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The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a
suspending frame with moment of inerfia The presence of two separatrices in the bifurcation diagram of

the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of the problem.
Nevertheless, numerical computation allows to obtain the action variable representation of energy surfaces
and to derive frequencies and winding ratios from there. The quantum mechanics is also best understood in
terms of these actions. The limt— 0O is of particular interest, both classically and quantum mechanically,

as it generates two copies of the frameless standard spherical pendulum. This is suggested as a classical
interpretation of spin.

1. Introduction in action variable representation, for a number of classical
problems: the Euler, Lagrange, and Kovalevskaya cases of rigid
body dynamic$; 10 billiards in ellipsoidsi®12 and particle
motion around point masses with Schwarzschild or Kerr metric
as well as around two fixed centéfs.The typical shape of
these surfaces, for systems with three degrees of freedom, has

turned out to be a pyramid of some sort.

John Ross was born in the year when Sdimger’s equation
and Born’s statistical interpretation of the wave function were
published. The triumph of quantum theory left only minor roles
for classical mechanics, in the exciting game of exploring the
microscopic world of atomic and molecular dynamics. The year

before, with Borm's publication of hisvorlesungen™ber In the course of these studies we considered rigid bodies with
Atommechanik the old Bohr-Sommerfeld idea to understand . ) : 9
Cardan suspensions. The configuration space of such systems

energy spectra on the basis of discretizing classical action is a 3-torus T as three anqular coordinates may vary indepen-
integrals in multiples of had reached its culmination point, ! g y vary P

: c o dently along a full circle. This is an essential distinction to the
and at the same time come to a dead end. Friedrich Hund, Whoconfi uration space SO(3) of an isolated rigid body where one
contributed substantial parts to that book, confessed many years 9 P g y

later that in the Gttingen theoretical physical seminar they had ?hfi:]hk(ianthraes]sﬁler ﬁnsgilceizt\s/a;rigf 03% ero(rJn(SO)ntg la:n?i?:;m:rﬂgr es
tried hard to make use of Poin¢@@ew methods for dealing 9 9 phy P y 9

with nonintegrable mechanical systems, but as Einstein hadm the limit where the moments of inertia of the Cardan frames

clearly foreseen in 191%the quantum theorists of old could \éiglffhdr:t?énhzwasgogéd dtgsc:irgg(i,';'oﬂ] fgogrﬁcfgﬁs) rlrr:ono-
not absorb them in their concepts; as a result, the matter was 9 P ’ 9

14 i 3
dropped and left out of Born’s book. In contrast, Heisenberg’s graph;* we propose to pqn&der BS a QOubIeﬁiover of 8.0(3)
and Schidinger’s new quantum mechanics did not suffer from and 1o understand the limit as a transition fro_ "“WO copies
this difficulty: integrability was not an issue, at least so it of SQ(3)' I_n a n_atural way, t_hls_pomt of view mtroduces_ a
seemed. Separable or not, the Scimger equation could be classical spin variable for distinction between the two copies.

written down and solved, if only in principle. Poinédrecame Thg Same reasoning 1S applled in the present paper to the
forgotten in the physics community. spherical pendulum and is carried over from classical to quantum

Things changed wheahaoswas (re)discovered, about 50 mechanics. The configuration space of the isolated spherical
years later. The combined impact of beautiful mathematical pendulum is the spheré:Swith suspension it becomes a 2-torus

5 ) i :
results as in the KolmogorevArmold—Moser theory, and of T2 Whereas the isolated system is always integrable, the

the computer revolution, renewed the interest first in classical zgigggfg& I)rr?Thee rcng/e ap)hoéLethbi)twtsg;g?:::yﬁa?/ztachori]::/e d
mechanics, then in the quantum mechanics of nonseparable Y

systems. The termuantum chaologwvas coined to refer to Eng_ular _mome_ntur_il¢. The energy surfaces are then folia_ted
the specific features of quantum systems whose classical y Invariant L'°“"'”°f tori and may pe transfqrmed_to action
counterpart is nonintegrabte. So far, the major achievement vanaple representatlon. We dete'rmnje the bifurcation scheme
in this field of research has been the discovery that action of critical tori and the classical action integrals. As long as the

integrals along classical periodic orbits are the key to under- ?2nﬁg;qo;nse;“ngirfzeesfﬁmfhdggﬁng t\;ﬁz::r,:’ tgirifer)sg:ison
standing complicated specfra. y P yp ’

. . . . . or “phases”, two of which appear in two copies due to
In light of this development, the interest in the computation :
of actions has been revived. Screening through the ”terature,spontaneous symmetry breaking. One of these two types

. oy . e rr n he motion of th r herical pendulum. Iti
one finds surprisingly little concrete knowledge for nontrivial corresponds to the motion of the pure spherical pendulum. tis

X ) the only ph t rvive in the limét — O; its tw i
systems, even though textbooks and review arfiélsssess their € only pnase fo survive c 0 its two copies
; h o may be assigned a classical spin.
general importance for perturbation theory and quantization. To

fill this gap, our research group has worked out energy surfaces The. quantum mechanlcgl spectrum IS determined both
numerically and in semiclassical approximation. The agreement

is almost perfect and demonstrates how remarkably powerful

T Dedicated to John Ross on the occasion of his 70th birthday.

* E-mail: prichter@physik.uni-bremen.de.
® Abstract published ifAdvance ACS Abstract®yovember 1, 1996.

the recipes of old quantum theory are, if combined with simple
rules to account for symmetry and topology of classical tori as
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well as for smooth transitions across separatrices. As in the
classical treatment, th&— 0 limit produces the pure spherical
pendulum physics with twofold degeneracy.

The organization of the paper is as follows. Section 2 defines
the classical Hamiltonians, first of the pure spherical pendulum
and then with suspending frame. The foliation of phase space
by invariant tori, and its bifurcation scheme, is discussed in
section 3. The classical analysis is completed in section 4 where
we calculate action integrals, energy surfaces, and frequencies.
We show how the limih — 0 produces two copies of the pure
spherical pendulum, with opposite spin. Finally, section 5
presents the quantum mechanical spectrum, first in terms of
energy and angular momentum eigenvalues and then in the more
transparent action eigenvalue representation.

