Exercise

1. The aim of this exercise is to prove a Poincaré-Birkhoff fixed point theorem. Consider the annulus $A:=[1,2] \times \mathbb{S}^{1}$, with coordinates (I, φ), where φ is counted mod 2π. Consider a smooth, boundary preserving diffeomorphism $T_{\varepsilon}: A \longrightarrow A$, of the form $T_{\varepsilon}:(I, \varphi) \mapsto(I, \varphi+2 \pi \rho(I))+$ $\varepsilon(f(I, \varphi, \varepsilon), g(I, \varphi, \varepsilon))$ and such that

- $\rho^{\prime}(I) \neq 0$, saying that T_{ε} is a twist-map (for simplicitiy we take ρ increasing);
- $\oint_{\gamma} I \mathrm{~d} \varphi=\oint_{T_{\varepsilon}(\gamma)} I \mathrm{~d} \varphi$, which means that T_{ε} is preserving area.

Show that for each rational number p / q, with

$$
\rho(1) \leq \frac{p}{q} \leq \rho(2),
$$

in A there exists a periodic point of T_{ε}, of period q, provided that $|\varepsilon|$ is sufficiently small. Hint: Abbreviating $T_{\varepsilon}^{q}(I, \varphi)=\left(I+O(\varepsilon), \Phi_{q, \varepsilon}(I, \varepsilon)\right)$, with $\Phi_{q, \varepsilon}(I, \varphi)=\varphi+2 \pi q \rho(I)+O(\varepsilon)$, consider the equation $\Phi_{q, \varepsilon}(I, \varphi)=$ $\varphi+2 \pi p$, for $p \in \mathbb{Z}$. Use the implicit function theorem in order to obtain a curve $C=\{I=F(\varphi, \varepsilon)\}$ of solutions. Then study the intersection of C and $T_{\varepsilon}^{q}(C)$.

