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Introduction

Classical mechanics has had an enormous influence on mathematics. The development of
differential calculus by Newton for instance was mainly inspired by his desire to under-
stand the motion of the planets. But there are also deep connections between classical
mechanics and differential geometry, topology, dynamical systems theory and the calculus
of variations, to name a few.

My part of the course could be called “Lagrangian mechanics”. It starts with the
derivation of the Euler-Lagrange equations from a variational princible. As an example we
will review geodesic motion.

We will then focus on mechanics on Lie groups. It is here that the geometry really
enters the mechanics. We will encounter the “Euler-Poincaré” symmetry reduction and
the famous rigid body motion. We will moreover study an infinite-dimensional example
that combines all these concepts: the Euler equations for an ideal incompressible fluid.

Finally, as an introduction to the remainder of this course, I will introduce the concept
of a Hamiltonian system.

Bob Rink
Amsterdam, January 2009
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1 Mechanical systems

The most important principle in classical mechanics is the property that a mechanical
system can be given an arbitrary initial position and velocity, but that these then determine
the behaviour of the system completely.

Let us see what this means. Let q : I → U, t 7→ q(t) be a C2 curve in an open
subset U ⊂ Rn, defined for t in an open interval I ⊂ R. We assume that q(t) describes
the position or “configuration” of a mechanical system at time t. The velocities of the
mechanical system are then given by the derivatives

q̇j(t) :=
dqj(t)

dt
∈ R , j = 1, . . . , n .

The above main principle of classical mechanics then implies that the accelerations at time
t,

dq̇j(t)

dt
=
d2qj(t)

dt2
,

are determined by the positions and velocities at time t, that is

dq̇j(t)

dt
= aj (t, q(t), q̇(t)) ,

for certain functions aj : I × U ×Rn → R. The exact form of the functions aj depends on
the physical properties of the mechanical system under consideration.

The ordinary differential equations

dqj
dt

= q̇j , (1.1)

dq̇j
dt

= aj(t, q, q̇) .

are defined on the “phase space” U × Rn and are called the “equations of motion” for
the mechanical system under consideration. Under the mild condition that the aj are
locally Lipschitz continuous, the existence and uniqueness theory for ordinary differential
equations indeed guarantees that q(t) is determined by these equations of motion once the
initial position q(t0) and velocity q̇(t0) are given.

1.1 Two classical examples

A simple but famous example of a classical mechanical system was found by Galilei. He
discovered experimentally that falling objects accelerate constantly towards the earth. In
other words, Galilei discovered that falling objects describe a curve q : t 7→ q(t) ∈ R3 that
satisfies equations (1.1) with

a1(t, q, q̇) = a2(t, q, q̇) = 0 , a3(t, q, q̇) = −g . (1.2)
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The constant g ∈ (0,∞) is called the gravitational constant and it too can be determined
experimentally: in Pisa it is approximately equal to 9, 80 m/s2. Integrating the equations
dq̇1
dt

= dq̇2
dt

= 0, dq̇3
dt

= −g gives that q̇1(t) = q̇1(0), q̇2(t) = q̇2(0), q̇3(t) = q̇3(0)−gt. Integrating

also dqi
dt

= q̇i, we then find that

q1(t) = q1(0) + q̇1(0)t, q2(t) = q2(0) + q̇2(0)t, q3(t) = q3(0) + q̇3(0)t− 1

2
gt2 .

Thus, one can even explicitly solve Galiei’s equations of motion.
A more complicated but equally famous mechanical system is the Kepler system that

describes the motion of a planet around the sun, given by a curve t 7→ q(t) ∈ R2. Based on
observations by the astronomer Tycho Brahe, Kepler formulated the following principles
for this motion, now known as Kepler’s laws:

1. A planet moves on an ellipse in R2, with the sun in one of its focal points. Call this
point qs ∈ R2.

2. The area of the domain bounded by the line segment from qs to q(t0), the orbit of
the planet and the line segment from qs to q(t) is proportional to t− t0.

3. The square of the period of a planetary orbit divided by the third power of the length
of the long axis of its elliptic orbit is the same for every planet.

Newton proved that Kepler’s laws are in fact equivalent to the equations of motion

m
d2q

dt2
= − mMG

||q − qs||3
(q − qs) , (1.3)

in which m is the mass of the planet, M is the mass of the sun and G is a universal gravi-
tational constant that is the same for every planet. Having at our disposal the techniques
of modern calculus, the proof of Newton’s theorem is quite elementary, but we will not
present it here. In fact, it is well-known that the solutions to equation (1.3) describe a
conic section, i.e. a circle, ellipse, parabola or hyperbola.

The right hand side of equation (1.3) is called the force acting on the planet, so equation
(1.3) illustrates Newton’s first law that says that the mass of a body times its acceleration
is equal to the force acting on the body. Newton’s second law asserts that the total force
acting on a body is equal to the sum of the forces that are acting on it. So for instance, if
t 7→ q(i)(t) ∈ R2 (i = 1, . . . , N) describe the positions of a collection of N planets moving
in R2, each with their own mass mi, then the equations of motion for these planets are
given by

mi
d2q(i)

dt2
=
∑
j 6=i

φji(q) , (1.4)

where

φji(q) := − mimjG

||q(i) − q(j)||3
(q(i) − q(j)) (1.5)
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is the force that planet j exerts on planet i. We also see here an illustration of Newton’s
third law, which says that the force that one body exerts on another body is equal to minus
the force that this other body exerts on the first body. For the motion of the planets this
is expressed by the fact that φji = −φij as is clear from formula (1.5).

1.2 A constant of motion

A general mechanical system with n degrees of freedom is defined by Newton’s system of
second order ordinary differential equations

mi
d2qi
dt2

= φi(q) , i = 1, . . . , n . (1.6)

Here, q ∈ U ⊂ Rn is an element of an open subset of Rn and the continuous functions
φi : U → R are the components of the “force” acting on q. Note that we assumed that the
φi only depend on the positions q, just as in the examples of the previous paragraph.

Defining again the velocities q̇i := dqi
dt

, this system of n second order equations is
equivalent to the system of 2n first order equations on U × Rn

dqi
dt

= q̇i (1.7)

mi
dq̇i
dt

= φi(q) , i = 1, . . . , n .

Suppose now that for some reason there exists a C1 function V : U → R with the property
that

φi(q) = −∂V (q)

∂qi
.

If this is the case, then we call V the potential of the force φ and φ is called a conservative
force. In general, the requirement that a force be conservative is very restrictive. For
instance, if the φi are C1, then V is C2 and because ∂2V

∂qi∂qj
= ∂2V

∂qj∂qi
, the requirement that

φi = −∂V
∂qi

for all i leads to the conclusion that

∂φi
∂qj

=
∂φj
∂qi

, i, j = 1, . . . , n . (1.8)

It turns out the condition (1.8) is sufficient for the existence of an open subset Uq0 near

each q0 ∈ U and a C2 function Vq0 : Uq0 → R such that φi = −∂Vq0

∂qi
on Uq0 . The existence of

such a function on the entire U can only be guaranteed under strong topological conditions
on U , for instance that it be starshaped or, more generally, simply connected. In fact, the
very question when a force is conservative was the motive for Poincaré to introduce the
subject of topology.

The reason why conservative forces are so important lies in the fact that this property
implies that the function of positions and velocities

E(q, q̇) :=
n∑
i=1

1

2
miq̇

2
i + V (q)
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is a so-called “constant of motion” for the system (1.7), because along a solution (q(t), q̇(t))
of (1.7),

d

dt
E (q(t), q̇(t)) =

n∑
i=1

(
∂E(q, q̇)

∂qi

dqi(t)

dt
+
∂E(q, q̇)

∂q̇i

dq̇i(t)

dt

)
=

n∑
i=1

(
∂E(q, q̇)

∂qi
q̇i +

∂E(q, q̇)

∂q̇i

φi(q)

mi

)
=

n∑
i=1

(
−φi(q)q̇i +miq̇i

φi(q)

mi

)
= 0 .

In other words, the level sets of the function E are invariant under the flow of (1.7). At
regular points, the level set of E is a submanifold of U × Rn of dimension 2n − 1. The
singular points of E correspond to the equilibrium points of (1.7).

Remark 1.1 (Energy) The function V = V (q) is called the potential energy of a conser-
vative mechanical system. The function

T (q̇) :=
n∑
i=1

1

2
miq̇

2
i (1.9)

is called kinetic energy and the function E(q, q̇) = T (q̇) + V (q) is called the total energy
of the mechanical system. The concept of conservation of total energy is of course quite
fundamental in classical physics.

Remark 1.2 (Friction) Including in equation (1.6) a linear friction term leads to the
equation

mi
d2qi
dt2

= φi(q)− c
dqi
dt

,

where c > 0 is called the friction constant. For solutions to these equations one computes
that

d

dt
E

(
q(t),

dq(t)

dt

)
= −c||dq(t)

dt
||2 ,

which means that E decreases along solutions of the differential equation, unless q(t) is
constant. We say that in this case, E is a Lyapunov function.

1.3 Exercises

Exercise 1.1 (Galilei’s laws with friction) If we include in Galilei’s model for falling
objects a friction force φ(q, q̇) = −cq̇ that acts in the direction of minus the velocity q̇ and
is proportional to ||q̇||, then his equations become

dq1

dt
= q̇1 ,

dq2

dt
= q̇2,

dq3

dt
= q̇3,m

dq̇1

dt
= −cq̇1,m

dq̇2

dt
= −cq̇2,m

dq̇3

dt
= −mg − cq̇3 .

c > 0 is called the friction constant. Solve these equations and show that limt→∞(q̇1, q̇2, q̇3) =
(0, 0,−mg

c
). Hence we observe that in the presence of friction, a falling object does not ac-

celerate without bound, but instead approaches a limiting speed.
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Exercise 1.2 (Charged particle) The motion of a charged test particle in an electric
and magnetic field is given by a curve q(t) ∈ R3 satisfying

m
d2q

dt2
= e

(
E +

dq

dt
×B

)
,

where E = E(q, t) ∈ R3 and B = B(q, t) ∈ R3 are vector functions, called the electric
and magnetic field respectively and e ∈ R is called the charge of the particle. Show that
〈d2q
dt2
, B〉 = 0 if E = 0. Under the assumption that E = 0 and B = (b, 0, 0) ∈ R3 is constant,

solve the equations of motion.

Exercise 1.3 Show that Galilei’s equations (1.2) are conservative. Give T, V and E.
Apart from E, can you point out other constants of motion?

Exercise 1.4 According to Newton’s laws, the motion of a system of N planets is given
by

mi
d2q(i)

dt2
=
∑
j 6=i

φji(q) ,

where φji is given in equation (1.5). Let M :=
∑N

i=1mi be the total mass of the planets
and define the center of mass as

z(t) :=
1

M

N∑
i=1

miq
(i)(t) .

Prove that z(t) is a linear function of t. Show that the components of

µ :=
dz

dt
=

1

M

N∑
i=1

miq̇
(i)

are constants of motion.

Exercise 1.5 If we define, for i = 1, . . . , N and k = 1, 2, the total force acting on the k-th
coordinate of planet i, by φ

(i)
k (q) =

∑
j 6=i(φji(q))k, then the equations of motion (1.4) can

be written as

mi
d2q

(i)
k

dt2
= φ

(i)
k (q) .

Show that

φ
(i)
k (q) = −∂V (q)

∂q
(i)
k

,

with
V (q) := −G

∑
i<j

mimj

||q(i) − q(j)||
.

This shows that the forces acting on the planets are conservative. Give the constant of
motion.
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2 Lagrangian mechanics

Lagrange showed that Newton’s equations (1.6) are defined in a coordinate-invariant way.
More precisely, he formulated Newton’s equation in such a way that they behave well under
coordinate transformations. Lagrange’s construction will be the main topic of this section.

2.1 New position variables

One may wonder what happens to the equations of motion (1.6) for q(t) ∈ U ⊂ Rn if we
make an arbitrary change of the position variables, that is if assume that q(t) = Φ(t, Q(t))
for Q(t) ∈ Ũ ⊂ Rm. The reason we ask this question is that, once we know how an
arbitrary Φ changes the equations of motion, we might be able to make a clever choice of
Φ that changes the equations (1.6) for q(t) into much simpler equations for Q(t).