2. lIsolated and Suspended Spherical Pendulum ) . .
Figure 1. Spherical pendulum suspended in a frame F. The frame

The mathematical definition of a spherical pendulum assumesrotates here about a vertical axis; its position is given by the angle of
a mass poinm, free to move on a Spheré 8f radiusr, in an an_gitudeqp. The horizc_)ntab_‘—axis is fixed in F. The mass pointis
external gravitational potential that depends linearly on a Mgidly connected to this axis by a massless rod.
coordinatez. Using spherical coordinateg () to parametrize
the configuration space € $? by longitudep € St and latitude
¢, ranging from¢ = 0 at the north pole t&# = x at the south L2
pole = cosv), kinetic energyT and potential energy are H= 1/2|—§2 + 1/2 —¢r12 + 1+ cos® (5)

0 + sin ¥

and the Hamiltonian

T=",m?H*+ ¢*sin? ¥), V=mgr(l+ cosv) (1) . . .
The most important difference between the systems with and
The potential minimumV = 0 occurs at the south pole. Without frame is not just the modification Sitt — 6 + sir? ¥

Measuring energies in units @figr, times in units ofv/r/g, but th%.chﬁnge ir; co_nfigurlation space fro(;n thisphérte Se
hence actions in units mﬂr@, the dimensionless Lagrangian forus - the anglej is no longer restricted to the range i,

but varies along a full circle [0,78. From the point of view

of the massn alone, this amounts to a twofold covering of its
1y 5241y L2 4 configurations, as¢, ©) and @ + =&, 2r — 9) give the same

L="50"+ g Sirf » — 1~ cosy ) positions ofm. Nevertheless, these two configurations can be

distinguished by the position of the frame F and the two-valued

variable

IS

With Ly, = & andL, = ¢ sir® ¢ as the angular momenta, the
corresponding Hamiltonian becomes

L 5= sgnés ﬁ)_[+1 if 0<9<uxm )
Hzl/2L§+llzsin(;l9+1+cosﬁ (3) g “1if r<9<2r1
may be introduced to account for this distinction. We call it
In a physical implementation of this system, a device must the system’sspin Our physical intuition tells us the pure
be chosen to hold the mass point on the sphere. It is practicallyspherical pendulum should emerge in the lighit> O, but it is
impossible to do this without changing the dynamics in an by no means obvious how?Tnight suddenly turn into 5 In
essential way. On the one hand, there are moving parts infact, we shall see that what happens in this limit is a dynamical
addition to the mass), implying new terms in the equations of ~decomposition of the torus?Tinto two spheres 5of opposite
motion. On the other hand, and more severely, the enlargedspin which share their two poles. While the dynamics allows
total system almost inevitably (we leave it as a challenge to the for transitions between the two spin states in the presence of a
reader to name a counterexample; perhaps we are too prejudicedhassive frame, the spin becomes a conserved quantity in the
to find any) has a configuration space different frofa Shis limit of vanishing6.
poses the interesting problem as to how the pure spherical To be a little more precise, the covering of-©S? by the
pendulum may be recovered in a physical limit of some kind. configuration space with frame F@= T2, is twofold only outside
Consider Figure 1 as a possible and fairly typical realization. the poles. The point8 = 0 orx are blown up intap-circles.
It derives from a Cardan suspension for rigid body motion whose This is admittedly more than a strict double covering, but the
third axis is not used here for rotation but only carries the mass deviation occurs on a subset of measure zero and does not
pointm. The anglep describes the position of the frame F to severely change our argument. But note that minimm 0
which the (massless}-axis is firmly attached. The energy and maximunV = 2 of the potential no longer occur at points
contributions of the masm are the same as in eq 1, but in in configuration space but on circles.
addition there is a kinetic enerdy = %,6F¢? associated with The present paper deals mainly with the systems (3) and (5),
the motion of the framef™ being its moment of inertia. With ~ and with their relationship. The analysis is greatly facilitated
the same scaling as before, and usifig= 67/mr? as a by the fact thatp is a cyclic variable in both cases, kg and
dimensionless parameter to characterize the frame, the Lagrangiafd are independent constants of motion, and the systems are
reads integrable. This remains true if instead of the mass point
we allow for a rigid body of masM such that they-axis is a
L =,5% + Y,(6 + sir? 9)¢* — 1 — cosv (4) first principal axis, and the center of mass lies on the 3-axis, a
distancec from the fixed point. Withg1, 6,, and@s its moments
The angular momenta ate, = ¥ andL, = (6 + sir? 9) ¢, of inertia, the energie¥ andV are

2
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T=",0, 9"+ Y67 + 65+ (8, — 0,)sirf 9)¢°

V = Mgl + cosv) ©)
Scaling energies bigc, times by,/6,/Mgc, and usingd :=
(6F + 03)/04, 6" := (62 — 03)/04, the dimensionless Lagrangian
becomes
L=",9°+ 1,6 + 0 sif 9)¢* — 1 —cos®  (8)

In this system, the angular momentup = (6 + €' sir? 9)¢
is still a conserved quantity, and the analysis is similar to that
of (4). The moments of inerti®#™ and 63 act together in
lowering the centrifugal potential near = 0 andz, and to
open the way for transitions in spin. The pure spherical
pendulum (2) can only be recovered in the lidft+ 65 — 0.

Quite a different type of dynamics is obtained if tireaxis
of the frame F is tilted with respect to theaxis of the
gravitational force, by an anglé (0 < 6 < x/2). The polar
axis of the spherical coordinate system still being ¢haxis,

Richter et al.

) 113 2/
22 -2
d ﬁ\
-3 -3
Figure 2. Invariant tori of the spherical pendulum if,(L;)-projection,
or as Poincdreectionsp = const. The tori are shown at equidistant
intervalsAl? of 1,2, starting withl, = 0 for the outermost torus. (&)

= 1.5, typical for low energies wheig, = S%; Al2= 0.5. (b)h =4,
typical for high energies wherg, = RP?; Al = 1.

&

is nonsmooth, containing the equilibrium point of the pendulum
in upright standing position.

The foliation of Ey by invariant tori is given by the energy
equation (3) which for each constaht = |, describes a

the kinetic energy expressions remain unchanged, but thetopological circle in the &,Ly)-plane; the’/,, are the direct

(scaled) potential now involves both angkgsnd ¢,

V =1+ cos®¥ cosd — cosg sin®d sind 9)
The minimumV = 0 is not assumed on a circle as before but
at the two isolated pointsy( 9) = (0, 7 — d) and @, & + 9).
Foro = 0, L, is no longer a constant, and the system no longer
integrable, as demonstrated in Figure 7.

