
Spherical Pendulum, Actions, and Spin†

Peter H. Richter,*,‡ Holger R. Dullin, Holger Waalkens, and Jan Wiersig
Institut für Theoretische Physik and Institut fu¨r Dynamische Systeme, UniVersity of Bremen,
Postfach 330 440, D-28334 Bremen, Germany

ReceiVed: June 11, 1996X

The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a
suspending frame with moment of inertiaθ. The presence of two separatrices in the bifurcation diagram of
the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of the problem.
Nevertheless, numerical computation allows to obtain the action variable representation of energy surfaces
and to derive frequencies and winding ratios from there. The quantum mechanics is also best understood in
terms of these actions. The limitθ f 0 is of particular interest, both classically and quantum mechanically,
as it generates two copies of the frameless standard spherical pendulum. This is suggested as a classical
interpretation of spin.

1. Introduction

John Ross was born in the year when Schro¨dinger’s equation
and Born’s statistical interpretation of the wave function were
published. The triumph of quantum theory left only minor roles
for classical mechanics, in the exciting game of exploring the
microscopic world of atomic and molecular dynamics. The year
before, with Born’s publication of hisVorlesungen u¨ber
Atommechanik,1 the old Bohr-Sommerfeld idea to understand
energy spectra on the basis of discretizing classical action
integrals in multiples ofp had reached its culmination point,
and at the same time come to a dead end. Friedrich Hund, who
contributed substantial parts to that book, confessed many years
later that in the Go¨ttingen theoretical physical seminar they had
tried hard to make use of Poincare´’s new methods for dealing
with nonintegrable mechanical systems, but as Einstein had
clearly foreseen in 1917,2 the quantum theorists of old could
not absorb them in their concepts; as a result, the matter was
dropped and left out of Born’s book. In contrast, Heisenberg’s
and Schro¨dinger’s new quantum mechanics did not suffer from
this difficulty: integrability was not an issue, at least so it
seemed. Separable or not, the Schro¨dinger equation could be
written down and solved, if only in principle. Poincare´ became
forgotten in the physics community.
Things changed whenchaoswas (re)discovered, about 50

years later. The combined impact of beautiful mathematical
results as in the Kolmogorov-Arnold-Moser theory, and of
the computer revolution, renewed the interest first in classical
mechanics, then in the quantum mechanics of nonseparable
systems. The termquantum chaologywas coined to refer to
the specific features of quantum systems whose classical
counterpart is nonintegrable.3,4 So far, the major achievement
in this field of research has been the discovery that action
integrals along classical periodic orbits are the key to under-
standing complicated spectra.5

In light of this development, the interest in the computation
of actions has been revived. Screening through the literature,
one finds surprisingly little concrete knowledge for nontrivial
systems, even though textbooks and review articles6,7 stress their
general importance for perturbation theory and quantization. To
fill this gap, our research group has worked out energy surfaces

in action variable representation, for a number of classical
problems: the Euler, Lagrange, and Kovalevskaya cases of rigid
body dynamics,8-10 billiards in ellipsoids,11,12 and particle
motion around point masses with Schwarzschild or Kerr metric
as well as around two fixed centers.13 The typical shape of
these surfaces, for systems with three degrees of freedom, has
turned out to be a pyramid of some sort.
In the course of these studies we considered rigid bodies with

Cardan suspensions. The configuration space of such systems
is a 3-torus T3, as three angular coordinates may vary indepen-
dently along a full circle. This is an essential distinction to the
configuration space SO(3) of an isolated rigid body where one
of the three Euler angles varies only from 0 toπ. It is common
thinking among physicists that pure SO(3) dynamics emerges
in the limit where the moments of inertia of the Cardan frames
vanish, but how should the transition from T3 to SO(3) in
configuration space be described? In a forthcoming mono-
graph,14 we propose to consider T3 as a double cover of SO(3)
and to understand the limit as a transition from T3 to twocopies
of SO(3). In a natural way, this point of view introduces a
classical spin variable for distinction between the two copies.
The same reasoning is applied in the present paper to the