If Φ is C2, then a twice differentiable curve t 7→ Q(t) in Ũ ⊂ Rm defined on some open
time-interval I ⊂ R is transformed by Φ into a twice differentiable curve

q(t) := Φ(t, Q(t))

in U ⊂ Rn. Differentiation of q(t) gives that

dqi(t)

dt
=
∂Φi(t, Q(t))

∂t
+

m∑
j=1

∂Φi(t, Q(t))

∂Qj

dQj(t)

dt
,

i.e. dq
dt

= ∂Φ
∂t

+ ∂Φ
∂Q

dQ
dt

, which is a nice affine transformation formula. Differentiating this
once more we nevertheless find that even if Φ does not depend explicitly on t, the second
order derivative d2q

dt2
in general is not simply the image of d2Q

dt2
under the linear map ∂Φ

∂Q
.

Lagrange realised that one can take another approach, which might at first seem a little
artificial. The first thing he remarked is that

mi
d2qi(t)

dt2
=

d

dt

(
∂T (q̇)

∂q̇i

∣∣∣∣
q̇=

dq(t)
dt

)
, (2.1)

where T is the kinetic energy defined in (1.9). The next remark is that one can express

the kinetic energy T
(
dq(t)
dt

)
explicitly as a function of t, Q(t) and dQ(t)

dt
, by defining the

function T̃ : I × Ũ × Rm → R by

T̃ (t, Q, Q̇) = T (q̇) ,

in which

q̇ =
∂Φ(t, Q)

∂t
+
∂Φ(t, Q)

∂Q
· Q̇ .

In other words, T̃ is defined by T̃ (t, Q, Q̇) = T
(
∂Φ(t,Q)
∂t

+ ∂Φ(t,Q)
∂Q

· Q̇
)

. This definition is

such that T
(
dq(t)
dt

)
= T̃

(
t, Q(t), dQ(t)

dt

)
if q(t) = Φ(t, Q(t)). Note that the transformed
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kinetic energy T̃ (t, Q, Q̇) in general will depend explicitly on the time t and the new

position variable Q. Now Lagrange’s discovery was that not d
dt

(
∂T̃ (t,Q,Q̇)

∂Q̇j

∣∣∣
Q=Q(t),Q̇=

dQ(t)
dt

)
,

but the quantity d
dt

(
∂T̃ (t,Q,Q̇)

∂Q̇j

∣∣∣
Q=Q(t),Q̇=

dQ(t)
dt

)
− ∂T̃ (t,Q,Q̇)

∂Qj

∣∣∣
Q=Q(t),Q̇=

dQ(t)
dt

depends linearly on

d
dt

(
∂T (q̇)
∂q̇i

∣∣∣
q̇=

dq(t)
dt

)
. In fact, we have the following quite general result:

Theorem 2.1 Let Φ : I × Ũ → U be a C2 map, t 7→ Q(t) a C2 curve in Ũ and q(t) =
Φ(t, Q(t)) the corresponding curve in U . Let L : I × U × Rn → R be a C2 function of
(t, q, q̇) and let L̃ : I × Ũ × Rm → R be the corresponding function of (t, Q, Q̇) defined by

L̃(t, Q, Q̇) = L

(
t,Φ(t, Q),

∂Φ(t, Q)

∂t
+
∂Φ(t, Q)

∂Q
· Q̇
)
. (2.2)

Furthermore, define the continuous functions [L]qi on I by

[L]qi (t) :=
d

dt

(
∂L(t, q, q̇)

∂q̇i

∣∣∣∣
q̇=

dq(t)
dt

)
− ∂L(t, q, q̇)

∂qi

∣∣∣∣
q̇=

dq(t)
dt

, i = 1, . . . , n , (2.3)

and similarly [L̃]Qj :

[L̃]Qj (t) :=
d

dt

 ∂L̃(t, Q, Q̇)

∂Q̇j

∣∣∣∣∣
Q̇=

dQ(t)
dt

− ∂L̃(t, Q, Q̇)

∂Qj

∣∣∣∣∣
Q̇=

dQ(t)
dt

, j = 1, . . . ,m . (2.4)

Then we have the following transformation formula:

[L̃]Qj (t) =
n∑
i=1

[L]qi (t) ·
∂Φi(t, Q)

∂Qj

∣∣∣∣
Q=Q(t)

, j = 1, . . . ,m . (2.5)

One can prove this theorem by a very long direct computation, using the relations q =
Φ(t, Q) and dQ

dt
= ∂Φ(t,Q)

∂t
+ ∂Φ(t,Q)

∂Q
dq
dt

and differentiating the identity (2.2) with respect to

Qj and Q̇j. But one can also prove Theorem 2.1 in a surprisingly different way, as we shall
see in the next section.

The conclusion of Theorem 2.1 is that [L̃]Q depends linearly on [L]q, namely [L̃]Q =
[L]q · ∂Φ

∂Q
, viewing [L]q(t) and [L̃]Q(t) as row vectors. Note that this is not the same

as the transformation formula dq
dt

= ∂Φ
∂t

+ ∂Φ
∂Q
· dQ
dt

for the velocity vectors, even if Φ is

independent of t. The classical terminology is that [L]q transforms covariantly and dq
dt

transforms contravariantly.
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2.2 A variational proof of Theorem 2.1

This section contains a “variational” proof of Theorem 2.1. It will become clear what this
means. I myself think that this proof is quite surprising.

We start with letting q : I → U ⊂ Rn be a C2 curve in U and L : I×U ×Rn → R a C2

Lagrangian function. Then we can integrate L over compact pieces of the curve t 7→ q(t).
Hence we fix some a, b ∈ I, a < b and define the action of L along q restricted to [a, b] as

A(q) :=

∫ b

a

L

(
t, q(t),

dq(t)

dt

)
dt .

The next step is to consider small perturbations of the curve t 7→ q(t), depending on an
auxiliary parameter ε. That is we consider C2 maps

q̃ : I × (−ε0, ε0)→ U ,

with the property that q̃(t, 0) = q(t). For an ε ∈ (−ε0, ε0) close to 0, the curve qε : t 7→
q̃(t, ε) lies “close” to the curve t 7→ q(t), and hence such a map q̃ is called a variation of
the curve t 7→ q(t). Now the action can be viewed as a function ε 7→ A(qε) on (−ε0, ε0).
Due to the theorem for interchanging differentiation and integration, this function is itself
differentiable and differentiation gives:

d

dε

∣∣∣∣
ε=0

A(qε) =

∫ b

a

d

dε

∣∣∣∣
ε=0

L

(
t, qε(t),

dqε(t)

dt

)
dt =

∫ b

a

n∑
i=1

 ∂L(t, q, q̇)

∂qi

∣∣∣∣ q = q(t)

q̇ =
dq(t)

dt

∂q̃i(t, ε)

∂ε

∣∣∣∣
ε=0

+
∂L(t, q, q̇)

∂q̇i

∣∣∣∣ q = q(t)

q̇ =
dq(t)

dt

∂2q̃i(t, ε)

∂t∂ε

∣∣∣∣
ε=0

 dt .

Partial integration with respect to t of the second term in this expression now gives that
this is equal to

−
∫ b

a

n∑
i=1

[L]qi (t)
∂q̃i(t, ε)

∂ε

∣∣∣∣
ε=0

dt+ “boundary terms” .

If we consider only variations q̃ of q with fixed endpoints, that is q̃(a, ε) = q̃(a, 0) = q(a) and

q̃(b, ε) = q̃(b, 0) = q(b), then ∂q̃(a,ε)
∂ε

= ∂q̃(b,ε)
∂ε

= 0, whence the boundary terms disappear.
From now on we will assume that our variations have fixed endpoints.

If q(t) = Φ(t, Q(t)) with Φ : I × Ũ → U , and Q̃ : I × (−ε0, ε0) → Ũ is a variation of
Q(t) with fixed endpoints, consisting of curves Qε(t) := Q̃(t, ε), then q̃(t, ε) := Φ(t, Q̃(t, ε))
is a variation of t 7→ q(t) with fixed endpoints. The definition (2.2) of L̃ implies that

L̃
(
t, Qε(t),

dQε(t)
dt

)
= L

(
t, qε(t),

dqε(t)
dt

)
, so that

A(qε) = Ã(Qε) :=

∫ b

a

L̃

(
t, Qε(t),

dQε(t)

dt

)
dt .
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Thus, differentiation of the identity A(qε) = Ã(Qε) with respect to ε at ε = 0 gives that∫ b

a

n∑
i=1

[L]qi (t)
∂q̃i(t, ε)

∂ε

∣∣∣∣
ε=0

dt =

∫ b

a

m∑
j=1

[L̃]Qj (t)
∂Q̃j(t, ε)

∂ε

∣∣∣∣∣
ε=0

dt . (2.6)

On the other hand, differentiation of q̃i(t, ε) = Φi(t, Q̃(t, ε)) gives that

∂q̃i(t, ε)

∂ε

∣∣∣∣
ε=0

=
m∑
j=1

∂Φi(t, Q)

∂Qj

∣∣∣∣
Q=Q(t)

∂Q̃j(t, ε)

∂ε

∣∣∣∣∣
ε=0

,

and we conclude that∫ b

a

m∑
j=1

(
[L̃]Qj (t)−

n∑
i=1

[L]qi (t)
∂Φi(t, Q)

∂Qj

∣∣∣∣
Q=Q(t)

)
∂Q̃j(t, ε)

∂ε

∣∣∣∣∣
ε=0

dt = 0 , (2.7)

for every C2 variation Q̃ of Q.

Finally, suppose that [L̃]Qj (t) 6=
∑n

i=1[L]qi (t)
∂Φi(t,Q)
∂Qj

∣∣∣
Q=Q(t)

for some 1 ≤ j ≤ m and at

some t = t∗ with a < t∗ < b. Then because of continuity, inequality holds in an interval
[t∗ − δ, t∗ + δ]. If we now choose a variation Q̃ of Q with Q̃k(t, ε) = Qk(t) for k 6= j and
Q̃j(t, ε) = Qj(t) + εχ(t), with χ some nonzero C2 function of fixed sign and with compact
support in [t∗− δ, t∗+ δ], then for this variation, formula (2.7) is not true: a contradiction.
This proves Theorem 2.1.

2.3 Euler-Lagrange equations

For a given C2 function L : I × U × Rn → R, the equations of motion

[L]q = 0

for the curve t 7→ q(t) in U are called the Euler-Lagrange equations for L and L is called
the Lagrangian function for the equations [L]q = 0.

A particular consequence of Theorem 2.1 is that if t 7→ q(t) solves the Euler-Lagrange
equations for L and q(t) = Φ(t, Q(t)), then t 7→ Q(t) automatically solves the Euler-
Lagrange equations for L̃. If for all t ∈ I, Φ(t, ·) is a diffeomorphism, that is if ∂Φ

∂Q
is

invertible, then the reverse statement is also true. This expresses that Euler-Lagrange
equations for q(t) are defined coordinate-invariantly, which is hardly surprising because
they are equivalent to a variational principle.

More precisely, the proof of Theorem 2.1 shows that [L]q = 0 if and only if

d

dε

∣∣∣∣
ε=0

A(q̃(·, ε)) =
d

dε

∣∣∣∣
ε=0

∫ b

a

L

(
t, q̃(t, ε),

∂q̃(t, ε)

∂t

)
dt = 0

for all a, b ∈ I and all C2 maps q̃ : I × (−ε0, ε0)→ U with the property that

12



1. q̃ is a variation of q, i.e. q̃(t, 0) = q(t).

2. q̃ has fixed endpoints, i.e. q̃(a, ε) = q(a) and q̃(b, ε) = q(b).

In short, we say that the action A is stationary at the curve t 7→ q(t) for variations with
fixed endpoints. Some authors express this by writing

δA(q) = δ

∫ b

a

L

(
t, q(t),

dq(t)

dt

)
dt = 0 ,

thus expressing that the “derivative” of A at the curve t 7→ q(t) is zero. We will not use
this notation.

The statement that t 7→ q(t) is a solution of the equations [L]q = 0 if and only if it is

stationary for A(q) =
∫ b
a
L(t, q(t), dq(t)

dt
)dt for variations with fixed endpoints is known as

Hamilton’s principle.

Let us study the Euler-Lagrange equations for L in some more detail now. Written out
explicitly, they read dqi

dt
= q̇i and

∂2L(t, q, q̇)

∂t∂q̇i
+

n∑
j=1

(
∂2L(t, q, q̇)

∂qj∂q̇i
q̇j +

∂2L(t, q, q̇)

∂q̇j∂q̇i

dq̇j
dt

)
− ∂L(t, q, q̇)

∂qi
= 0 , i = 1, . . . , n .