A common feature of all these systems is the set of three

product of these circles with the-circles. Figure 2 shows the
arrangement of they(L,)-circles for energied = 1.5 andh =
4. It may be viewed as a projection of the tary,, onto the
(9,Ly)-plane; of course, the two sighg = +|l,| give the same
projections. Alternatively, Figure 2 may be interpreted in terms
of Poincafesectionsy = o where the conditiong > 0 or <
0 give identical pictures.

The tori 7, correspond to planar motion. They are foliated
by invariant circles on whiclp assumes two constant values,

discrete symmetry operations that leave the Lagrangian invariant.differing by . (It is an artifact of the singularities of the

The first is time reversar,
((pl ﬁ; L(/;v Lﬁ) - ((p! 19’ - Lgp' - Lﬂ)

The second general symmetry is invariance under refle®ion
with respect to the vertical plane,

((p! 191 L(pl Lﬁ) - (_ (p! 191 -

T: (10)

R: L, Ly) (12)
The third symmetry operatioR transforms the two spin states
into each other,

Pr (g, 0L, L)~ (¢ +tm2r =9, L, — Ly
The combined discrete symmetry group of the system is the
direct Abelian produc{l, T} x {1, R} x {1, P}, of order 8.

In the special case where the frame is aligned with gravity,
= 0, the value ofp does not matter, anB® may simply be
replaced by reflectiodl of the anglev,

(12)

M (g9, L, L)~ (@ 21— 0,1,

L,) (13)

3. Phase Space Analysis

Consider first the Hamiltonian (3) of the ideal spherical
pendulum, with configuration space € S2. Its phase space
T*Q is foliated by energy surfaceB;, defined by constant
valuesh > 0 of the energyH. The energy surfaces in turn are
foliated by invariant 2-tor'ﬁﬁ,.q, wherel,, are the constant values
of angular momentuni,,.

The energy surfaceBn, come in two different topologies,
depending on the value &f. For 0 < h < 2, the accessible
region of Q is a disk By henceEy, is a 3-sphere $ At high
energiesh > 2, all points of Q can be reached with positive
kinetic energy, and hencg&, has the topology oRP® =
SO(3)15 At the intermediate valul = 2, the energy surface

spherical coordinates that when the motion traverses the poles,
the phase space coordinaigsand Ly undergo discontinuous
changes t@ + w and—L,, respectively.) At energies < 2,
these circles are of oscillatory type and may be parametrized
with ¢ from the interval [Og). At energiesh > 2, the circles

are rotations coming in pairs of two directions, related by time
reversal. A convenient way to express this situation is to say
the torus% splits in two at the bifurcatiolm = 2. In Figure

2 these tori are represented by the outermost lines. In the
Poincafesection interpretation, only one half of the cirgle=

@o mod is seen as it lies in the surface of section. The other
half of that circle, as well as all other circles of, ¢, is outside

the surface of section.

Except for the different topological structure of the two energy
surfaces and the splitting of tHg = 0O torus, the pictures of
Figure 2, a and b, are very similar. All tori witl) = O are
combinations ofp-rotations withi-oscillations. The amplitude
of the latter vanishes at the maximum valy¢® of 1,2 at given
h which is obtained by looking for the critical poin#(Ly) =
(90, 0) of the Hamiltonian (3), at fixed,:

cost,=y(h— 1) — Y/(h— 1 + 3

|0 = 2 sirf d(h — 1 — cosdy) (14)
In the low- and high-energy limits, these conditions for pure
@-rotation reduce to

%

|2
@0

cos,~ —1+ h/2, h? if h—0

1
2h—1)y *°

Let us now turn to the Hamiltonian (5) whose configuration
space is ¥. The bifurcation scheme of its energy surfaégs

coS, & ‘~2h—-1) ifh—w (15)
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Figure 3. Bifurcation diagram in the (l,)-plane of constants of
motion: ()6 = 1, (b) 8 = 0.05.

and invariant tori %/, is more interesting than that of the
spherical pendulum without frame. At energies< 2, the
accessible part of Q is an annulus; hefige= S x S.. At h
> 2 where all of Q can be reachefl, = T2 x St =T3. The
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(ii) as g-rotation in the upright positiod? = 0, cos® = 1:

2
IW

(19)

l,>:=20(h—2), h>2

(iii) as g-rotation at a fixed anglet,, wherelL 2 as a function
of cos® has a relative maximum,

cosd,, = Yy(h— 1) — Y/ (h— 12+ 3(1+ 6) (20)
2= 1,7 = 2(1+ 6 — cos v, )(h— 1 — cos?,), h=z6/2
(21)

Combining these results, we obtain the bifurcation diagram
of Figure 3. Three different energy ranges must be distin-
guished, depending on the manner in whighis foliated by
invariant tori. At low energies &< h < 6/2, there is only one
family of tori 2%4,,, the angular momentuty ranging from—Ig
to +lg. Figure 4a shows their projection onto thgl(;)-plane,
or equivalently, Poincargectionsp = ¢q, ¢ > 0 (or <0 which
gives different tori but identical pictures). The motion is a
combination ofg-rotation andy-oscillation about the stable

same conclusion may be drawn from the energy equation (5) equilibrium position¥ = x. The angular momentunt,

in the form
21+ 6 —cogW)(h—1-cosv)— 17
1+ 60 — cog ¥

it describes a surface i {Ly,L,)-space which is topologically
a sphere Bor a torus F, depending on whethdris smaller or
larger than 2. Taking the direct product with thecircle S,

L,

(16)

assumes values from = 0, corresponding to purg-oscillation
(outermost circle in Figure 4a), 19 = +lg, corresponding to
pure @-rotation in the hanging positiott = zz. This type of
motion does not exist in the isolated spherical pendulum where
the centrifugal potential prevents a transition through the poles
with finite angular momenturh,.

At h = 6/2, there is a pitchfork bifurcation of the rotating
periodic orbit in hanging position which becomes unstable and

we confirm the above assertion about the topology of the energy gives birth to two new stable periodic orbits with= const=

surface.
The projection ofEy onto the ¢,L,)-cylinder is a disk B
for h < 2, and an annulus Dx S for h > 2. Its boundaryl(,

L, = v2(h — 2 cod(9/2)) 17)
bifurcates from one to two circles ht= 2 where it equals:2
sin (¥/2). At energyh = 2 there exists @-circle of equilibrium
points.

