1. Consider the N-body problem in \mathbb{R}^{3}. The (additive) Lie group \mathbb{R}^{3} acts by simultaneous translation on the configuration space and this lifts to the phase space $\mathcal{P}=T^{*}\left(\mathbb{R}^{3}\right)^{N} \cong \mathbb{R}^{6 N}$. Explicitly compute the momentum mapping and confirm that symmetry reduction can be performed by fixing the centre of mass at the origin.
2. Consider a particle in a central force field in \mathbb{R}^{3}. The (matrix) Lie group $S O(3)$ acts by simultaneous ${ }^{1}$ rotation on the phase space $\mathcal{P}=$ $T^{*} \mathbb{R}^{3} \cong \mathbb{R}^{6}$. Compute the momentum mapping and reduce the $S O(3)-$ symmetry.
[^0]
[^0]: ${ }^{1}$ of what?