(2.8)

If the second order derivative matrix ∂2L(t,q,q̇)
∂q̇2

∣∣∣ q = q(t)

q̇ =
dq(t)

dt

is invertible, then we call L a non-

degenerate Lagrangian at (t, q, q̇). Nondegeneracy implies that near (t, q, q̇) we can rewrite
the Euler-Lagrange equations explicitly as a system dqi

dt
= q̇i ,

dq̇i
dt

= φ̃i(t, q, q̇), and in par-
ticular we then have local existence and uniqueness of the solutions to the Euler-Lagrange
equations. The requirement that ∂2L

∂q̇2
is invertible is called the Legendre condition.

The final remark in this section is that if, for a C2 Lagrangian function L = L(t, q, q̇), we
define the function h = ∂L

∂q̇
· q̇ − L, that is

h(t, q, q̇) :=
n∑
i=1

∂L(t, q, q̇)

∂q̇i
q̇i − L(t, q, q̇) , (2.9)

then it is easy to compute that

d

dt
h

(
t, q(t),

dq(t)

dt

)
= − ∂L(t, q, q̇)

∂t

∣∣∣∣ q = q(t)

q̇ =
dq(t)

dt

+
n∑
i=1

[L]qi (t)
dqi(t)

dt
. (2.10)

Corollary 2.2 If t 7→ q(t) is a solution to the Euler-Lagrange equations [L]q = 0 and L
does not explicitly depend on time, then h := ∂L

∂q̇
· q̇ − L is constant along t 7→ q(t).
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2.4 Natural mechanical systems

Let us now return to Newton’s equations of motion in conservative form,

mi
d2qi
dt

= −∂V (q)

∂qi
, (2.11)

for which we defined the kinetic energy T (q̇) =
∑n

i=1
1
2
miq̇

2
i , the potential energy V (q) and

the total energy E = T +V . The interesting remark is that if we also define the Lagrangian
function

L : U × Rn , L(q, q̇) = T (q̇)− V (q) ,

of kinetic energy minus potential energy, then

[L]qi (t) = mi
d2qi(t)

dt2
+
∂V (q)

∂qi

∣∣∣∣
q=q(t)

.

In other words, t 7→ q(t) solves Newton’s equations of motion (2.11) if and only if [T−V ]q =
0.

Moreover, if L(q, q̇) = T (q̇) − V (q), with T (q̇) =
∑n

i=1
1
2
miq̇

2
i , then

∑n
i=1

∂L(q,q̇)
∂q̇i

q̇i =∑n
i=1

∂T (q̇)
∂q̇i

q̇i = 2T (q̇), so that

h(q, q̇) = T (q̇) + V (q) = E(q, q̇) ,

and we find that h is equal to our old constant of motion, the total energy E.

If T (q̇) is the kinetic energy function as above and q = Φ(Q), q̇ = ∂Φ(Q)
∂Q
· Q̇, then the

transformed kinetic energy S(Q, Q̇) = T (q̇) is of the form

S(Q, Q̇) =
1

2

n∑
i,j=1

βij(Q)Q̇iQ̇j

for certain functions Q 7→ βij(Q) that are symmetric in the sense that βij = βji for all
1 ≤ i, j ≤ n.

Some terminology: Mechanical systems with a Lagrangian of the form L(q, q̇) = S(q, q̇)−
V (q), with S quadratic in q̇, are sometimes called natural mechanical systems, because they
can arise from Newton’s equations possibly after a coordinate change. It should be clear
now that the definition of a natural mechanical system does not depend on the choice
of coordinates. As before, the function S is called the kinetic energy or free energy of
the natural system and V the potential energy. By the above remarks, the total energy
E := S + V of a natural mechanical system is conserved.

2.5 Lagrangian equations for continua

Using Hamilton’s principle as a physical postulate, we can derive equations of motion for
the evolution of continuous media such as gases, fluids or elastic solids.

14



A continuum is modeled by a map ψ : X → Rn, where X ⊂ Rm is an open subset of
Rm. X is called the reference configuration of the continuum, and for x ∈ X, ψ(x) is the
location in Rn of the element of the continuum with label x. A motion of the continuum
is a smooth map u : I × X → Rn, where I ⊂ R is an open time-interval. Then the map
u(t, ·) : X → Rn describes the configuration of the continuum at time t, whereas the curve
t 7→ u(t, x), I → Rn describes the motion of the element of the continuum with label x.

If ρ : X → R is a mass density function, then the kinetic energy of the continuum is
obtained by integrating the kinetic energy density 1

2
ρ(x)||u̇(x)||2 over X, where we denoted

u̇(x) = ∂u(t,x)
∂t

:

T (u̇) =

∫
X

1

2
ρ(x)||u̇(x)||2 dmx .

The potential energy of the continuum at time t depends on the function x 7→ u(t, x) and
may depend on the (x-)derivatives of this function. It is usually obtained by integrating a
potential energy density function. For instance if we assume that it costs energy to stretch
the continuum but not to bend it, then we are saying that the potential energy density
depends only on the values of x, u(t, x) and the matrix of first derivatives Du(t, x) :=(
∂ui(t,x)
∂xj

)
i,j

, and not on higher order derivatives. That is

V (u(t, ·)) =

∫
X

W (x, u(t, x), Du(t, x))dmx ,

in which W : X × Rn × Rn×m → R is a smooth function. Let us denote the arguments of
W by (x, u,B), where x ∈ X, u ∈ Rn, B ∈ Rn×m.

Now Hamilton’s principle means that u : I ×X → Rn satisfies

d

dε

∣∣∣∣
ε=0

∫ b

a

∫
X

1

2
ρ(x)

∣∣∣∣∣∣∣∣∂ũ(t, x, ε)

∂t

∣∣∣∣∣∣∣∣2 −W (x, ũ(t, x, ε), Dũ(t, x, ε)) dmx dt = 0

for all smooth variations ũ : I ×X × (−ε0, ε0)→ Rn of u with fixed (temporal) endpoints.
Let us choose the variations of the form ũ(t, x, ε) = u(t, x) + εφ(t, x), where φ is smooth
and has a compact support that is contained in I ×X. Bringing the derivative inside the
integral we then obtain∫ b

a

∫
X

∑
i

ρ(x)
∂ui(t, x)

∂t

∂φi(t, x)

∂t
−
∑
i

∂W (t, u, B)

∂ui

∣∣∣∣
u = u(t, x)
B = Du(t, x)

· φi(t, x)

−
∑
i,j

∂W (t, u, B)

∂Bij

∣∣∣∣
u = u(t, x)
B = Du(t, x)

· ∂φi(t, x)

∂xj
dmx dt = 0 . (2.12)

If u is smooth enough, partial integration gives that this equals

∑
i

∫ b

a

∫
X

φi(t, x)

−ρ(x)
∂2ui(t, x)

∂t2
− ∂W (t, u, B)

∂ui

∣∣∣∣
u=u(t, x)
B =Du(t, x)

+
∑
j

∂

∂xj

∂W (t, u, B)

∂Bij

∣∣∣∣
u=u(t, x)
B =Du(t, x)

 dmxdt.
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Thus we derived from Hamilton’s principle the partial differential equations

ρ(x)
∂2ui
∂t2

+
∂W

∂ui
−

m∑
j=1

∂

∂xj

∂W

∂Bij

= 0 , i = 1, . . . , n . (2.13)

Equations (2.13) form a system of n partial differential equations for the n functions ui,
depending explicitly on the second order derivatives of the ui with respect to t and the first
and second order derivatives of the ui with respect to the xj. If W had been a function
of the second order derivatives D2u as well, then the resulting partial differential equation
for u would have included fourth-order x-derivatives of u, etc. The reader may want to try
and derive these equations.

2.6 Exercises

Exercise 2.1 Let U ⊂ Rn and Ũ ⊂ Rm be open subsets and let T : U × Rn → R and
V : U → R be C2 functions, with T (q, q̇) =

∑n
i,j=1

1
2
βij(q)q̇iq̇j with βij(q) = βji(q) and let

L(q, q̇) = T (q̇) − V (q). Let Φ : Ũ → U be a C2 map and let L̃ be defined by L̃(Q, Q̇) =

L(Φ(Q), ∂Φ(Q)
∂Q
· Q̇). Show that

L̃(Q, Q̇) =
1

2

m∑
i,j=1

1

2
β̃ij(Q)Q̇iQ̇j − V (Φ(Q)) ,

in which

β̃ij(Q) =
n∑

k,l=1

βkl(Q)
∂Φk(Q)

∂Qi

∂Φl(Q)

∂Qj

.

Prove that β̃ij(Q) = β̃ji(Q).

Exercise 2.2 (Rotating coordinates) Let U = Ũ = R2 and let Φ : R × R2 → R2 be a
one-parameter family of rotations: q = Φ(t, Q) = etσJ ·Q, where σ is a real constant and

J =

(
0 1
−1 0

)
.

• If T (q̇) = 1
2
m〈q̇, q̇〉 is the kinetic energy of a free particle, compute the transformed

kinetic energy T̃ (t, Q, Q̇). Show that it does not depend on t explicitly so that T̃ =
T̃ (Q, Q̇).

• Show that

[T̃ ]Q(t) = m

(
d2Q(t)

dt2
+ 2σJ

dQ(t)

dt
− σ2Q(t)

)
.

• Let V = V (q) be a rotation-symmetric potential energy function. Show that Ṽ
is independent of t and write down the Euler-Lagrange equations for L̃(Q, Q̇) =
T̃ (Q, Q̇)− Ṽ (Q).
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Exercise 2.3 We model a one-dimensional string by letting the reference and target config-
uration be one-dimensional: X = J ⊂ R is an open interval and for a smooth u : I×J → R,
u(t, ·) describes the configuration of the string at time t. For a smooth mass density
ρ : J → R, and velocity function u̇ : J → R, define the kinetic energy

T (u̇) =

∫
J

1

2
ρ(x)u̇(x)2dx .

Denoting u(j)(x) := ∂ju(x)
∂xj , assume that the potential energy is given by

V (u) =

∫
J

W (x, u(x), u(1)(x), . . . , u(k)(x))dx ,

where W is a smooth potential energy density function W : Rk+2 → R. Use Hamilton’s
principle to derive for u the partial differential equation

ρ(x)
∂2u(t, x)

∂t2
+

k∑
j=0

(−1)j
∂j

∂xj
∂W (x, u, . . . , u(k))

∂u(j)

∣∣∣∣
u=u(t,x),...,u(k)=u(k)(t,x)

= 0 .

If W = W (u(1)) depends on the amount of “stretching” of the string only, we say that the
string is purely elastic. For an elastic string derive the equation

ρ(x)
∂2u(t, x)

∂t2
=
∂2u(t, x)

∂x2
W ′
(
∂u(t, x)

∂x

)
.

Exercise 2.4 (Minimal surfaces) Let X ⊂ R2 be a bounded open subset with a C2

boundary ∂X. Let h : X → R be a continuous function that is C2 on X. Then the graph
of h, graph(h) := {(x, h(x)) | x ∈ X } is a smooth surface with a finite area that equals

S(h) :=

∫
X

||

 1
0

∂h(x)
∂x1

×
 0

1
∂h(x)
∂x2

 || d2x =

∫
X

√
1 +

(
∂h(x)

∂x1

)2

+

(
∂h(x)

∂x2

)2

d2x .

We say that the graph of h is a minimal surface over X if S(g) ≥ S(h) for all continuous
functions g : X → R that are C2 on X and equal to h on ∂X. In particular this implies
that S(h + εφ) ≥ S(h) if φ is some C2 function on X with compact support contained in
X. Prove that this implies that on X, h satisfies the partial differential equation(

1 + h2
x1

+ h2
x2

)
(hx1x1 + hx2x2) = h2

x1
hx1x1 + 2hx1hx2hx1x2 + h2

x2
hx2x2 .

Here we used the shorthand notation hα := ∂h
∂α

. This equation is called the minimal surface
equation.
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3 The geodesic flow

In this chapter we will start making use of concepts from differential geometry. Where
previously the configuration space of a mechanical system was an open subset U of Rn, we
now also allow the configuration space to be some n-dimensional differentiable manifold,
denoted Q.