The invariant tori%, are direct products of the-circle S
and the circles given by eq 16 with fixed,(l,). Their
bifurcations are obtained from the relative equilibria, i.e., the
stationary points of thé-motion. They come in three kinds
of isolated periodic orbits:

(i) as g-rotation in the hanging positiott = &, cos® = —1:

0. Consequently, in the energy ran@R < h < 2, there are
two kinds of tori 7, ; see Figure 4b. For & |2 < |52, the

tori are a continuation of the low-energy type; the corresponding
motion is®-oscillation through the south pole, plgsrotation.

At 1,2 = |2 there is a separatrix, and for larde?, two tori
exist for each,, one with® < x, the other withy > 7. These

tori are mirror images of each other under the spin transforma-
tion P. Apart from thes-shift in the frame positiorp, they
describe the same physical situation. The motion of the mass
point m is qualitatively identical to that of the pure spherical
pendulum, namelyg-oscillation avoiding the poles, combined
with g-rotation.

The high-energy rangh > 2 exhibits yet another type of
torus at low values off,; see Figure 4c. The new pairs of tori
appear in connection with the topological bifurcation of the
energy surface. Fohp2 < |o? there is rotational¥-motion
passing through the north pafe= 0. At givenl,, the members

|¢2 =l =26h, h=0 (18) of a pair are related by the symme®y. In the ideal spherical
a) b) c)
ly s Ls 3 ly s
) ) ZA
1 1 1
? N 'Zv
; Y 3 Kl 3 Y

Figure 4. Projection of invariant tori/y,, onto the ¢,L,)-plane, for three different energis The moment of inertia of the frame &= 1. (a)

h=0.4,A12 = 0.15; (b)h = 1.5,Al2 = 0.5; (C)h = 4, Al2 = 2.
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a) b) 2, we need to determine the actiorg, (I5) of the tori Zhlgr
This is the subject of the next section.
Ig 1, Let us take a brief look on what happens when the supporting
frame is tilted by an anglé with respect to the vertical axis.
| The potential (9) now depending on both angbeand ¢, the
angular momenturrL, is no longer conserved; hence one
expects the system to be nonintegrable. This is corroborated
by the Poincareections shown in Figure 7. Compared to Figure
8! Sxs' T s RP’ 6b (© = 0), we observe the following changes.
Figure 5. Fomenko graphs of the different types of energy surfaces (i) The separatrices dissolve into chaotic bands, the chaos
for 6 < 4: (a) spherical pendulum with frame; energy ranges are 0 getting more pronounced a@sincreases.
h < 6/2 (left), 6/2 < h < 2 (middle), andh > 2 (right); (b) pure (i) The IT-symmetry with respect té-reflection at constant

spherical pendulum at energibs< 2 (left) andh > 2 (right). The . . : ar .
vertical axis isl,. Each torus,, is represented by a point on the ¢ is lost; however, the system is still invariant under the

corresponding graph. Bifurcations of tori appear as vertices. transformatiorP, cf. ref 12. o _
(i) The two orbits (of opposite spin) with maximufy? at
a) b) 0 = 0 lose their stability to two other orbits (again of opposite

spin) which in the fully tilted positiond = z/2 are planar
pendulum rotations of the angle at fixed 9 = 7/2 or 37/2.
Iy 3 Ly 5 Nothing of this rich dynamical behavior is seen if the frame is

2 2 m ﬁ absent from the starf,= 0. It would only appear inappropriate
1 to choose the polar axis of spherical coordinates tilted against
@ /[Q\ n @ O m the direction of gravity. Yet even the smallest nonz@roakes
U M U M different angles) physically inequivalent. There is no space
here to explore the interesting dependence of the dynamics on
ry Y combinations of the parameteds 6, h. Suffice it to say that
very little of the following can be applied to the chaotic regions

Eigl“gefl'z E?’(')'gfegetgtrigg SU’B’ %%";;gi@«sfggfr; rigéo—&l (@h of phase space and that insight into the corresponding quantum
= 1.5, =0.5; - =0. =g = g :
0.15 are also shown; ()= 4, Al2 = 2; the two separatricds? = g2 mechanics is as of now completely lacking.

= 0.4 andl,?2 = Ix? = 0.2 are also shown.

—

[\

bW Lo

0
1
-2
3

4. Action Integrals

pendulum, there is only one torus of this kind, figr= 0, As the Hamiltonians (3) and (5) describe integrable systems,
because otherwise the centrifugal barrier prevents access to theanonical transformationsp( 9, Ly, Ls) — (¢1, ¢2, 11, 12) to
poles. action-angle variables may be found such that the new Hamil-

A schematic view of the ordering of tori in phase space may toniansH = H (I4, I2) depend only on the actiorlg and the
be given in terms of Fomenko graph&’ as shown in Figure  dynamics becomes trivially = const,¢x = wx = dH /3l =

5. Each graph represents an energy surfete= h, and const. Because of the trivial separability igteand-motion,
depending on the value &f there are three types. Points of the action integral$; = |, andl, = |, are easily identified as
the diagram are in (1:1) correspondence with tGfj,. The contour integrals along the two fundamental paths of the
vertical axis is the angular momentulpy with ranges g, invariant tori %y,

la] at energiesh < 6/2, and [y, ] at larger energies. The

bifurcations af,2 = |42 (for h > 6/2) andl,2 = I? (for h > I, = 2_17,?{ y, L, dp=1, 22)

2) appear as vertices. Time reversal symmd@tig expressed

as mirror symmetry with respect to the horizontal dxis= 0. 1

The outer legs are related by spin symmétrghe two branches ly= —fm L, dv (23)
of the inner loop by reflection symmetigT. 2

Fomenko graphs for the frameless spherical pendulum areTg evaluate the last integral, we must insert eq 16, With O
ShOWﬂ in F|gure 5b Thelf¢ >0 and|¢ <0 halVeS eaCh for the ideal Spherical pendulum_

correspond to one legone spin stateof the outer parts of The frequencyw, = wy = 27/T, is obtained from

Figure 5a. A, = 0, the dot in the high-energy graph of Figure

5b is a leftover from the loop in Figure 5a, symbolizing the aL,

transition fromy-oscillation to rotation. T,= ?{ Vo 3 e 40 (24)
Let us now ask how the two systems (3) and (5) are related

in the limit  — 0 of vanishing moment of inertia of the Cardan and the frequency ofp-motion is best calculated from the

frame. Comparison of Figure 3, a and b, gives an indication. winding ratio

As 6 — 0, the low-energy patth < 6/2 becomes vanishingly

small, and the separatrick® = I * are squeezed against the w, _dH/el,  al,

axisl, = 0. In the limitd = 0 the bifurcation diagram reduces W= w, OHl, BI¢|h (25)

to the lines (14) plus the singular ling = 0. Figure 6 shows

how the system of tori behaves at small Motion that Let us go through these calculations step by step. Inserting
penetrates the centrifugal barriers at the pales 0 and/orx eq 16 and using = cos ¥, we get

covers a negligible part of phase space. The tori Wwjth>

I4? become more and more similar to those of the ideal spherical n rz [2f(2)

pendulum, except that they appear in two spin states. l, = o7 Ju % dz (26)