spherical pendulum and is carried over from classical to quantum
mechanics. The configuration space of the isolated spherical
pendulum is the sphere S2; with suspension it becomes a 2-torus
T2. Whereas the isolated system is always integrable, the
suspension frame may spoil the integrability, but we shall
concentrate on the case where both systems have a conserved
angular momentumLæ. The energy surfaces are then foliated
by invariant Liouville tori and may be transformed to action
variable representation. We determine the bifurcation scheme
of critical tori and the classical action integrals. As long as the
moment of inertia of the frameθ does not vanish, there exists
a system of separatrices which defines three types of motion,
or “phases”, two of which appear in two copies due to
spontaneous symmetry breaking. One of these two types
corresponds to the motion of the pure spherical pendulum. It is
the only phase to survive in the limitθ f 0; its two copies
may be assigned a classical spin.
The quantum mechanical spectrum is determined both

numerically and in semiclassical approximation. The agreement
is almost perfect and demonstrates how remarkably powerful
the recipes of old quantum theory are, if combined with simple
rules to account for symmetry and topology of classical tori as
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well as for smooth transitions across separatrices. As in the
classical treatment, theθ f 0 limit produces the pure spherical
pendulum physics with twofold degeneracy.
The organization of the paper is as follows. Section 2 defines

the classical Hamiltonians, first of the pure spherical pendulum
and then with suspending frame. The foliation of phase space
by invariant tori, and its bifurcation scheme, is discussed in
section 3. The classical analysis is completed in section 4 where
we calculate action integrals, energy surfaces, and frequencies.
We show how the limitθ f 0 produces two copies of the pure
spherical pendulum, with opposite spin. Finally, section 5
presents the quantum mechanical spectrum, first in terms of
energy and angular momentum eigenvalues and then in the more
transparent action eigenvalue representation.

2. Isolated and Suspended Spherical Pendulum

The mathematical definition of a spherical pendulum assumes
a mass pointm, free to move on a sphere S2 of radiusr, in an
external gravitational potential that depends linearly on a
coordinatez. Using spherical coordinates (æ,ϑ) to parametrize
the configuration space Q) S2 by longitudeæ ∈ S1 and latitude
ϑ, ranging fromϑ ) 0 at the north pole toϑ ) π at the south
pole (z ) cosϑ), kinetic energyT and potential energyV are

The potential minimumV ) 0 occurs at the south pole.
Measuring energies in units ofmgr, times in units ofxr/g,
hence actions in units ofmrxgr, the dimensionless Lagrangian
is

With Lϑ ) ϑ̇ andLæ ) æ̆ sin2 ϑ as the angular momenta, the
corresponding Hamiltonian becomes

In a physical implementation of this system, a device must
be chosen to hold the mass point on the sphere. It is practically
impossible to do this without changing the dynamics in an
essential way. On the one hand, there are moving parts in
addition to the massm, implying new terms in the equations of
motion. On the other hand, and more severely, the enlarged
total system almost inevitably (we leave it as a challenge to the
reader to name a counterexample; perhaps we are too prejudiced
to find any) has a configuration space different from S2. This
poses the interesting problem as to how the pure spherical
pendulum may be recovered in a physical limit of some kind.
Consider Figure 1 as a possible and fairly typical realization.

It derives from a Cardan suspension for rigid body motion whose
third axis is not used here for rotation but only carries the mass
pointm. The angleæ describes the position of the frame F to
which the (massless)ϑ-axis is firmly attached. The energy
contributions of the massm are the same as in eq 1, but in
addition there is a kinetic energyTF ) 1/2θFæ̆2 associated with
the motion of the frame,θF being its moment of inertia. With
the same scaling as before, and usingθ ) θF/mr2 as a
dimensionless parameter to characterize the frame, the Lagrangian
reads