Recall that a differentiable manifold is a topological space that locally looks like an
open subset of Rn. As such, the open set U ⊂ Rn can be thought of as a coordinate patch
for the manifold Q. Similarly, the space U × Rn of positions and velocities is replaced by
the tangent bundle TQ of Q. The reader is supposed to be sufficiently familiar with these
concepts.

3.1 Riemannian manifolds

Riemannian manifolds were -no surprise- introduced by Riemann. His discovery was that
by defining on every tangent space of a manifold an inner product, one can study concepts
like curvature and shortest paths. In this chapter we will focus on the latter, the so-called
geodesics.

Let us start with the notion of a pseudo-inner product:

Definition 3.1 Let V be a finite-dimensional linear space. A pseudo-inner product on V
is a mapping

β : V × V → R

with the following properties:

1. Symmetry: β(v, w) = β(w, v) for all v, w ∈ V .

2. Bilinearity: β(v1 + sv2, w) = β(v1, w) + sβ(v2, w) for all v1, v2, w ∈ V and s ∈ R.

3. Nondegeneracy: if β(v, w) = 0 for all w ∈ V , then v = 0.

If in addition, we require

4. Positivity: β(v, v) ≥ 0,

then β is called an inner product.

With this definition, we can define

Definition 3.2 A Ck (pseudo-)Riemannian manifold is a Ck manifold Q for which a
(pseudo-)inner product βq : TqQ× TqQ→ R is defined on each tangent space TqQ, in such
a way that this inner product depends in a Ck way on q ∈ Q.
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The family βq of (pseudo-)inner products on TqQ is called a (pseudo-)Riemannian metric
on Q.

In induced local coordinate U × Rn for the tangent bundle TQ, any (pseudo-)inner
product takes the form

(q̇1, q̇2) ∈ Rn × Rn 7→
n∑

i,j=1

βij(q)q̇
1
i q̇

2
j .

The matrix β(q) with coefficients βij(q) is symmetric, nondegenerate and, if we require
positivity, positive definite. Moreover, it depends explicity on the local coordinates. The
requirement that β(q) depends in a Ck way on q ∈ Q in Definition 3.2, just means that
the functions q 7→ βij(q) on U are Ck.

Remark 3.3 (Quadratic forms) One can observe that a pseudo-inner product β : V ×
V → R on a linear space V defines a nondegenerate quadratic form Sβ : V → R by setting

Sβ(v) :=
1

2
β(v, v) .

On the other hand, given a nondegenerate quadratic form S on V , the unique pseudo-inner
product β on V for which Sβ = S, is given by

βS(v, w) :=
1

2
(S(v + w)− S(v)− S(w)) .

Hence, giving a nondegenerate quadratic form on a linear space is equivalent to giving
a pseudo-inner product on that space. And: giving a pseudo-Riemannian metric β on a
manifold Q is equivalent to giving a function S : TQ → R of positions and velocities, for
which for every q ∈ Q, the restriction S|TqQ to TqQ is a nondegenerate quadratic form.
The requirement that the metric β is Ck therefore is equivalent to the requirement that
Sβ : TQ→ R is a Ck function.

This shows that giving a pseudo-Riemannian metric on a manifold Q is equivalent to
giving a kinetic energy function S on TQ. Hence, by “pseudo-Riemannian metric” we will
sometimes mean β and sometimes also the corresponding kinetic energy S.

3.2 Geodesics

Let β be a Riemannian metric (not a pseudo-Riemannian metric) on the manifold Q. If
q̇ ∈ TqQ, then we say that its length ||q̇||q is given by

||q̇||q :=
√
βq(q̇, q̇) .

Now if γ : [a, b]→ Q is a smooth curve in Q, then dγ(t)
dt
∈ Tγ(t)Q, which allows us to define

the length of the curve γ as

l(γ) :=

∫ b

a

∣∣∣∣∣∣∣∣dγ(t)

dt

∣∣∣∣∣∣∣∣
γ(t)

dt .
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The following proposition shows that this definition is independent of the parametrization
of γ:

Proposition 3.4 Let ψ : [c, d] → [a, b] be an orientation preserving diffeomorphism, that
is: ψ(c) = a, ψ(d) = b and dψ

ds
> 0. Then l(γ ◦ ψ) = l(γ).

Proof:

l(γ ◦ ψ) =

∫ d

c

∣∣∣∣∣∣∣∣ dds(γ ◦ ψ)(s)

∣∣∣∣∣∣∣∣
γ(ψ(s))

ds =

∫ d

c

∣∣∣∣∣∣∣∣dγ(t)

dt

∣∣∣∣∣∣∣∣
γ(t)

∣∣∣∣∣
t=ψ(s)

· dψ(s)

ds
ds = l(γ) ,

where the second equality follows from the chain rule and the bilinearity of βγ(t) and the
last equality follows from a substitution of variables t = ψ(s). �

If dγ(t)
dt
6= 0 for all t, the ambiguity in the parameterization can be removed by requiring

that γ be parameterized by arclength. We say that a curve γ : [a, b]→ Q is parameterized
by arclength if

l(γ|[a,t]) = t− a .

This is of course equivalent to ||dγ(t)
dt
||γ(t) = 1.

Note that l(γ) is the action integral along γ of the Lagrangian L : TQ→ R defined by
L(q, q̇) =

√
βq(q̇, q̇). We conclude that if γ : [a, b]→ Q is a C2 curve with γ(a) = q0, γ(b) =

q1 is the shortest C2 curve from q0 to q1, then γ must satisfy the Euler-Lagrange equation
[L]γ = 0.

Unfortunately though, the Lagrangian L is a bit nasty. First of all, it is not differentiable
at the points (q, q̇) ∈ TQ for which q̇ = 0, because of the square root. A more serious
problem is that L is degenerate: because L(q, λq̇) = λL(q, q̇) for all λ > 0, the derivative
∂2L(q,q̇)
∂q̇∂q̇

has q̇ in its kernel. This implies that the Euler-Lagrange equations [L]γ = 0 for
L do not give rise to an explicit system of second order differential equations. Of course,
this is closely related to the fact that any reparameterization of a shortest curve is also a
shortest curve.

The solutions to [L]γ = 0 become unique if we require that they are parameterized by
arclength. Indeed, if γ is parameterized by arclength, then L = 1 along γ. Now recall
the definition of the kinetic energy T = 1

2
L2, i.e. T (q, q̇) = 1

2
βq(q̇, q̇) and observe that

dT = LdL. This implies that [L]γ = [T ]γ if γ is parameterized by arclength.
T is of course a nondegenerate Lagrangian. Moreover, as T is a constant of motion for

the equations [T ]γ = 0, the solution curves of [T ]γ = 0 for which T = 1
2

are automatically
solutions of [L]γ = 0 parameterized by arclength. This inspires the following definition:

Definition 3.5 A geodesic in a pseudo-Riemannian manifold (Q, β) is a solution to the
Euler-Lagrange equations

[S]q = 0 ,

where the kinetic energy S : TQ→ R is defined by S : q̇ ∈ TqQ 7→ 1
2
βq(q̇, q̇).
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Note that in the definition of a geodesic we did not require the metric to be a Riemannian
one. In a Riemannian manifold, the geodesics for which S = 1

2
are those parameterized

by arclength. Because S has the interpretation of kinetic energy, we also say that the
geodesics describe the motion of a free particle in Q, where “free” refers to the absence of
external forces.

Remark 3.6 (Unit tangent bundle) The flow of the Euler-Lagrange equations [T ]q = 0
on TQ is called the geodesic flow. Because S is a constant of motion for the geodesic flow,
it leaves the so-called unit tangent bundle

(TQ)1 := {(q, q̇) ∈ TQ |S(q, q̇) =
1

2
}

invariant. If β is a Riemannian metric, the intersection of (TQ)1 with the tangent space
TqQ is diffeomorphic to a n−1-dimensional sphere. If moreover Q is compact, this implies
that (TQ)1 is a compact manifold, and hence the geodesic flow restricted to the unit tan-
gent bundle is complete (i.e. solutions exist for all time).

One can prove that if the so-called sectional curvatures of a compact Riemannian mani-
fold are negative, then the geodesic flow on (TQ)1 is mixing. Loosely speaking, this means
that the geodesic flow mixes or “stirs” the elements of (TQ)1 very well.

Remark 3.7 (Einstein’s general relativity) Pseudo-Riemannian metrics that are in
some sense “minimally” nonpositive (never mind the exact definition now) are called
Lorentzian metrics and Q is then called a Lorentzian manifold. This is the setting of
Einstein’s theory of general relativity, in which Q is a 4-dimensional manifold called “space-
time” and on which the Lorentzian metric β describes a gravitational field.

We say that the curve t 7→ q(t), I → Q in the Lorentzian manifold Q is space-like if
β(q(t))(dq(t)/dt, dq(t)/dt) > 0 for all t, time-like if β(q(t))(dq(t)/dt, dq(t)/dt) < 0 for all t
and light-like if β(q(t))(dq(t)/dt, dq(t)/dt) = 0 for all t.

Einstein’s theory now says that a free massive relativistic particle is described by a time-
like geodesic in Q for the Lorentzian metric, while light follows the light-like geodesics in
space-time. No particle can travel on a space-like curves, as such a particle would move
faster than light.

3.3 The geodesic equations

In local coordinates, the equations of motion for geodesics are found by writing out the
Euler-Lagrange equations [S]qi = 0 for the kinetic energy

S(q, q̇) =
1

2
β(q)(q̇, q̇) =

1

2

n∑
i,j=1

βij(q)q̇iq̇j .

From the general formula (2.8) we see that these equations read dql
dt

= q̇l and

n∑
m=1

βlm(q)
dq̇m
dt

+
1

2

n∑
j,k=1

(∂jβkl(q) + ∂kβjl(q)− ∂lβjk(q)) q̇j q̇k . (3.1)
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If we now denote by
βlm(q) =

(
β(q)−1

)
lm

the (l,m)-th element of the inverse of the matrix β(q), then multiplying (3.1) by βil(q) and
summing over l, we obtain the explicit formulas

dqi
dt

= q̇i ,
dq̇i
dt

= −
n∑

j,k=1

Γijk(q)q̇j q̇k , (3.2)

where

Γijk(q) :=
1

2

n∑
l=1

βil(q) (∂jβkl(q) + ∂kβjl(q)− ∂lβjk(q)) . (3.3)

are called the Christoffel symbols of the metric.
The differential equations (3.2) have the following special property: if the curve t 7→ γ(t)

solves (3.2) and a ∈ R is a constant, then the curve t 7→ δ(t) defined by δ(t) := γ(at) also
solves (3.2). It is straightforward to check this. A differential equation with this property
is called a spray.

3.4 Excursion: the Jacobi metric

We will show in this section that solution curves of natural mechanical systems can be
viewed as the geodesics of a special metric.

Let L = S − V : TQ → R be a natural Lagrangian, which means that S|TqQ is a
nondegenerate quadratic form and V is constant on each TqQ. In local coordinates (q, q̇)
for TQ this just means that S(q, q̇) = 1

2

∑n
j,k=1 βjk(q)q̇j q̇k and V = V (q). In the same local

coordinates, the Euler-Lagrange equations for such L read

d2qi
dt2

= −
n∑

j,k=1

Γijk(q)
dqj
dt

dqk
dt
−

n∑
l=1

βil(q)
∂V (q)

∂ql
, (3.4)

with Γijk as in (3.3). We saw before that the total energy E = T+V : TQ→ R is a constant
of motion for equations (3.4). We now have the following theorem that characterizes the
solution curves of equations (3.4) in terms of the geodesics of a special metric:

Theorem 3.8 (Jacobi-Maupertuis principle) Let S : TQ → R be a smooth pseudo-
Riemannian metric and let V : Q → R be a smooth potential energy function. Let t 7→
q(t), I → Q be a curve in Q such that E

(
q(t), dq(t)

dt

)
= e ∈ R and V (q(t)) 6= e for all t.

Then the map t 7→ s(t), I → R defined by

s(t) = 2

∫ t

0

e− V (q(τ))dτ .
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is a diffeomorphism onto its image J . We denote its inverse by s 7→ t(s), J → I.
Moreover, the curve t 7→ q(t) in Q is a solution to the Euler-Lagrange equation [S −

V ]q = 0, if and only if the curve s 7→ q(t(s)), J → Q is a geodesic of the “Jacobi metric”

S̃ = (e− V )S .

Proof: Because ds(t)
dt

= e − V (q(t)) 6= 0, the inverse function theorem guarantees that
t 7→ s(t) is a diffeomorphism onto its image. Let us denote the reparametrized curve by
s 7→ q(s) := q(t(s)), or equivalently, q(s(t)) = q(t).