In order to quantify these statements, and to develop a picture
for the effective reduction of configuration space by a factor of where the limits of integratiom; andz and the numbera of
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3

s
3 i ,
3

s 0-

-3

0 [ 2n

Figure 7. Poincafesectionsp = 0, ¢ > 0, for h = 4 and small angular momentum of the franles= 0.05, with tilt angle (a)) = 0.1, (b)6 =
0.3, (c)0 = 0.6, (d)o = /2.

pieces in a closed path will be determined later. The functions The winding ratio (29) of the pure spherical pendulum is
f(z) andg(2) are the polynomials obtained after decomposing 1/17°) into its partial fractions:

f(Q=Q+0-2)h—-1-2 )72 (27)

We o (11 M, K+ 75 Ta,, K (31)

m/2@—0)

wherell(a, K) is the complete elliptic integral of the third kind,

0=0+60-A1-2)

The periodTy is the integral the parameters beingy = (b — ¢)/(+1 — ¢).
Finally, the action integral (26) is evaluated with the partial
z [9(2 dz fraction decomposition
YN (28)
(217 f(2) oo 1 1
——z+h-1-1Y, (—+—1+ (32)
and the winding ratio 1-7
\/7 the result is
(29)
(ﬂ
“2:e)s 2M2)92) |, = ——— ((a— OEK) + (h— 1— A)K(K) — |, W
In the general case = 0 the integrands have seven branch my2(@=c) (33)

points which makes the integrals hyperelliptic. There is no hope

for analytic integration, and we must turn to numerical evalu- whereE(K) is the complete elliptic integral of the second kind.
ation. In the limit® = 0, however, the four branch points The limits of low and high energies can be treated by
provided byg(z) disappear, asg[z)]¥? — 1 — 2, and the elementary integration. We leave it as an exercise to show that
integrals are elliptic. The simplest of these integral3is

_ b dz _ 272
T=2) = 2b-26- b)_Ja_K(k) (30) H~ (Il 41, forh— e (34)

H~l | +2, forh—0

wherea > b > c are the zeroes dz) andK(k) is the complete For the frequencies,, wy, and their ratioV, this implies

elliptic integral of the first kind, with moduluk = [(b — ¢)/(a 1
— Q]2 w,=sgn(,) w,=2 W=z, (35)
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in the limit of low energies, and

w,=v2hsgn(,)) ,=v2h W=+l (36)
at high energies.

The limit |, — 0 is familiar from the simple pendulum. We
must distinguish the energy ranges< 2 andh > 2. At low

energiesa=1,b=h—1,c= —1, and hencé& = [h/2]*2and

T, =2K(K), 1, = @) EK — (1 - K)K(K)
(I,=0;h<2) (37)

Note that a-period is defined here to extend from minimum
to maximum and back; in an oscillating pendulum the period
is usually taken to be twice as large. At high energéeand
b are exchanged, henge= [2/h]*2, and
Ty=2kK(K), 1,=(4EK (I,=0;h>2) (38)

Thel, — 0 limit of the winding ratio (31) is delicate because
the integral in eq 29 diverges as the lower limit= ¢ ~ |,%/4h
tends to zero. Careful analysis shows that — 1/2 forh <
2, and|W| — 1 forh > 2.

Another limit that may be worked out in detail is that of pure
@-rotation wherd,? assumes its maximum vallg? given in
eq 14. The zeroes dfz) are then

a="y(h— 1)+ %/(h— 1 + 3,
b=c="h—1)— Y/(h— 1°+ 3 (39)

and modulus as well as parameters,. are zero. WithK(0)
= E(0) = I1(0,0)= /2, we findl, = 0, and for the frequencies

w,=+/2@— ¢) =v2((h— 1* + 3)*,

_ [2h—1—-0)
Do = 1-&

Figures 8-10 are graphical representations of the above
results. The frequenciesy andw,, are shown as contour plots
in the f,l,)-plane in Figure 8. They both vanish at the singular
point (, I,) = (2, 0) where the asymptotic behavior along the
energy axis isvy = 27/(5 In 2 — In|h — 2|). The oscillatory
¥-motion has positive frequencies everywhere whereas the
rotational g-motion has positive or negative frequencies,
depending on the sign of.

Figure 9 shows the energy surfaddgl,,ly) = h as contour
lines in the {,,ly)-plane of action variables. The asymptotic
linear behaviot, ~ (h — |I,|)/2 at low energies, and ~ (2h)'?

— |l¢| at high energies as given in eq 34, is well borne out. The
singular point (g, Iy, h) = (0, 4/, 2) is much less conspicuous
here than in the frequency pictures. But taking the derivative
along lines of constant energpgives it a prominent appearance.
This is done in Figure 10 where the winding ratis plotted

as a function ol,, for a number of different energies. (Only
the positivel, part is shown, as(h,—I,) = —W(h,l,).) The

(40)
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Figure 8. Contour lines of constant frequencies (a) andw,, (b) in

the plane I, 1,) of constants of motion, for the frameless spherical
pendulum,® = 0.
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—_Nge
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Io 2

Figure 9. Energy surfaces of the spherical pendulum without frame,
in action variable representatidt (I,,1;) = h. The values oh are
multiples of 0.5. Corresponding to the oscillatory nature of the
¥-motion, |, is always positive, whereas there are two signsljor
depending on the sense of the rotation.
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®
Figure 10. Winding ratiosW as functions of,, for the same constant

figure is a kind of link between the two other pictures because yalyes of energyn as in Figure 9. Only the positive branch of the
Wis at the same time the ratia,/wy and the negative slope of  graph is shown. The values ¥ range from¥/, to 1.

the energy surfaces; see eq 25. The situation is considerably

more complicated if the spherical pendulum is suspended in aaction variables, and consider Figure 11 which is the analogue
frame with moment of inertigd. However, combining the  of Figure 9. Remember that the angleean now vary from 0
insight provided by Figure 4 with numerical integration of eqs to 2x.

