Exercise(s)

1. Let's give this exercise a second chance.

Let $H : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a given smooth function, with corresponding Hamiltonian vector field X_H . Here we use the standard symplectic structure on \mathbb{R}^2 . Moreover, let $g : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a diffeomorphism. Consider both the function $K := H \circ g^{-1}$, together with the associated Hamiltonian vector field X_K , and the transformed vector field $g_*(X_H)$, defined by $g_*(X_H)(g(p)) := D_p g X_H(p)$. Show that

$$g_{\star}(X_H) = \det(Dg) \cdot X_K$$
.

Hint: exploit a coordinate free formulation of the fact that X_H is the Hamiltonian vector field corresponding to H. Discuss the implication for the integral curves of $g_{\star}(X_H)$ and X_K . Also consider the time-parametrisation of these curves. What happens in the special case that g is canonical?

2. Prove "Cartan's magic formula"

$$\mathcal{L}_X \alpha = \mathrm{d}(\iota_X \alpha) + \iota_X \mathrm{d} \alpha$$

where $\mathcal{L}_X \alpha$ is the Lie derivative of the differential form α along the vector field X and $\iota_X \alpha$ is the interior product of X with the k-form α , resulting in the (k-1)-form

$$\iota_X \alpha(Y_2, \dots, Y_k) = \alpha(X, Y_2, \dots, Y_k)$$