We work in local coordinates on Q now. Differentiation of the identity q(t) = q(s(t))

with respect to t twice leads to the identities dqi
dt

= 2(e − V (q))
dq

i

ds
and d2qi

dt2
= 4(e −

V (q))2 d
2q

i

ds2
− 4(e−V (q))

dq
i

ds

∑n
l=1

∂V (q)
∂ql

∣∣∣
q=q
· dql

ds
. We conclude that the curve t 7→ q(t) solves

equations (3.4) if and only if s 7→ q(s) satisfies

d2q
i

ds2
= −

n∑
j,k=1

Γijk
dq

j

ds

dq
k

ds
+

1

e− V
dq

i

ds

n∑
l=1

∂V

∂ql

dq
l

ds
− 1

4 (e− V )2

n∑
l=1

βil
∂V

∂ql
.

Using that e − V = 1
2

∑n
j,k=1 βjk

dqj
dt

dqk
dt

= 2 (e− V )2∑n
j,k=1 βjk

dq
j

ds

dq
k

ds
along solutions, we

then finally find that
d2q

i

ds2
= −

n∑
j,k=1

Γ̃ijk
dq

j

ds

dq
k

ds
,

in which

Γ̃ijk = Γijk −
1

2(e− V )

(
δik
∂V

∂qj
+ δij

∂V

∂qk
− βjk

n∑
l=1

βil
∂V

∂ql

)
. (3.5)

Incidentally, the Γ̃ijk are also exactly the Cristoffel symbols of the metric

S̃(q, q̇) = (e− V (q))S(q, q̇)

defined on the subset of q ∈ Q for which V (q) 6= e. This last claim is easy to verify by a
short computation. �

When E = S + V = e, then the condition that V 6= e is equivalent to the condition that
S 6= 0. Hence the Jacobi-Maupertuis principle holds for curves that never have zero kinetic
energy. When S defines a Riemannian metric, then S(q, q̇) 6= 0 if and only if S(q, q̇) > 0 if
and only if q̇ 6= 0 and the condition that e 6= V implies that e− V > 0. Hence the Jacobi
metric (e− V )S then is automatically a Riemannian metric.
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3.5 Exercises

Exercise 3.1 (Geodesics on the sphere) Denote by Sn the n-dimensional sphere:

Sn := {x ∈ Rn+1 | 〈x, x〉 = 1} .

Prove that for every x ∈ Sn and every nonzero ẋ ∈ Rn with 〈x, ẋ〉 = 0, the curve

γx,ẋ(t) := cos(||ẋ||t)x+
sin(||ẋ||t)
||ẋ||

ẋ

is a geodesic with γx,ẋ(0) = x, γ′x,ẋ(0) = ẋ.

Exercise 3.2 [The hyperbolic half plane] I copied this exercise from the lecture notes on
Classical Mechanics of J.J. Duistermaat.

Let H = {z ∈ C | Im z > 0} be the complex upper half plane, which can be viewed as
an open subset of R2 by identifying x+ iy ∈ C with (x, y) ∈ R2. Moreover, let SL(2,R) be
the group of 2×2 matrices A with real coefficients and detA = 1. For every A ∈ SL(2,R),
we define the fractional linear transformation ΦA : C→ C by

ΦA(z) :=
az + b

cz + d
if A =

(
a b
c d

)
.

Prove the following results:

• ΦA is complex differentiable with derivative Φ′A(z) = (cz + d)−2 and maps ΦA(H) ⊂
H. Moreover, ΦI = idC and ΦA ◦ ΦB = ΦAB. ΦA is a diffeomorphism of H with
(ΦA)−1 = ΦA−1.

• For every z ∈ H and nonzero v ∈ C there is exactly one A ∈ SL(2,R)/{±1} with
ΦA(z) = i and Φ′(z)v a positive multiple of i.

• Let β be a Riemannian structure on H with the property that every fractional linear
transformation ΦA is an isometry of β. Then β is uniquely defined by βi by

βz(v, v) = βi(Φ
′
A(z)v,Φ′A(z)v) ,

for every A ∈ SL(2,R) with ΦA(z) = i.

• This defines a Riemannian structure on H for which every fractional linear transfor-
mation is an isometry if and only if

βi(v, v) = βi(Φ
′
A(i)v,Φ′A(i)v)

for all A ∈ SL(2,R) with ΦA(i) = i. Equivalently, there is a c > 0 such that
βi(v, v) = c|v|2. Choose c = 1. In this way, we get

βz(v, v) = (Im z)−2|v|2 , z ∈ H, v ∈ C .
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• The reflection S : x+ iy 7→ −x+ iy is an isometry of this metric. If γ is a geodesic
with γ(0) = i and γ′(0) = i, then δ := S ◦ γ is also a geodesic with δ(0) = i and
δ′(0) = i. We have that δ = γ, i.e. γ(t) = iy(t) for some positive real valued
function y(t). The condition that the geodesic is parameterized by arclength leads to
the conclusion that y′/y = 1, so that γ(t) = iet.

• Every geodesic parametrized by arclength is of the form ΦA ◦ γ with γ as above. If
c 6= 0 and d 6= 0 respectively, then

lim
t→∞

δ(t) =
a

c
and lim

t→−∞
δ(t) =

b

d
.

If c 6= 0 and d 6= 0, then the orbit of δ is a half circle with its center on the real axis.
If c = 0 or d = 0, then the orbit of δ is a vertical half line.

Remark 3.9 H is called the hyperbolic half plane. The hyperbolic metric β makes it a
surface of negative “curvature”. The hyperbolic half plane is a standard example of a
non-Euclidean geometry.

Exercise 3.3 (Einstein’s special relativity) In Einstein’s theory of special relativity,
one introduces the so-called Lorentzian space-time. Let us consider the case of one space-
dimension, i.e. space-time is R2 = R × R. Let us denote its elements by (t, x), that have
the interpretation of the time- and space-coordinates respectively.

Let c > 0 be a real constant, with the interpretaton of the speed of light, and let α > 0 be
another constant, to be determined later. For (t, x) ∈ R2, let us now define on the tangent
space T(t,x)R2 ∼= R2, the bilinear form

β(t,x) : ((ṫ1, ẋ1), (ṫ2, ẋ2)) 7→ α(−c2ṫ1ṫ2 + ẋ1ẋ2) .

• Show that β defines a pseudo-Riemannian metric of index 1. It is called the Lorentz
metric.

• Write down the geodesic equations that are defined by this metric. Show that the
solution curves are straight lines. What distinguishes the time-like, light-like and
space-like geodesics?

• Denote by S : T (R2) → R the kinetic energy: S(t, x, ṫ, ẋ) = 1
2
α(−c2ṫ2 + ẋ2). Let

us parameterize a time-like geodesic by time, i.e. consider the time-like geodesic
s 7→ (s, sv). Our experience tells us that in the “classical limit” where |v| is small,
the kinetic energy S should of course increase like 1

2
mv2. Show that this implies that

α = m and that S = −1
2
mc2 (1− (v/c)2).

• For simplicity, assume now that the speed of light is c = 1. A linear map L : R2 → R2

is called a Lorentz transformation if it is an isometry of the Lorentz metric and the
collection of all Lorentz transformation is called the Lorentz group. Show that a
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linear map L : R2 → R2 is a Lorentz transformation if and only if its matrix has the
form

mat L =

(
A B
C D

)
with A2 − C2 = 1, D2 − B2 = 1 and AB − CD = 0. Show that this is true if and
only if there is a φ ∈ R such that A = ± coshφ,B = ± sinhφ,C = ± sinhφ and
D = ± coshφ, while at the same time sign(AB) = sign(CD).

• Assume again that c = 1. Show that a Lorentz transformation sends the light-cone
|t| = |x| to itself. Similarly, show that a Lorentz transformation sends the hyperbolas
t2 − x2 = E 6= 0 to themselves.

Exercise 3.4 Let S(q, q̇) = 1
2

∑n
j,k=1 βjk(q)q̇j q̇k. Prove that the Cristoffel symbols of the

metric S̃(q, q̇) = (e− V (q))S(q, q̇) are given by (3.5)

26



4 Mechanics on Lie groups

In some mechanical systems the configuration is naturally determined by an element of a
Lie group G. Such mechanical systems are described by a differential equation on the tan-
gent bundle TG of the group. The most famous example is the motion of a free rigid body,
which can be viewed as the geodesic motion on SO(3,R) with respect to a left-invariant
metric.

In this chapter, we will introduce the general setting of mechanics on Lie groups and
we will encounter the technique of “Euler-Poincaré reduction” that comes with it. An ap-
plication is the rigid body motion. Quite remarkably, various partial differential equations
for fluid flows arise in exactly the same way.

4.1 Lie groups

Let us forget about mechanics for a while. We begin by introducing groups that are at the
same time differentiable manifolds. Such groups are called Lie groups:

Definition 4.1 A Ck Lie group is a group G that is at the same time a Ck differentiable
manifold such that

1. The inversion G→ G, g 7→ g−1 is a Ck map.

2. The multiplication G×G→ G, (g, h) 7→ gh is a Ck map.

If the group G is finite or countable, then we usually think of it as a C∞ Lie group of
dimension zero.

The most important examples of Lie groups are the matrix Lie groups, that is the
subgroups of the general linear group

GL(n,R) = {A ∈ Rn×n | detA 6= 0} .

Being an open subset of Rn×n ∼= Rn2
, GL(n,R) is an n2-dimensional C∞ manifold. Since

matrix multiplication is a polynomial map and, by Cramer’s rule, matrix inversion a ra-
tional map, GL(n,R) is indeed a C∞ Lie group. As we all know, the multiplication in
GL(n.R) is noncommutative.

A subgroup H ⊂ G of a Lie group G that is at the same time a submanifold of G, is
of course a Lie group itself. Examples of Lie subgroups of GL(n,R) are the special linear
group

SL(n,R) = {A ∈ GL(n,R) | detA = 1} ,
the orthogonal group

O(n,R) = {A ∈ GL(n,R) | AA∗ = id}
and the special orthogonal group

SO(n,R) = {A ∈ GL(n,R) | AA∗ = id , detA = 1} .

Here A∗ denotes the matrix transpose of A.
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4.2 A little bit of Lie theory

In this section I will present some of the theory of abstract Lie groups.
We start by defining, for every h ∈ G, the following two mappings from G to G:

Lh : G→ G, g 7→ hg ,

Rh : G→ G, g 7→ gh .

Lh is called ‘left-translation by h’ or ‘left multiplication by h’ and Rh is called ‘right-
translation by h’ or ‘right-multiplication by h’. Being the restriction of the multiplication
map G×G→ G to {h}×G and G×{h} respectively, these maps are smooth. Furthermore,
(Lh)

−1 = Lh−1 and (Rh)
−1 = Rh−1 , which proves that Lh and Rh are diffeomorphisms of

G.
Being a differentiable manifold, G has a tangent bundle TG consisting of the tangent

spaces TgG (g ∈ G). The tangent space at the identity element e is called the Lie-algebra
of G, denoted

g := TeG .

We remark that left-multiplication by h sends e to h: Lh : e 7→ h. Hence, TeLh : g→ ThG.
Differentiation of Lh−1 ◦ Lh = Lh ◦ Lh−1 = idG at e and h respectively shows that

(TeLh)
−1 = ThLh−1 ,

i.e. TeLh : g→ ThG is an isomorphism.
The next step is to consider vector fields on the Lie group G. In fact, given a vector

X ∈ g, we can define a vector field vlX : G→ TG on G by

vlX(g) := TeLg ·X ∈ TgG .

Proposition 4.2 The vector field vlX is left-invariant, that is for any h ∈ G, we have

(Lh)∗v
l
X = vlX .

Proof: ((Lh)∗v
l
X)(g) = T(Lh)−1(g)Lh · vlX((Lh)

−1(g)) = Th−1gLh · vlX(h−1g) = Th−1gLh ·
TeLh−1g ·X = TeLg ·X = vlX(g). �

Also, a left-invariant vector field is uniquely determined by its value v(e) ∈ g at the identity,
because left-invariance implies that v(g) = ((Lg)∗v)(g) = TeLg · v(e). Thus, we have the
following correspondence:

Proposition 4.3 Let G be a Ck+1 Lie group. Denote by X k
l (G) ⊂ X k(G) the vector space

of left-invariant Ck vector fields on G. Then the linear map

X 7→ vlX , g→ X k
l (G)

is a bijection.
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Some people actually define the Lie algebra of G as the space of left-invariant vector fields
on G. Finally, the above correspondence allows us to define a bracket in g :

Definition 4.4 Let G be a Ck Lie group and let X, Y ∈ g. Then we define the Lie bracket
[X, Y ] ∈ g as

[X, Y ] := −[vlX , v
l
Y ](e) for all X, Y ∈ g .