26, 28, and 29, it is straightforward to obtain a comprehensive At low energiesh < 6, the Hamiltonian (5) may be expanded
picture of the dynamics. Let us start with a discussion of the to second order in the phase space variables. The motion is
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a)

I, 3

8 0 1

Figure 11. Energy surfaces of the spherical pendulum with fraéhe;, 1: (a) 2-D representation in thg,(l »)-plane for three values of the energy;

h = 0.4 (one dashed linel, = 1.6 (three pieces of dotted lind),= 3.0 (six pieces of full line). The action of rotational motion appears with two

signs. Only one of the two spin states at the highends is shown. (b) 3-D representationlipl(,h)-space. The actioris are combined in such

a way that the surface is continuous; notice the weak logarithmic slope singularities at the separatrices. The surface carries contour lines of
constanth and winding numbeW. Along |, = 0, the winding number is 0; it increases in steps of 0.15.

a)

h h

Figure 12. Contour lines in equal steps of constant frequenaiggleft) andw,, (right) in the planel, |,) of constants of motion, fof = 1. The
separatrices are well borne out.

then a combination of-rotations with#-oscillations about the Forl, = 0, the motion is that of an ordinary pendulum, and
equilibrium position® = 7. In action variables, we find I, will be denoted byly0. Compared to the situation without
frame, however, théd-rangev > & also contributes to a full
H=1,+ 1 | 2 (41) period. This adds a factor 2 to the_low-energy results in eq 37,
20 ¢ l9.0= (8/m)(E(K) — (1 — k?)K(K)), while those of eq 38 must be

taken with the two signd,,o = (4/rk)E(K).

Figure 12 is the result of numerical computations for the
frequenciesvy andw,, using egs 28 and 29, together with 27
The lowd,, branch,l2 < 142 = 26h, is a continuation of the for @ = 1. The pictures should be compared to Figure 8; they
low-energy motion. As,2 = I, grows beyond the separatrix are dominated by the nonspherical pendulum types of motion.
value lg?, the invariant tori split into two sets with spherical ~ Letus now discuss the limit of vanishing moment of inertia
pendulum type of motion, each with a definite spin state. The ¢ Figure 13 forf = 0.05, if compared to Figure 11b, shows
v-oscillations are now abouty, as given in eq 20 and do not how the lowi, types of motion and the two separatrices get
reach the pole$ =  or 0. The actiorl, for an individual ~ Squeezed toward thie = 0 axis. The only tori to survive in
torus jumps by a faCtOIllz, with the sum ru|e|;sl =y the limit 0 _’-0, at|¢ Zz= Q,_are _those with Ide.a! Spherlcal
(H[1a?-12)= 21T = 21,(£[lx>+]¥?), see Figure 11a: inthe Pendulum motion, and definite spin state. Transitions between
3-D representation of Figure 11b we have added the actions ofth® w0 spin states do not occur.
the two spin states so as to make the surface continuous across A suggestive picture for the transition from configuration

This explains the parabolic shape of the energy surfaces at low
h.
Betweenh = 6/2 andh = 2, there are two types of motion.

the separatrix. space ® = T2 to two spheres G= &, of opposite spin state,
Beyond the bifurcation of the energy surfacehat 2, and may be obtained in the following way. Drawing the, (¥)-
at low angular momentd,? < I? = 2(h — 2)6, rotational torus as a doughnut iR3, (¢, ¥) — (X, ¥, 2 = ((A + R(¥) cos

¥-motion appears. The two senses of the rotation correspondg) cos ¢, (A + R(#) cosg) sin ¥, R(¥) sin ¢), we choose a
to the two signs ol in Figure 11a, and the sum rule at the #-dependent radiuR() such that the cross sectiaiR? of the
separatrix isly o = lp(£[le?H]1) = 2|1, o| = 2/ly(£[le>— torus at giveny is proportional to the total action of that part
1¥3)|. Adding the absolute values of these two branches of the of phase space which connects to the givdry Liouville tori.
energy surface, we obtain the continuous picture of Figure 11b. All tori with 0 < [,? < |¢? reach the north polé = 0; hence
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Figure 13. Energy surfaces of the spherical pendulum with frathe,
= 0.05, in 3-D representation as in Figure 11b. The contour lines of
constant winding ratio are shown in steps of 0.15.

R%(0) = 2(|ls,0l — Il &l). For angles 0< ¥ < x let us define
I5(9) as the action, of the torus?,, which hasLy = 0 at the
given®: from eq 16 this implied,? =: 1,2(9) = 2(1 + 6 —
cog ¥)(h — 1 — cos®). The separatrik,® = |2 spans angles
¥ in the range co® < cosvdg = (h — [(h — 2)2 + 46]Y?)/2;
hence at angles 8 ¥ < ¥4 we see all tori withl ;2 < I,%(9),
andR¥(®) = 2|ly0| — ls(¥). For larger anglesty < o < 1,
only one spin state is seen, aR&(¥) = 2|y — |§,51 — 15(9).
This goes through a maximum at= 9, (see eq 20) and ends
in the valueR%() = 2(|ls.0l — [1;l). In the range? > 7 we

haveR(¥) = R(2z — v).

Figure 14 shows the tori so constructed for= 0.05 andf
= 0.0001. The “dynamic weight” of the poles obviously shrinks
as the frame becomes lighter and lighter, and in the limit
0 the configuration space effectively splits into two topological

spheres held together at the two poles.

5. Quantum Spectra

The Schidinger equation for the spherical pendulum, includ-
ing the frame, is obtained from eq 5 with — —ikhd/39 and
L, — —ihd/ogp, whereh is measured in units afir @ The
standard separation ansatz for the wave functiBy, 9) =
Y(®)Em, m = 0£1,42,.., leads to the one-dimensional

eigenvalue problem

h? &

(— Toat vw>)w<ﬁ> = Ey(9)

with effective potential

2
V(z9)=1+COSI9+FL i

and boundary conditiongy(¢) = (9 + 2x) and y'(9)
continuous. V(#) on the circle 0< ¢ =< 27 has reflection
symmetryIl, hence the eigenfunctions can be chosen to have

even or odd parityl = +1,

My* =Ty™ @)=y (-9), v () =—yp (-9)

As there is no analytic solution to eq 42, one possibility to

2. 9+sitv
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Figure 14. (¢,9)-configuration space of the spherical pendulum with
frame, for two values of the moment of inertia (a) & = 0.05, (b)6

= 0.0001. The cross sectiorR%(?) of the configuration space torus
at given? is a measure of the phase space weight of the Liouville tori
that reach this value of.

for brute force numerical computation. Alternatively, semiclas-
sical procedures have been available for some time which are
almost as good. We have performed both types of calculation
to obtain the spectra shown here and on the scale of resolution
of these pictures found no differences.

