1. Let $H: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a smooth function given by $H(x, y)=\frac{1}{2} y^{2}+$ $V(x)$ and assume that for $h \in \mathbb{R}$ the motion in the level set $H^{-1}(h)$ is periodic. Show that for energies near h the motion is also periodic. Let $A(h)$ denote the area enclosed by the level set $H^{-1}(h)$ and let $T(h)$ denote the period of the motion in this level set. Show that

$$
T(h)=\left.\frac{\mathrm{d} A(z)}{\mathrm{d} z}\right|_{z=h}
$$

and exemplify this for the harmonic oscillator with $V(x)=\frac{1}{2} x^{2}$. To this end, plot the level sets

$$
H^{-1}(h)=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=2 h\right\}
$$

for $h>0$ and compute the area $A(h)$ of the region enclosed by this level set. Then compare the period with the rate of change of the area.