Here the right hand side is minus the Lie bracket of the vector fields vlX and vlY on G,
evaluated at the identity. The minus sign is just due to convention. This definition is
designed in such a way that the following proposition holds:

Proposition 4.5 The map X 7→ vlX from g to X k(G) is a Lie-algebra anti-homomorphism,
i.e.

[vlX , v
l
Y ] = −vl[X,Y ] .

Here, the bracket on the left hand side denotes the Lie bracket of X k(G) and the bracket
on the right hand side is the Lie bracket of g defined above.

Proof: By definition, both the vector field vl[X,Y ] and the Lie bracket −[vlX , v
l
Y ] take the

value [X, Y ] in e. Because the Lie bracket of two left-invariant vector fields is again left
invariant, both vector fields are left invariant. Because the value at e determines a left
invariant vector field uniquely, these vector fields are equal. �

The proposition immediately implies that the Lie bracket on g inherits the properties of
the Lie bracket for vector fields: anti-symmetry and the Jacobi-identity.

In exercise 4.1 we will investigate the particular case that G is the matrix Lie group
GL(n,R). Its Lie algebra is the space of n× n-matrices gl(n,R) and it turns out that the
Lie bracket is simply the matrix commutator

[A,B] := A ·B −B · A .

4.3 Euler-Poincaré reduction

Suppose now that we study a mechanical system for which the configuration space is
actually a Lie group. An example is the famous rigid body for which this Lie group is the
rotation group SO(3,R). We will encounter the rigid body in the next section.

In general, let G be a Lie group and assume that on the Lie algebra g some smooth
function Le : g → R is defined. This Le extends to a Lagrangian L on TG by setting, for
ġ ∈ TgG,

L(ġ) := Le(TgLg−1 · ġ) .

By construction this L is left invariant, that is L ◦ TLh = L for all h ∈ G, and it is the
unique left invariant Lagrangian that equals Le on g. In many examples, Le is a quadratic
form on g and thus, L defines a metric on G. But in the discussion that follows, Le can be
completely arbitrary.
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Recall that a curve t 7→ γ(t), [a, b]→ G satisfies the Euler-Lagrange equations [L]γ(t) =
0 if and only if it is stationary for the action integral

A(γ) =

∫ b

a

L (γ′(t)) dt ,

with respect to C2 variations with fixed endpoints. But we can say more:

Theorem 4.6 (Euler-Poincaré reduction) The following are equivalent:

• γ : [a, b]→ G satisfies the Euler-Lagrange equations for the left-invariant Lagrangian
L : TG→ R.

• The curve λ(t) = Tγ(t)Lγ(t)−1 · γ′(t), [a, b] → g is stationary for the ‘reduced’ action-
integral

a(λ) =

∫ b

a

Le(λ(t))dt

with respect to all variations of t 7→ λ(t) of the form

(t, ε) 7→ λ(t) + ε

(
dδ(t)

dt
+ [λ(t), δ(t)]

)
,

with zero endpoints δ(a) = δ(b) = 0.

Proof: We start by remarking that the left-invariance of the Lagrangian implies that∫ b

a

L(γ′(t))dt =

∫ b

a

Le(λ(t))dt .

Assume the left hand side is stationary for variations with fixed endpoints. Thus, let
(t, ε) 7→ γ̃(t, ε), [a, b] × (−ε0, ε0) → G be a variation of t 7→ γ(t) = γ̃(t, 0) with fixed
endpoints, i.e. γ̃(a, ε) = γ̃(a, 0) and γ̃(b, ε) = γ̃(b, 0) for all ε. Then λ̃ : [a, b]×(−ε0, ε0)→ g

defined by λ̃(t, ε) := Tγ̃(t,ε)Lγ̃(t,ε)−1 · γ′(t, ε) defines a variation of t 7→ λ(t) = λ̃(t, 0). Define

δ(t) := Tγ(t)Lγ(t)−1 · ∂γ̃(t, 0)

∂ε
∈ g .

Then δ(a) = δ(b) = 0 because γ̃ has fixed endpoints. I claim that

d

dε

∣∣∣∣
ε=0

λ̃(t, ε) = δ′(t) + [λ(t), δ(t)] . (4.1)

To prove formula (4.1), let us pretend that G is a matrix Lie group. It turns out that
formula (4.1) is also true in the case that G is a general abstract Lie group, where the
bracket is the Lie bracket of g. The proof of this general result is a little cumbersome
though, and I will skip it in these notes.
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Anyway, when G is a matrix Lie group, then λ̃(t, ε) = γ̃(t, ε)−1 · ∂γ(t,ε)
∂t

and δ(t) =

γ̃(t, 0)−1 · ∂γ(t,0)
∂ε

. We hence find that

∂λ̃(t, ε)

∂ε
=

∂

∂ε

(
γ̃(t, ε)−1

)
· ∂γ̃(t, ε)

∂t
+ γ̃(t, ε)−1∂

2γ̃(t, ε)

∂ε∂t

and

δ′(t) =
∂

∂t

(
γ̃(t, 0)−1

)
· ∂γ̃(t, 0)

∂ε
+ γ̃(t, 0)−1∂

2γ̃(t, 0)

∂t∂ε
.

Formula (4.1) now follows from consecutively evaluating these two identities in ε = 0,
subtracting them and using the theorem for interchanging the order of differentiation.
Moreover, one also needs to know that ∂

∂t
(γ(t, ε)−1) = −γ(t, ε)−1 · ∂γ(t,ε)

∂t
· γ(t, ε)−1 (and

similarly for the derivative with respect to ε) and that [λ, δ] = λ · δ − δ · λ.
The left-invariance of L means that

A(γ̃(·, ε)) =

∫ b

a

L(γ̃′(t, ε))dt =

∫ b

a

Le(λ̃(t, ε))dt = a(λ̃(·, ε)) .

Thus, if a is stationary at λ with respect to variations of the form δ′ + [λ, δ], then A is
stationary with respect to variations with fixed endpoints.

Also, one can produce the variation λ+ ε (δ′ + [λ, δ]) of λ by choosing a variation γ̃ to

γ for which ∂γ̃(t,0)
∂ε

= Tγ(t)Lγ(t)−1 · δ(t), which implies that if γ is stationary for A, then so
is λ for a with respect to the allowed variations. �

The process of reducing the Euler-Lagrange equations on TG ∼= G × g to the ‘Euler-
Poincaré equations’ on g is called Euler-Poincaré reduction, because g has only half the
dimension of TG. Once one has found a solution curve t 7→ λ(t) ∈ g, one may try to
reconstruct the solution curve γ in G. This is done by writing

dg(t)

dt
= TeLg(t) · λ(t) ,

which is a nonautonomous, first order differential equation on G. Given an initial condition
g(0) = g0, its solutions are unique.

4.4 The rigid body

The configuration space of a free rigid body is the 3-dimensional Lie group

SO(3,R) = {A : R3 → R3 | A∗A = I , det A = 1} ,

of rotations of 3-dimensional space, as the configuration of the body is determined by
a rotation matrix that describes the orientation of the body with respect to a reference
configuration.

How to determine the equations of motion for the rigid body in the absence of external
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forces such as gravity? Because the motion of the rigid body is supposed to be free, the
Lagrangian of the body is the kinetic energy. Suppose now that t 7→ A(t) ∈ SO(3,R) is
the motion of the body and that A(t0) = A0 is the configuration at t = t0 with respect to

the reference configuration. We denote by Ȧ(t0) = dA(t)
dt

∣∣∣
t=t0
∈ TASO(3,R) the velocity of

the body at t = t0. Then we can argue that the curve B(t) = A−1
0 A(t), with B(t0) = I

and Ḃ(t0) = A−1
0 Ȧ(t0) ∈ so(3,R), must have the same kinetic energy as the curve A(t).

This shows that the Lagrangian of the rigid body is determined completely by choosing
a quadratic form SI on the Lie algebra

so(3,R) = TISO(3,R) = {X ∈ R3×3 | X∗ +X = 0}

and extending it to a kinetic energy S on TSO(3,R) (or equivalently: a Riemannian metric
on SO(3,R)) by the formula

S(A, Ȧ) = SI(A
−1Ȧ) .

We observe that, by construction, this kinetic energy is a left-invariant Lagrangian function
on TSO(3,R).

According to the previous section, the curve t 7→ A(t) is a geodesic in SO(3,R) for the

left-invariant kinetic energy S if and only if the curve t 7→ Ω(t) := A−1(t) · dA(t)
dt

in so(3,R)
is stationary for the action integral ∫ b

a

Se(Ω(t))dt

with respect to all variations of t 7→ Ω(t) of the form t 7→ Ω(t) + ε (Ξ′(t) + [Ω(t),Ξ(t)])
with Ξ(a) = Ξ(b) = 0, i.e.

0 =
d

dε

∣∣∣∣
ε=0

∫ b

a

Se(Ω(t) + ε(Ξ′(t) + [Ω(t),Ξ(t)]))dt =

∫ b

a

βe(Ω(t),Ξ′(t) + [Ω(t),Ξ(t)])dt

(4.2)

for all curves t 7→ Ξ(t) in so(3,R) with fixed endpoints.
Let us be more concrete and choose a particular quadratic form on so(3,R). For this

purpose, we first of all note that an arbitrary Ω ∈ so(3,R) can be written as

Ω =

 0 ω1 ω2

−ω1 0 ω3

−ω2 −ω3 0

 .

So we can represent the anti-symmetric 3 × 3-matrix Ω as a 3-vector ω. In terms of this
representation, a quadratic form on so(3,R) is given by the formula

Se(Ω) =
1

2
〈ω, Iω〉 .
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The symmetric 3 × 3-matrix above is called the “moments of inertia tensor” of the rigid
body.

Then with a bit of work (one partial integration and a couple of identities for the inner
and cross product) one finds that the right hand side of 4.2 is equal to∫ b

a

〈−I dω(t)

dt
+ ω(t)× Iω(t), ξ(t)〉dt .

In other words, the Euler-Poincaré equations for the free rigid body are given by the
ordinary differential equation

d

dt
Iω = ω × Iω .

4.5 Eulerian fluid equations

Some important fluid dynamical equations can be written in Euler-Poincaré form. The
(Lie) group under consideration here is the group Diff∞(X) of C∞ diffeomorphisms of
a bounded open subset X ⊂ Rn with C∞ boundary ∂X. X has the interpretation of a
fluid container. An element x ∈ X has the interpretation of a fluid particle’s reference
position or ‘fluid label’. Each diffeomorphism φ ∈ Diff∞(X) then represents a possible
fluid configuration, where φ(x) has the interpretation of the position of the fluid element
with fluid label x. The requirement that φ be a diffeomorphism is to prevent the fluid from
developing shocks, particle collapse and other kinds of singularities.

We will say that u : [a, b] → Diff∞(X), t 7→ u(t, ·) is a C∞ curve of diffeomorphisms
of X if u is C∞ as a map from [a, b] × X to X. Such a curve describes a possible fluid
motion, so that t 7→ u(t, x), [a, b] → X describes the trajectory of the fluid element with
label x. One often also requires that the fluid motions leave the volume-form dnx on X
invariant, that is that the fluid is incompressible. In this case, the fluid motions are curves
in SDiff∞(X), the (Lie) group of volume preserving diffeomorphisms of X.

As usual, the Lagrangian fluid dynamical equations are obtained from Hamilton’s prin-
ciple: given a Lagrangian function L = L(u, u̇), defined for diffeomorphisms u : X → X

and velocities u̇ := ∂u(t,·)
∂t

: X → Rn, it is postulated that t 7→ u(t) is a physical fluid flow
if and only if

d

dε

∣∣∣∣
ε=0

∫ b

a

L

(
ũ(t, ·, ε), ∂ũ(t, ·, ε)

∂t

)
dt = 0

for every C∞ variation ũ : [a, b]× (−ε0, ε0)→ (S)Diff∞(X) of u (i.e. ũ(t, x, 0) = u(t, x))
with fixed endpoints ũ(a, x, ε) = u(a, x), ũ(b, x, ε) = u(b, x).