The presence of separatrices typically leads to discontinuities
in the standard semiclassical quantization schemes. This is
avoided in a method worked out by Milléf° to obtain a
uniform quantization condition. It combines the WKB method
with an elegant procedure to connect pieces of the solution at
deflection points? (real or complex), where the energy equals
the value of the effective potential. As this method is
particularly well suited for our kind of problem we briefly recall
its main ingredients. LeVW; be the minimum value of the
potential,Vin = V(9n) = V(21 — Oy), andVy = V(n), Vo =
V(0) its two maximay, = V; + 2. For energie& in the range
(Vm, V1), there are four classical turning points, i.e., real solutions
¥ to the equation/(¥) = E. Let their arrangement be € 4
< Ym < % <mganddz = 2w — P, ¥4 = 21 — ¥;. Three
integrals must be computed, the classical action intdgraind
two tunnel integralsTy, To:

_ 2 02 _ (v [ | 2
== SooLpdo, Ty= [ y-L,2do,
. 2
T,= [,"y-L,2dv (45)
4

The quantization condition is then

al 9 ef(T1+T2)/h -1

(46)

«/(1 + e—zn/h) 1+ e—zn/h)

obtain spectra and eigenfunctions is to use a shooting methodand must be evaluated numerically. Har> A and T, > A,



Spherical Pendulum, Actions, and Spin J. Phys. Chem., Vol. 100, No. 49, 19969133

1.0 [T 20 -
+ I=+1
o Il=-1 v =+ DA
= o M=-1 ® o o o
L3 @ ® L] @
0.5 4 { @ @ © o o @
) & @ L] & @ @ &)
® 8 @ @ @ @ @ 3|
@ ® @ ® L] ® L] @ L: ]
9 ® & © © © © © o @ 4
0.0 g;q;::####“h |¢1O ® © © @ © @ & © © o &
& e © ® © e & © e @ © @ g
@D & L] L] L] & @® ® @ B @ ® & k2|
@ L] & @ @ @ @ @ @ ® @ @ & @
& @® @ @ @ k) ] e o B & L) a8 L] ©
0.5 q ® ®© © @& © © ® ® © © D _P o to
& L] o ® ° © +tO0+0+0+0+0+0+0+0OH4
o o o TG 10 +0+040+010+0+10+0 k01 O
k2l +0 + 0 +0+0+0+0+0+0+0+0+0+0+ 3 3 &
w
7 C+0+0+0+0+0+0+0+0+0+040+0 o o ¢ & @
1.0 L& 0 . 4
l,, 10 20 30 I, 40 0.0 1.0 20 3.0
2 s
Iy h
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Figure 16. Spectrum of eigenstates of the Satirger equation (42)

for 8 = 1 andh = 0.1. The values of, = |, are multiples ofi; only Figure 18. Spectrum of eq 42 fof = 1 andh = 0.1, in action variable
positive |, are shown as the spectrum is symmetric uriger —I,. representation. The energy axis of Figure 16 has been transformed
The energy eigenvalues were determined by numerical solution andinto thely-axis by means of eq 26.

by uniform semiclassical quantization. Crosses are for even, circles

for odd eigenfunctiong(v). simply the even and odd real combinations 6f% with integer

k and E, = hk?:
the right-hand side (rhs) goes t€l, and we obtain the Bohr
Sommerfeld conditiothy = (2n + 1)k, with twofold degeneracy Y () O coskd, y, (9) O sinky (47)
for each state.

WhenE is in the rangeV/; < E < V5, the angles}, and 3
are complex, and the integral far must be taken along the
imaginary direction. This gives a negative value Tor and if
both |T;| are large compared th, the rhs goes to 0. The
quantum condition is theh, = (n + ¥k, and there is o completely-degenerate. The reason for this degeneracy is the
degeneracy. FOE > V,, the integrall is also negative, and nfinitely high centrifugal potentiatr?h2/2 sir? .
well above the second separatrix the rhs approaches 1. This The regularities of the spectra become much more transparent
implies 1, = 2nk, with twofold degeneracy. if we transform them to the action variable representation, using

Figure 15 shows a typical example where the rhs of eq 46 the classical expression (26) to convert energy lintoThe result
was first computed as a function of ener@y and then  is shown in Figure 18, for the cage= 1. The picture is
transformed to a function dfy with the help of eq 26. The  remarkably simple. Its basic pattern is a discretization with
width of the transition regions around the two separatrices mesh sizesAl, = Al, = h, as was assumed in Bohr's old
depends on where the tunnel integrals are on the order of  guantum theory. This is best seen in the intermediate phase

The spectra fof = 0.05 and = 1 (with i = 0.1) are shown  where there is no spontaneous symmetry breaking, and hence
in Figures 16 and 17, respectively. Even states are representecho degeneracy. The degeneracies in the low- and lpighases
as crosses and odd states as circles. Negative valligs=df, imply a coalescence of eigenstates into pairs of equal actions,
= mh are omitted a®/() depends om?. The three “phases”  giving a mesh size\l, = 2h for the pairs. For a subset of
of the bifurcation diagrams Figure 3 are readily identified. states with given symmetry, this may be interpreted by saying
Except near the separatrices which appear somewhat blurredthat the effective shrinking of the available phase space volume
they are clearly distinguished by the degeneration scheme ofby a factorl/, is compensated by a factor 2 in the mesh size of
even and odd states. actions.

In the lowd, phasd,? < Io? = 26(h — 2),h > 2, even and There are only two features in the fine structure that the
odd states are (nearly) degenerate. This is easy to understandquantum theory of 1917 could not account for: one is the
in the limit 1, = 0, h > 2 where the two degenerate states are absolute position of the mesh, and the other is the transition

In the intermediate regiohy? < I,? < Ig? the degeneracy is
lifted; even and odd states alternate in energy. In the high-
phase of spherical pendulum type motidg? > 19> = 26h,
even and odd states are again neadnd in the limit6 — 0
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+y®) if 0<d<m
-y if t<v<2xn

Notice thats has expectation value 0 in any eigenstate of given
parity,

Sp(9) = { (48)

=18y 0= $9=(9) 3*(9) d cosy = 0

because of the minus sign introduced3iyn the rangey > .
Nevertheless, in the lim# — 0, the degenerate eigenstates of
different parity may be recombined to give eigenstates of definite
spin,

(49)

W' =" (ny) + 9 (n, + 2)),
¥ =" (n,) — v (n, +2)) (50)

with

region near the classical separatrices. Both features do not affect

the rule that there aram states in a phase space volume of

size nniZ; they only refer to the distribution of states within
elementary cells.

