Exercise

Consider the linear \mathbb{S}^{1} action on phase space \mathbb{R}^{4} given by

$$
\left(t,\left(\begin{array}{l}
q_{1} \\
p_{1} \\
q_{2} \\
p_{2}
\end{array}\right)\right) \mapsto\left(\begin{array}{cccc}
\cos t & \sin t & 0 & 0 \\
-\sin t & \cos t & 0 & 0 \\
0 & 0 & \cos t & \sin t \\
0 & 0 & -\sin t & \cos t
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
p_{1} \\
q_{2} \\
p_{2}
\end{array}\right) .
$$

1. Compute the vector field X the flow of which is the above \mathbb{S}^{1} action.
2. Show that the vector field X is the Hamiltonian vector field of the planar isotropic harmonic oscillator which is described by the Hamiltonian function

$$
J(q, p)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}\right)
$$

From now on we write $X=X_{J}$.
3. Introduce complex coordinates $z_{k}=q_{k}+\mathrm{i} p_{k}, k=1,2$ in \mathbb{R}^{4}. Express the above \mathbb{S}^{1} action in terms of the coordinates z_{1}, z_{2}.
4. Define the polynomials $\pi_{1}=z_{1} \bar{z}_{1}, \pi_{2}=z_{2} \bar{z}_{2}, \pi_{3}=\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$ and $\pi_{4}=$ $\operatorname{Im}\left(z_{1} \bar{z}_{2}\right)$. Show that $\pi_{k}, k=1,2,3,4$ are left invariant by the above \mathbb{S}^{1} action.
5. Give an argument to show that the invariance of π_{k} with respect to the above \mathbb{S}^{1} action implies that $\left\{\pi_{k}, J\right\}=0$ (without computing directly the Poisson brackets).
6. Show that any polynomial that is invariant with respect to the above \mathbb{S}^{1} action can be expressed through π_{k}. Hint: first try to determine the form of any arbitrary monomial in such invariant polynomial using complex coordinates.
7. Write $J=\left(\pi_{1}+\pi_{2}\right) / 2$ and $R=\left(\pi_{1}-\pi_{2}\right) / 2, S=\pi_{3}, T=\pi_{4}$. Show that $J^{2}=R^{2}+S^{2}+T^{2}$.

According to the theory this implies that the reduced phase space $J^{-1}(j) / \mathbb{S}^{1}$ is diffeomorphic to the set

$$
P_{j}=\left\{(R, S, T) \in \mathbb{R}^{3} \mid R^{2}+S^{2}+T^{2}=j^{2}\right\}
$$

which is a 2 -dimensional sphere for $j \neq 0$ and a single point for $j=0$. The next question asks you to prove part of this fact.
8. Show that there is a bijective mapping between the set of orbits of X_{J} with fixed value $J=j$ and the points of P_{j}.
9. Recall that the reduced symplectic form ϖ_{j} is defined through the relation $\iota_{j}^{*} \omega=\rho_{j}^{*} \varpi_{j}$ where ρ_{j} is the reduction mapping

$$
\begin{array}{cccc}
\rho_{j}: \begin{array}{ccc}
J^{-1}(j) & \longrightarrow & P_{j} \\
(q, p) & \mapsto & (R(q, p), S(q, p), T(q, p))
\end{array},
\end{array}
$$

ι_{j} is the inclusion mapping

$$
\begin{array}{cccc}
\iota_{j}: \begin{array}{cc}
J^{-1}(j) & \longrightarrow
\end{array} \mathbb{R}^{4} \\
(q, p) & \mapsto & (q, p)
\end{array}
$$

and ω is the standard symplectic form

$$
\omega=d q_{1} \wedge d p_{1}+d q_{2} \wedge d p_{2}
$$

on \mathbb{R}^{4}. Compute the Poisson brackets between the quantities $J(q, p)$, $R(q, p), S(q, p)$ and $T(q, p)$ in terms of (J, R, S, T).
10. Given a Hamiltonian function F on P_{j}, i.e., $F=F(j ; S, R, T)$, use the Poisson brackets between (R, S, T) to derive the equations of motion. Show that the flow of any such F leaves P_{j} invariant, i.e. if an orbit starts on P_{j} then it stays there.

Consider in \mathbb{R}^{4} the Hamiltonian $H=H_{0}+H_{1}$ of the so-called Hénon-Heiles system where

$$
H_{0}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}\right)
$$

and

$$
H_{1}=q_{1}^{2} q_{2}-\frac{1}{3} q_{2}^{3}
$$

11. Show (without doing the normal form computation) that the normal form can contain no third degree terms and this is due only to the form of H_{0} and not of H_{1}.
12. Use a software package like Mathematica to compute the normal form \mathcal{H} of H with respect to H_{0} up to fourth degree terms.
13. Consider the Poincaré surface of section Σ in \mathbb{R}^{4} defined by $q_{1}=0$, $p_{1}>0$. For a fixed value of $H_{0}=n$ compute the restriction of the normal form \mathcal{H} on Σ. Draw (using a software package) the level curves of \mathcal{H} on Σ for $n=\frac{1}{16}$.
14. Express \mathcal{H} in terms of R, S, T and J. Determine the dynamics of \mathcal{H} on the reduced space P_{j}.