Usually L(u, u̇) is the integral over X of some density depending on u, u̇ and their
x-derivatives, i.e.

L(u, u̇) =

∫
X

l(u(x), Du(x), . . . , Dku(x); u̇(x), Du̇(x), . . . , Dmu̇(x)) dnx ,

but in more exotic applications L can involve integrals over the boundary of X, for instance
if surface tension is taken into account. The simplest possible Lagrangians do not depend
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on the x−derivatives of u and u̇, i.e. L(u, u̇) =
∫
X
l(u, u̇)dnx. Such fluids are sometimes

called nonviscous or ‘ideal’. An example is L(u, u̇) =
∫
X

1
2

∑n
i=1(u̇i(x))2dnx, the total

kinetic energy of the fluid.
Let’s note that an ideal Lagrangian has a remarkable symmetry: if φ : X → X is any

volume-preserving diffeomorphism, then

L(u ◦ φ−1, u̇ ◦ φ−1) =

∫
X

l(u(φ−1(x)), u̇(φ−1(x)))dnx =

∫
X

l(u(x̃), u̇(x̃))dnx̃ = L(u, u̇) .

This simply follows from the substitution of variables x = φ(x̃), using that det
(
∂φ(x̃)
∂x̃

)
= 1

if φ is volume-preserving. This means that the ideal Lagrangian is right-invariant, i.e.
invariant under the action (u, u̇) 7→ (u◦φ−1, u̇◦φ−1) of SDiff∞(X) by right multiplication.
This symmetry is called the relabeling symmetry of an ideal fluid and it expresses that
fluid elements can be given another name or label according to any volume-preserving
diffeomorphism φ−1 without changing the value of the Lagrangian. If u is itself volume-
preserving, then L(u, u̇) = L(id, u̇ ◦ u−1) =: Lid(u̇ ◦ u−1).

We shall now sketch the derivation of the Euler-Poincaré equations for a right-invariant
Lagrangian on SDiff∞(X) from a variational principle, and in particular we shall derive
the Euler equations for an ideal incompressible fluid.

Instead of deriving the Euler-Lagrange equations for u, we shall exploit the right-
invariance of the Lagrangian L to derive Euler-Poincaré equations for the curve of Eulerian
velocity fields λ : [a, b]×X → Rn defined as

λ = “
∂u

∂t
◦ u−1 ” : (t, x) 7→ ∂u(t, x̃)

∂t

∣∣∣∣
x̃=u(t,·)−1(x)

,

or implicitly:

λ(t, u(t, x)) =
∂u(t, x)

∂t
.

λ(t, x) simply has the interpretation of the velocity of the fluid element that is at position
x at time t. Let us discuss some properties of λ. First of all, when x ∈ ∂X, then
u(t, x) ∈ ∂X for each t, whence λ(t, u(t, x)) = ∂u(t,x)

∂t
∈ Tu(t,x)∂X, so that we can conclude

that λ is tangent to ∂X.
The second property follows from differentiating the identity λj(t, u(t, x)) =

∂uj(t,x)

∂t

with respect to xk to obtain

∂

∂t

∂ui(x, t)

∂xk
=

n∑
l=1

∂λi(t, u(x, t))

∂xl

∂ul(t, x)

∂xk
,
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i.e. ∂
∂t
∂u(x,t)
∂x

= ∂λ(t,u(x,t))
∂x

∂u(t,x)
∂x

. This and the fact that det ∂u(t,x)
∂x

= 1 identically, leads to
the conclusion that

0 =
∂

∂t
det

(
∂u(t, x)

∂x

)
=

d

dh

∣∣∣∣
h=0

det

(
∂u(t+ h, x)

∂x

)
=

d

dh

∣∣∣∣
h=0

det

(
∂u(t+ h, x)

∂x

(
∂u(t, x)

∂x

)−1
)

det

(
∂u(t, x)

∂x

)
= tr

(
∂λ(t, u(t, x))

∂x

)
,

where we have used that d
dε

∣∣
ε=0

det(I + εE) = tr(E). We conclude that for each t, the

vector field x 7→ λ(t, x) on X is divergence-free: div(λ) =
∑n

j=1
∂λj

∂xj
= 0.

After these preparations, let u : [a, b] → SDiff∞(X) be a C∞ curve of volume pre-
serving diffeomorphisms and let ũ : [a, b]× (−ε0, ε0)→ SDiff∞(X) be a C∞ variation of
u with fixed endpoints, i.e. ũ(t, x, 0) = u(t, x), ũ(a, x, ε) = u(a, x) and ũ(b, x, ε) = u(b, x).
Define λ̃, δ̃ : [a, b]×X × (−ε0, ε0)→ Rn implicitly by

λ̃(t, ũ(t, x, ε), ε) =
∂ũ(t, x, ε)

∂t
, (4.3)

δ̃(t, ũ(t, x, ε), ε) =
∂ũ(t, x, ε)

∂ε
, (4.4)

and set δ(t, x) := δ̃(t, x, 0). Note that λ(t, x) = λ̃(t, x, 0) and that δ̃(a, x, ε) = δ̃(b, x, ε) = 0
because ũ has fixed endpoints. Moreover, a similar argument as above shows that x 7→
λ̃(t, x, ε) and x 7→ δ̃(t, x, ε) are tangent to ∂X and divergence-free.

Our main observation now is that differentiating (4.3) with respect to ε and (4.4) with
respect to t, evaluating the resulting equations in (t, x, ε) = (t, ũ(t, ·, 0)−1(x̃), 0) and using

that ∂2ũi

∂t∂ε
= ∂2ũi

∂ε∂t
, we find (please perform this computation if you don’t believe it!):

∂λ̃i(t, x, ε)

∂ε

∣∣∣∣∣
ε=0

=
∂δi(t, x)

∂t
+

n∑
j=1

(
∂δi(t, x)

∂xj
λj(t, x)− ∂λi(t, x)

∂xj
δj(t, x)

)
.

This proves the “only if” part of:

Theorem 4.7 (Euler-Poincaré for incompressible ideal fluids) Let L = L(u, u̇) =
Lid(u̇◦u−1) be a right invariant Lagrangian function, defined for volume preserving diffeo-
morphisms u : X → X and vector fields u̇ : X → Rn. Then the following are equivalent:

• The curve t 7→ u(t) in SDiff∞(X) is stationary for the action integral
∫ b
a
L(u(t), ∂u(t)

∂t
)dt

with respect to volume-preserving variations with fixed endpoints.

• The curve of divergence-free vector fields t 7→ λ(t) := ∂u(t)
∂t
◦ u(t)−1 is stationary for

the action integral
∫ b
a
Lid(λ(t))dt with respect to variations λ̃ of λ of the form

λ̃ = λ+ ε

(
∂δ

∂t
+

n∑
j=1

(
∂δ

∂xj
λj −

∂λ

∂xj
δj

))
,

such that δ is tangent to ∂X, divergence-free and δ(a, x) = δ(b, x) = 0.
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I leave the “if” part of this theorem as a (rather difficult) exercise.
As an example, let us compute the Euler equations for an ideal fluid, that is the Euler-

Poincaré equations for the kinetic Lagrangian

L(u, u̇) = ||u̇||2L2
:=

∫
X

1

2

n∑
i=1

(u̇i(x))2dnx =

∫
X

1

2

n∑
i=1

((u̇i ◦ u−1)(x))2dnx .

According to Theorem 4.7, for all curves (t, x) 7→ δ(t, x), [a, b]×X → Rn with δ(t, ·) tangent

to ∂X, div(δ(t, ·)) = 0 and δ(a, x) = δ(b, x) = 0, the curve t 7→ λ(t) := ∂u(t)
∂t
◦u(t)−1 should

then satisfy

d

dε

∣∣∣∣
ε=0

∫ b

a

∫
X

1

2

n∑
i=1

(
λi(x) + ε

[
∂δi
∂t

+
n∑
j=1

(
∂δi
∂xj

λj −
∂λi
∂xj

δj

)])2

dx = 0 .

Integration by parts yields that the left hand side of this expression is equal to∫ b

a

∫
X

n∑
i=1

λi

(
∂δi
∂t

+
n∑
j=1

(
∂δi
∂xj

λj −
∂λi
∂xj

δj

))
dxdt = (4.5)

∫ b

a

∫
X

n∑
i=1

−δi

(
∂λi
∂t

+
n∑
j=1

λj
∂λi
∂xj

+ λidiv(λ)

)
+

(
1

2

n∑
j=1

λ2
j

)
div(δ) dxdt =

∫ b

a

∫
X

n∑
i=1

−δi

(
∂λi
∂t

+
n∑
j=1

λj
∂λi
∂xj

)
dxdt .

If X ⊂ Rn is bounded, then the space of vector fields on X tangent to ∂X is the L2-
orthogonal sum of the divergence free vector fields and the gradient vector fields. This is
a consequence of Hodge-de Rham theory and unfortunately it would go too far to explain
this in detail. Nevertheless, we have derived the Euler equations for an ideal incompressible
fluid:

∂λi
∂t

+
n∑
j=1

λj
∂λi
∂xj

= − ∂p

∂xi
, div(λ) = 0 .

The function p is implicitly defined by the condition div(λ) = 0 and is called the pressure
of the fluid.

The above derivation of Euler’s equations for an incompressible fluid as the Euler-
Poincaré equations for the geodesics on the special diffeomorphism group with a right-
invariant metric, is due to Arnol’d.

4.6 Exercises

Exercise 4.1 (Matrix Lie groups) The collection of all invertible n × n matrices is
called the n-th general linear group:

GL(n,R) := {A ∈ Rn×n | detA 6= 0} .

Prove that:
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• GL(n,R) is an open subset of Rn×n and hence a manifold of dimension n2.

• GL(n,R) is a group under matrix multiplication.

• GL(n,R) is a C∞ Lie group, that is the multiplication and inversion are C∞ maps.

• For A ∈ GL(n,R), the tangent space TAGL(n,R) is isomorphic to Rn×n. Remark:
The Lie algebra TIGL(n,R) is denoted gl(n,R).

• For A ∈ GL(n,R), left translation over A is the map LA : B 7→ AB.

• The tangent map TILA sends E ∈ gl(n,R) to AE ∈ TAGL(n,R).

• For E ∈ gl(n,R), the unique left-invariant vector field vlE on GL(n,R) which takes
the value vlE(I) = E, is given by vlE(A) = AE.

• The curve t 7→ A(t) in GL(n,R) is an integral curve of vlE, if and only if dA(t)
dt

=
A(t) · E.

• The integral curves t 7→ A(t) of the left invariant vector field vlE are given by

A(t) = A(0) · etE .

• Let E1, E2 ∈ gl(n,R). The Lie bracket [E1, E2] := −[vlE1
, vlE2

](I) is given by the
commutator

[E1, E2] = E1 · E2 − E2 · E1 .

Exercise 4.2 (The Lie algebra so(3,R)) The 3-dimensional special orthogonal group is
defined as

SO(3,R) := {A ∈ R3×3 | A · A∗ = I , detA = 1},

where A∗ denotes the transpose of A. You may assume without proof that SO(3,R) is a
3-dimensional Lie subgroup of the 9-dimensional Lie group GL(3,R).

• Show that the Lie algebra so(3,R) := TISO(3,R) consists of the skew-symmetric
matrices:

so(3,R) := {E ∈ R3×3 | E + E∗ = 0 } .

• Show that the mapping

σ :

 0 e1 e2

−e1 0 e3

−e2 −e3 0

 7→
 e1

e2

e3

 , so(3,R)→ R3

is a linear isomorphism.
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• Prove that
σ([E1, E2]) = σ(E2)× σ(E1) ,

where [E1, E2] := E1 ·E2 −E2 ·E1 is the matrix commutator and a× b ∈ R3 denotes
the usual cross product of 3-vectors, that is a1

a2

a3

×
 b1

b2

b3

 =

 a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 .

Remark: We say that σ is a Lie algebra anti-homomorphism from so(3,R) with the matrix
commutator to R3 with the cross product.