The angular momenta areLϑ ) ϑ̇ andLæ ) (θ + sin2 ϑ) æ̆,

and the Hamiltonian

The most important difference between the systems with and
without frame is not just the modification sin2 ϑ f θ + sin2 ϑ
but the change in configuration space from the sphere S2 to the
torus T2: the angleϑ is no longer restricted to the range [0,π]
but varies along a full circle [0, 2π]. From the point of view
of the massm alone, this amounts to a twofold covering of its
configurations, as (æ, ϑ) and (æ + π, 2π - ϑ) give the same
positions ofm. Nevertheless, these two configurations can be
distinguished by the position of the frame F and the two-valued
variable

may be introduced to account for this distinction. We call it
the system’sspin. Our physical intuition tells us the pure
spherical pendulum should emerge in the limitθ f 0, but it is
by no means obvious how T2 might suddenly turn into S2. In
fact, we shall see that what happens in this limit is a dynamical
decomposition of the torus T2 into two spheres S2 of opposite
spin which share their two poles. While the dynamics allows
for transitions between the two spin states in the presence of a
massive frame, the spin becomes a conserved quantity in the
limit of vanishingθ.
To be a little more precise, the covering of Q) S2 by the

configuration space with frame, QF ) T2, is twofold only outside
the poles. The pointsϑ ) 0 or π are blown up intoæ-circles.
This is admittedly more than a strict double covering, but the
deviation occurs on a subset of measure zero and does not
severely change our argument. But note that minimumV ) 0
and maximumV ) 2 of the potential no longer occur at points
in configuration space but on circles.
The present paper deals mainly with the systems (3) and (5),

and with their relationship. The analysis is greatly facilitated
by the fact thatæ is a cyclic variable in both cases, soLæ and
H are independent constants of motion, and the systems are
integrable. This remains true if instead of the mass pointm
we allow for a rigid body of massM such that theϑ-axis is a
first principal axis, and the center of mass lies on the 3-axis, a
distancec from the fixed point. Withθ1, θ2, andθ3 its moments
of inertia, the energiesT andV are

Figure 1. Spherical pendulum suspended in a frame F. The frame
rotates here about a vertical axis; its position is given by the angle of
longitudeæ. The horizontalϑ-axis is fixed in F. The mass pointm is
rigidly connected to this axis by a massless rod.

T) 1/2mr
2 (ϑ̇2 + æ̆2 sin2 ϑ), V) mgr(1+ cosϑ) (1)

L ) 1/2ϑ̇
2 + 1/2æ̆

2 sin2 ϑ - 1- cosϑ (2)

H ) 1/2Lϑ
2 + 1/2

Læ
2

sin2 ϑ
+ 1+ cosϑ (3)

L ) 1/2ϑ̇
2 + 1/2(θ + sin2 ϑ)æ̆2 - 1- cosϑ (4)

H ) 1/2Lϑ
2 + 1/2

Læ
2

θ + sin2 ϑ
+ 1+ cosϑ (5)

s) sgn(π - ϑ) ) {+1 if 0 < ϑ < π

-1 if π < ϑ < 2π
(6)
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Scaling energies byMgc, times byxθ1/Mgc, and usingθ :)
(θF + θ3)/θ1, θ′ :) (θ2 - θ3)/θ1, the dimensionless Lagrangian
becomes

In this system, the angular momentumLæ ) (θ + θ′ sin2 ϑ)æ̆
is still a conserved quantity, and the analysis is similar to that
of (4). The moments of inertiaθF and θ3 act together in
lowering the centrifugal potential nearϑ ) 0 andπ, and to
open the way for transitions in spin. The pure spherical
pendulum (2) can only be recovered in the limitθF + θ3 f 0.
Quite a different type of dynamics is obtained if theæ-axis

of the frame F is tilted with respect to thez-axis of the
gravitational force, by an angleδ (0 e δ e π/2). The polar
axis of the spherical coordinate system still being theæ-axis,
the kinetic energy expressions remain unchanged, but the
(scaled) potential now involves both anglesϑ andæ,

The minimumV ) 0 is not assumed on a circle as before but
at the two isolated points (æ, ϑ) ) (0, π - δ) and (π, π + δ).
Forδ * 0, Læ is no longer a constant, and the system no longer
integrable, as demonstrated in Figure 7.
A common feature of all these systems is the set of three

discrete symmetry operations that leave the Lagrangian invariant.
The first is time reversalT,

