Exercise 30. 4. 2015

A). Consider a Hamiltonian system defined on \mathbb{R}^6 with an equilibrium point at the origin for which the Taylor expansion reads as $H(x,y) = H_0^0(x,y) + H_1^0(x,y) + \dots$ with

$$H_0^0(x,y) = \frac{y_1^2 + x_1^2}{2} + y_2^2 + x_2^2 + y_3^2 + x_3^2$$

Note that the equilibrium is elliptic with frequencies in 1:2:2 resonance.

- 1. Compute the flow of the vector field defined by H_0^0 .
- 2. Give the spectrum of the linear mapping $X_{H_0^0}: \mathcal{G}_{k+2} \longrightarrow \mathcal{G}_{k+2}$ for general $k \in \mathbb{N}$.
- 3. Specify this for k=1 and determine complex polynomial bases for the subspaces in the splitting $\mathcal{G}_3 = \ker X_{H_0^0} \oplus \operatorname{im} X_{H_0^0}$.
- 4. Determine from this real polynomial bases for these subspaces.
- 5. Show that the third order normal form of H can be brought into the form

$$H(q,p) = H_0^0(q,p) + A\left(\frac{p_1^2 - q_1^2}{2}q_2 - p_1q_1p_2\right) + B\left(\frac{p_1^2 - q_1^2}{2}q_3 - p_1q_1p_3\right) + \dots$$

by means of a Poisson transformation $(x, y) \mapsto (q, p)$. *Hint:* use rotations in the (q_2, p_2) -plane and in the (q_3, p_3) -plane to get rid of the terms

$$\frac{p_1^2 - q_1^2}{2} p_2 + p_1 q_1 q_2$$
 and $\frac{p_1^2 - q_1^2}{2} p_3 + p_1 q_1 q_3$.

- 6. Use a rotation in the 4-dimensional (q_2, p_2, q_3, p_3) -space to achieve B = 0. Conclude that the truncated third order normal form $H_0^0(q, p) + H_0^1(q, p)$ around an elliptic equilibrium with frequencies in 1:2:2 resonance is integrable, having three independent integrals of motion.
- B). Consider a Hamiltonian system defined on \mathbb{R}^6 with an equilibrium point at the origin for which the Taylor expansion reads as $H(x,y) = H_0^0(x,y) + H_1^0(x,y) + \dots$ with

$$H_0^0(x,y) = -\frac{y_1^2 + x_1^2}{2} + y_2^2 + x_2^2 + y_3^2 + x_3^2$$

Note that the equilibrium is elliptic, but not an extremum of the Hamiltonian function. One speaks of an equilibrium in -1:2:2 resonance. Show that the truncated third order normal form is integrable.