{tr} A=0\right\}
$$

is the Lie algebra of the Lie group

$$
S L_{n}(\mathbb{R})=\left\{S \in M_{n \times n} \mid \operatorname{det} S=1\right\} .
$$

To this end compute for a curve

$$
\begin{array}{cccc}
\gamma: & \mathbb{R} & \longrightarrow & M_{n \times n} \\
t & \mapsto & \gamma(t)
\end{array}
$$

the corresponding tangent vector

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \gamma(t)\right|_{t=0}
$$

and use the curve $\gamma(t)=\exp t A$ to conclude that $\mathfrak{s l}_{n}(\mathbb{R})=T_{\mathrm{Id}} S L_{n}(\mathbb{R})$. What are the consequences for the flow of a divergence-free vector field?