The first feature can be dealt with in terms of Maslov indices

and is governed by a simple rule: action eigenvaluesnire
for rotational motion along as2circle, and 6 + Y,)A for
oscillatory motiore®=22 This explains the details of Figure 18
except near the separatrices:

1. Theg-motion being always rotational,, is everywhere
nvi.

2. In the intermediate phaskz? < 1,2 < I« ¢ oscillates
without degeneracy, hendg = (n + Y,)h.

3. In the highk, phase]? > |42 ¢ oscillates in either of
the reduced phase spaages< i or 9 > . This impliesly =
(n + Y,)2k for each of the two symmetry classes.

4. In the lowd, phase],? < |? ¢ rotates in either of the
reduced phase spades> 0 orLy < 0. This impliesly = 2nk
for each of the two symmetry classes.

éwT:wT' gil)l: _w¢
Under the influence of a frame with small nonzé&ahese spin
eigenstates are no longer exact energy eigenstates. Instead, they
' are metastable states with lifetimedetermined by the tunneling
rate. The energy splitting between'(ns) andy~(ny + 2) is
of the orderh/z, in accordance with the uncertainty relation.

The situation is different if even and odd degenerate states
in the lowd, phase are combined. In line with the physical
nature of the corresponding classical tofj, , there is no way
to construct eigenstates ®from thesey(ny) andy~(ny); the
spin expectation value of such combinations remains zero
because of the symmetry and orthogonality of the eigenstates.

(51)

6. Conclusion and Outlook

We have presented a coherent picture of the classical and
guantum mechanics of a spherical pendulum suspended in a
frame with vertical axis of rotation. The system is classically
integrable, and we gave a full account of its phase space

As to the behavior in the neighborhood of separatrices, the structure. The hyperelliptic nature of the problem,. rgflected.in
uniform quantization takes well care of it. To the extent that the presence of two separatrices, prevents analytic integration.

the potential can be approximated W) ~ Vo — Y0 (s —
)2 near a maximum aty, the tunnel integral is on the order
of 7 or smaller for energiefE — Vo| < fiv/a. This gives an

indication of the width of the transition region. For the potential

(43) we finda. = M?h%6? — 1 at¥ = x, ando. = mPh%/H2 +
1 at® = 0. Transforming from energy to actidpthis may be
expressed as a “coherence length” for Maslov indices.

Let us now discuss the dependence of the spectruf tor
given angular momenturh, = mA. Figure 19 shows energy
eigenvalues wittm = 10, for even states with 12, 14, ..., 38

But numerical computation allowed us to produce graphs
providing comprehensive insight. We determined the bifurca-
tion scheme of the energy-momentum mapping, the foliation
of energy surfaces by invariant Liouville tori, and the repre-
sentation of energy surfaces in terms of two action variables,
H=H (I, I5), from which we derived frequencies and winding
ratios.

This representation is a convenient starting point not only
for understanding but also for computing the quantum mechan-
ical spectra. We used well established semiclassical methods
to obtain results virtually identical to those of a straightforward

nodes, and odd states with 14, 16, ..., 40 nodes (the number ofyo| tion of Schidinger's equation. With a small set of

nodes of a periodic function on a circle must be even). In the 4qgitional rules, they are derived from a discretization of actions
limit 6 — 0, i.e., of two connected copies of frameless spherical \yith mesh sizéi.

pendulums, even states witlh) nodes are strictly degenerate
with odd states ofiy + 2 nodes. With increasing, the energy

Our main interest concerned the relationship of the spherical
pendulum with frame to the pure, frameless spherical pendulum.

eigenvalues decrease, and a noticeable energy splitting betweefrpe |imit of vanishing moment of inertié of the frame cannot

statesy™(ny) and y~(ny, + 2) takes place when the first

simply produce the textbook spherical pendulum, because the

separatrix is approached. Between the two separatrices, thezonfiguration space 2Tof the system with frame does not turn

levels keep almost equal distances in the org&fny), 1~ (ns
+ 2), y*(ny + 2), ..., and for@ so high that the motion is
dominated by the rotating pendulum type, staje¥ny) and

1 ~(ny), with the same number of nodes, become degenerate.

into a sphere 5 However, we presented a scenario in which
T2 develops into two copies of?Sand we suggest to view this
as a possible classical concept of spin.

An analogous picture can be presented for the relationship

How do these observations relate to the concept of spin thatof a rigid body suspended in a Cardan frame, with configuration
we introduced as a classical variable in eq 6? A quantum space ¥, to the isolated rigid body whose configuration space

counterpart might be defined as the oper&or

is SO(3). As the moments of inertia of the frame tend to zero,
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T3 effectively develops into two copies of SO(3). This proposal
is related to but different from the usual concept according to
which spin is associated with the twofold covering of SO(3)
by SU(2).

In a short deviation from the mainstream of the paper, we

demonstrated that the spherical pendulum with frame can easily

be made nonintegrable by giving the frame a tilt with respect

J. Phys. Chem., Vol. 100, No. 49, 19969135

(9) Dullin, H. R.Die Energieflahen des Kowalewskaja-Kreisgldainz
Verlag: Aachen, 1994; Dissertation.

(10) Dullin, H. R.; Juhnke, M.; Richter, P. H. Action integrals and energy
surfaces of the Kovalevskaya togifurcation and Chao4994 4(6), 1535~
1562.

(11) Richter, P. H.; Wittek, A.; Kharlamov, M. P.; Kharlamov, A. P.
Action integrals for ellipsoidal billiardsZ. Naturforsch 1995 50a, 693—
710.

(12) Wiersig, J.; Richter, P. H. Energy surfaces of ellipsoidal billiards.

to the vertical. The phase space structure is then considerablyz. Naturforsch 1996 51a 219-241.

more complicated, and it will be interesting to study the quantum
mechanics of this system. For small and tilt angles,

perturbation theory may help to understand the nonchaotic

regions, but on the whole, it will be necessary to perform

extensive numerical calculations. The main challenge, we feel,

is to invent pictures that would connect the results to those of
the integrable limit.
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