Exercise

1. Consider the parameter-dependent Hamiltonian function

$$
H(x, y, q, p ; \omega, \lambda)=y_{1}+\omega y_{2}+\frac{p^{2}}{2}+\frac{q^{4}}{24}+\lambda \frac{q^{2}}{2}
$$

on $\mathbb{T}^{2} \times \mathbb{R}^{4}$ and determine for which $\left(q_{0}, p_{0}\right) \in \mathbb{R}^{2}$ there are invariant tori $\mathbb{T}^{2} \times\left\{\left(y_{1}, y_{2}, q_{0}, p_{0}\right)\right\}$. In the elliptic case (with normal frequency α) such tori are known to persist a small perturbation if the Diophantine conditions

$$
\begin{equation*}
\bigwedge_{\substack{k \in \mathbb{Z}^{2} \\ k \neq 0}} \bigwedge_{\substack{\ell \in \mathbb{Z} \\|\ell| \leq 2}}\left|2 \pi\left(k_{1} 1+k_{2} \omega\right)+\ell \alpha\right| \geq \frac{\gamma}{|k|^{\tau}} . \tag{1}
\end{equation*}
$$

are satisfied, where $\gamma>0$ and $\tau>1$, while for hyperbolic tori the Diophantine conditions (1) with $\ell=0$ on the internal frequencies suffice. Sketch in the (ω, λ)-plane where the necessary conditions for the 2 -tori at the origin $\left(q_{0}, p_{0}\right)=(0,0)$ are satisfied. What can you say about the 2 -tori that bifurcate off from the origin?