Exercise 4.3 (The rigid body dynamics) Recall Euler’s equations for the rigid body

I
dω

dt
= ω × Iω , (4.6)

in which the inertia matrix I is symmetric and nondegenerate. Using the explicit Euler
equations for the rigid body (??), show that the energy E = 1

2
〈Iω, ω〉 is a constant of

motion.
Can you give another argument why E is a constant of motion? Hint: View E as a

function on TSO(3,R).
Prove that the solutions of the rigid body equations lie on ellipsoids. Prove that they

stay bounded and are defined for all time.
Show moreover that the function J(ω) = 〈Iω, Iω〉 is conserved. Can you draw the joint

level sets of E and J in R3?

Exercise 4.4 (The hyperbolic half plane again) In this exercise we will again study
the hyperbolic half plane H = {z ∈ C | Im z > 0} and we will give it the structure of a
noncommutative Lie group.

• For x, y ∈ R, y > 0, let φx,y : R→ R be the affine mapping defined by

φx,y(s) = x+ ys .

Show that φx,y ◦ φx̃,ỹ = φx+yx̃,yỹ. In other words, the collection of affine mappings

G = {φx,y | x, y ∈ R, y > 0}

is closed under composition. Show that G is a group under composition. Show that
the identity element of G is φ0,1 and that φ−1

x,y = φ−x
y
, 1
y
.

• Prove that the mapping x+ iy 7→ φx,y from H to G is bijective. Prove that the unique
group operation ∗ : H × H → H that makes this mapping a group isomorphism, is
given by

(x+ iy) ∗ (x̃+ iỹ) = (x+ yx̃) + iyỹ .

From now on, ∗ will be “the” multiplication on H and we will forget about the ordinary
multiplication of complex numbers.
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• Prove that ∗ makes H into an analytic Lie group. Show that the identity element of
H is i and that (x+ iy)−1 = −x

y
+ i 1

y
.

• Write z = x+ iy. Show that Lz−1 : H → H sends x̃+ iỹ to x̃−x
y

+ i ỹ
y
. Now show that

TzLz−1 maps v = vx + ivy ∈ TzH ∼= C to 1
y
v := vx

y
+ ivy

y
∈ TiH ∼= C.

• On TiH let us define an inner product by

〈v, v〉 := |v|2 for v ∈ TiH ∼= C .

Prove that the unique left-invariant metric β on H with the property that βi(v, v) =
〈v, v〉 for all v ∈ TiH, is given by the hyperbolic metric of Exercise 3.2, that is

βz(v, v) =
1

(Im z)2
|v|2 .

• For ξ = ξx + iξy ∈ TiH ∼= C, show that the unique left invariant vector field vξl on

H is given by vξl (z) = (Im z)ξ. Show that the Lie bracket in the Lie algebra TiH is
given by

[ξ, η] := ηxξy − ηyξx ∈ R ⊂ C .

• Let t 7→ z(t) ∈ H be a geodesic for the hyperbolic metric and write z(t) = x(t)+ iy(t).

Show that λ(t) := Tz(t)Lz(t)−1 · dz(t)
dt

= 1
y(t)

(
dx(t)
dt

+ idy(t)
dt

)
is a solution of the Euler-

Poincaré equations
dλx
dt

= −λxλy ,
dλy
dt

= λ2
x .

Show that the energy 1
2
|λ|2 is a constant of motion for these equations. Draw the

phase portrait.

Remark 4.8 One can repeat this procedure and define for x ∈ Rn and y > 0 the mappings
φx,y : Rn → Rn, thus producing a “hyperbolic half-(n+ 1)-space”.

Exercise 4.5 (Ideal compressible fluids) Let X ⊂ Rn be a bounded open subset. For
an “ideal compressible fluid” the Lagrangian function is the total kinetic energy

L(u, u̇) =

∫
X

1

2

n∑
i=1

(u̇i(x))2dnx .

This Lagrangian is not right-invariant under the group Diff∞(X). Why? For a C∞ family
of diffeomorphisms (t, x) 7→ u(t, x), [a, b]×X → X show that the following are equivalent:

• u is stationary for the action integral
∫ b
a
L
(
u(t), ∂u(t)

∂t

)
dt with respect to variations

with fixed endpoints.
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• (t, x) 7→ u(t, x) solves the Euler-Lagrange equations ∂2ui(t,x)
∂t2

= 0 for all i = 1, . . . , n.

• For each x ∈ X, the curve t 7→ u(t, x), [a, b] → X is a solution to the second order

ordinary differential equation ∂2ui(t)
∂t2

= 0 (i = 1, . . . , n).

• For each x ∈ X, t 7→ u(t, x), [a, b]→ X is a geodesic in X for the Euclidean metric.

• ui(t, x) = ui(0, x) + ∂ui(t,x)
∂t

∣∣∣
t=0
· t for all i = 1, . . . , n.

• λ := ∂u
∂t
◦ u−1 (i.e. λi(t, u(t, x)) = ∂ui(t,x)

∂t
for all i = 1, . . . , n) satisfies the Euler

equation for an ideal compressible fluid

∂λi
∂t

+
n∑
j=1

λj
∂λi
∂xj

= 0 for all i = 1, . . . , n .

Remark 4.9 (Burgers’ equation) For n = 1 the Euler equation for an ideal compress-
ible fluid is called Burgers’ equation: ∂λ

∂t
+ λ∂λ

∂x
= 0.

Exercise 4.6 (1-dimensional EPDiff) Let X = (α, β) ⊂ R. We shall study the Euler-
Poincaré equation on the group Diff∞(X) of diffeomorphisms of X as follows. Let l :
Rk+1 → R be a C∞ function. For a diffeomorphism u : X → X and vector field u̇ : X → R
with u̇(α) = u̇(β) = 0, let

L(u, u̇) :=

∫
X

l

(
(u̇ ◦ u−1)(x),

d

dx
(u̇ ◦ u−1)(x), . . . ,

dk

dxk
(u̇ ◦ u−1)(x)

)
dx .

Prove that

• For any diffeomorphism φ : X → X, L(u ◦ φ−1, u̇ ◦ φ−1)) = L(u, u̇). This means that
L is right-invariant under the action of Diff∞(X).

• The curve of diffeomorphisms (t, x) 7→ u(t, x), [a, b] × X → X is stationary for the

action
∫ b
a
L
(
u(t), du(t)

dt

)
dt with respect to variations with fixed endpoints if and only

if the curve of vector fields λ : [a, b] × X → R defined by λ(t, u(t, x)) = du(t,x)
dt

(i.e.

λ := du
dt
◦ u−1) is stationary for the action

∫
X
l(λ(x), dλ(x)

dx
, . . . , d

kλ(x)
dxk )dx with respect

to variations of the form

λ(t, x) + ε

(
∂δ(t, x)

∂t
+
∂λ(t, x)

∂x
δ(t, x)− ∂δ(t, x)

∂x
λ(t, x)

)
,

where δ : [a, b]×X → R is an arbitrary C∞ curve of vector fields on X with δ(t, α) =
δ(t, β) = δ(a, x) = δ(b, x) = 0.
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Exercise 4.7 (Burgers’ equation as EPDiff) In exercise 4.6, choose

L(u, u̇) = ||u̇ ◦ u−1||2L2
:=

∫
X

1

2
(u̇(u−1(x))2dx .

Show that the Euler-Poincaré equations for λ := ∂u
∂t
◦ u−1 read

∂λ

∂t
= 3λ

∂λ

∂x
.

Exercise 4.8 (The Camassa-Holm equation) In exercise 4.6, choose

L(u, u̇) = ||u̇ ◦ u−1||2H1 =

∫
X

1

2

(
(u̇ ◦ u−1)(x)

)2
+

1

2

(
d

dx
(u̇ ◦ u−1)(x)

)2

dx .

Show that this Lagrangian gives rise to the Euler-Poincaré equation(
1− ∂2

∂x2

)
∂λ

∂t
= 3λ

∂λ

∂x
− 2

∂λ

∂x

∂2λ

∂x2
− λ∂

3λ

∂x3
.

This equation is called the Camassa-Holm equation. It is famous because it is integrable
and because it admits a special type of peaked soliton solutions, called ‘peakons’.
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5 Hamiltonian systems

In this section, we will show that the Euler-Lagrange equations (2.8) for a nondegenerate
Lagrangian are equivalent to the famous equations of Hamilton.

5.1 The Legendre transform

Let L : TQ → R be such a nondegenerate Lagrangian. We define the “momentum”
variables

pj =
∂L(q, q̇)

∂q̇j
∈ R .

Again under the assumption that ∂2L(q,q̇)
∂q̇j∂q̇k

is invertible, the transformation

(q, q̇) 7→ (q, p) = (q,
∂L(q, q̇)

∂q̇
)

is a local diffeomorphism. Hence we may write pj = pj(q, q̇) and q̇j = q̇j(q, p). If we now
also express the constant of motion (2.9) in terms of the new variables

H(q, p) := h(q, q̇(q, p)) =
n∑
j=1

pj q̇j(q, p)− L(q, q̇(q, p)) ,

then we observe that

∂H(q, p)

∂pj
= q̇j(q, p) +

n∑
k=1

pk
∂q̇k(q, p)

∂pj
−

n∑
k=1

∂L(q, q̇(q, p))

∂q̇k

∂q̇k(q, p)

∂pj
= q̇j(q, p) ,

because of the definition of pk. A similar computation leads to the conclusion that

∂H(q, p)

∂qj
= −∂L(q, q̇(q, p))

∂qj
.

This makes the Euler-Lagrange equations
dqj
dt

= q̇j,
d
dt
∂L(q,q̇)
∂q̇j

= ∂L(q,q̇)
∂qj

for the curve t 7→
(q(t), q̇(t)) in TQ equivalent to the equations

dqj
dt

=
∂H(q, p)

∂pj
,
dpj
dt

= −∂H(q, p)

∂qj
(5.1)

for the curve t 7→ (q(t), p(t)). Equations (5.1) are called Hamilton’s equations of motion for
the Hamiltonian function H. The transformation of the Lagrangian L into the Hamiltonian
H is traditionally called the “Legendre transformation”.

The momentum p(q, q̇) := ∂L(q,q̇)
∂q̇

does not have the interpretation of an element of TqQ. In

fact, p(q, q̇) is the total derivative of the function q̇ 7→ L(q, q̇) at the point q̇. Sometimes
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it is also called the “fiber derivative” of L as the differentiation is only in the direction of
the fiber TqQ ⊂ TQ. The derivative acts on v ∈ TqQ by p(q, q̇)(v) = d

dε

∣∣
ε=0

L(q, q̇ + εv),
so p(q, q̇) is actually a linear map from TqQ to R, i.e. p(q, q̇) ∈ (TqQ)∗. Recall that the
manifold of all q’s and p’s is called the cotangent bundle T ∗Q of Q: T ∗Q := ∪q∈Q(TqQ)∗ .

For an arbitrary C1 function H : T ∗Q → R of positions and momenta, Hamilton’s
equations of motion define a vector field on T ∗Q, namely

XH :=
n∑
j=1

∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
. (5.2)

XH is called the “Hamiltonian vector field” of H.
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Further reading

Most of the material in these lecture notes can be found in the existing literature in one
form or the other, although most of the time with much less detail. For further reading on
the subject, I would like to refer you to the following texts.

The bible of Geometric Mechanics, which treats classical mechanics in a differential
geometric framework, is

• Abraham, R., Marsden, J.E., Foundations of Mechanics. The Benjamin/Cummings
Publ. Co., Reading, Mass., 1987.

Easier to read, and with a focus on computations-by-hand is

• Arnol’d, V.I., Mathematical Methods of Classical Mechanics, Graduate Texts in
Mathematics 60, Springer-Verlag, 1978.

A nice introduction to the application of geometry and topology in fluid mechanics can be
found in

• Arnol’d, V.I. and Khesin, B.A., Topological Methods in Hydrodynamics, Graduate
Texts in Mathematics 60, Springer-Verlag, 1978.

Several examples of classical mechanical systems, treated in a slightly formal way, arise in
the textbook

• Cushman, R.H. and Bates, L.M., Global aspects of Classical Mechanical Systems,
Birkhäuser Verlag, 1997.

An already standard, advanced, but nice book on Lie groups is:

• Duistermaat, J.J. and Kolk, J.A.C., Lie groups, Springer-Verlag, 2000.

Finally, introductory texts about the restricted three-body problem are found in

• Meyer, K.R., Periodic Solutions of the N-Body-Problem, Lecture Notes in Mathe-
matics, Springer-Verlag, 1999.

• Meyer, K.R., Hall, G.R., Introduction to Hamiltonian dynamical systems and the
N-body problem, Applied Math. Sciences 90, Springer-Verlag, 1992.
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