Exercise

- 1. The aim of this exercise is to prove a Poincaré–Birkhoff fixed point theorem. Consider the annulus $A := [1, 2] \times \mathbb{S}^1$, with coordinates (I, φ) , where φ is counted mod 2π . Consider a smooth, boundary preserving diffeomorphism $T_{\varepsilon} : A \longrightarrow A$, of the form $T_{\varepsilon} : (I, \varphi) \mapsto (I, \varphi + 2\pi\rho(I)) + \varepsilon$ $\varepsilon (f(I, \varphi, \varepsilon), g(I, \varphi, \varepsilon))$ and such that
 - ρ'(I) ≠ 0, saying that T_ε is a twist-map (for simplicitiy we take ρ increasing);
 - $\oint_{\gamma} I \, \mathrm{d}\varphi = \oint_{T_{\varepsilon}(\gamma)} I \, \mathrm{d}\varphi$, which means that T_{ε} is preserving area.

Show that for each rational number p/q, with

$$\rho(1) \leq \frac{p}{q} \leq \rho(2) \ ,$$

in A there exists a periodic point of T_{ε} , of period q, provided that $|\varepsilon|$ is sufficiently small. *Hint:* Abbreviating $T_{\varepsilon}^q(I,\varphi) = (I + O(\varepsilon), \Phi_{q,\varepsilon}(I,\varepsilon))$, with $\Phi_{q,\varepsilon}(I,\varphi) = \varphi + 2\pi q \rho(I) + O(\varepsilon)$, consider the equation $\Phi_{q,\varepsilon}(I,\varphi) = \varphi + 2\pi p$, for $p \in \mathbb{Z}$. Use the implicit function theorem in order to obtain a curve $C = \{I = F(\varphi, \varepsilon)\}$ of solutions. Then study the intersection of C and $T_{\varepsilon}^q(C)$.