The second general symmetry is invariance under reflectionR
with respect to the vertical plane,

The third symmetry operationP transforms the two spin states
into each other,

The combined discrete symmetry group of the system is the
direct Abelian product{1, T} × {1, R} × {1, P}, of order 8.
In the special case where the frame is aligned with gravity,δ
) 0, the value ofæ does not matter, andP may simply be
replaced by reflectionΠ of the angleϑ,

3. Phase Space Analysis

Consider first the Hamiltonian (3) of the ideal spherical
pendulum, with configuration space Q) S2. Its phase space
T*Q is foliated by energy surfacesEh, defined by constant
valuesh > 0 of the energyH. The energy surfaces in turn are
foliated by invariant 2-toriuh,læ, wherelæ are the constant values
of angular momentumLæ.
The energy surfacesEh come in two different topologies,

depending on the value ofh. For 0< h < 2, the accessible
region of Q is a disk D2; henceEh is a 3-sphere S3. At high
energiesh > 2, all points of Q can be reached with positive
kinetic energy, and henceEh has the topology ofRP3 =
SO(3).15 At the intermediate valueh ) 2, the energy surface

is nonsmooth, containing the equilibrium point of the pendulum
in upright standing position.
The foliation ofEh by invariant tori is given by the energy

equation (3) which for each constantLæ ) læ describes a
topological circle in the (ϑ,Lϑ)-plane; theuh,læ are the direct
product of these circles with theæ-circles. Figure 2 shows the
arrangement of the (ϑ,Lϑ)-circles for energiesh ) 1.5 andh )
4. It may be viewed as a projection of the toriuh,læ onto the
(ϑ,Lϑ)-plane; of course, the two signsLæ ) (|læ| give the same
projections. Alternatively, Figure 2 may be interpreted in terms
of Poincare´ sectionsæ ) æ0 where the conditionsæ̆ > 0 or<
0 give identical pictures.
The toriuh,0 correspond to planar motion. They are foliated

by invariant circles on whichæ assumes two constant values,
differing by π. (It is an artifact of the singularities of the
spherical coordinates that when the motion traverses the poles,
the phase space coordinatesæ andLϑ undergo discontinuous
changes toæ + π and-Lϑ, respectively.) At energiesh < 2,
these circles are of oscillatory type and may be parametrized
with æ from the interval [0,π). At energiesh > 2, the circles
are rotations coming in pairs of two directions, related by time
reversal. A convenient way to express this situation is to say
the torusuh,0 splits in two at the bifurcationh ) 2. In Figure
2 these tori are represented by the outermost lines. In the
Poincare´ section interpretation, only one half of the circleæ )
æ0 modπ is seen as it lies in the surface of section. The other
half of that circle, as well as all other circles ofuh,0, is outside
the surface of section.
Except for the different topological structure of the two energy

surfaces and the splitting of thelæ ) 0 torus, the pictures of
Figure 2, a and b, are very similar. All tori withlæ * 0 are
combinations ofæ-rotations withϑ-oscillations. The amplitude
of the latter vanishes at the maximum valuelæ02 of læ2 at given
h which is obtained by looking for the critical point (ϑ, Lϑ) )
(ϑ0, 0) of the Hamiltonian (3), at fixedlæ:

In the low- and high-energy limits, these conditions for pure
æ-rotation reduce to

Let us now turn to the Hamiltonian (5) whose configuration
space is T2. The bifurcation scheme of its energy surfacesEh

T) 1/2θ1 ϑ̇
2 + 1/2(θ

F + θ3 + (θ2 - θ3)sin
2
ϑ)æ̆2

V) Mgc(1+ cosϑ) (7)

L ) 1/2ϑ̇
2 + 1/2(θ + θ′ sin2 ϑ)æ̆2 - 1- cosϑ (8)

V) 1+ cosϑ cosδ - cosæ sinϑ sinδ (9)

T: (æ, ϑ, Læ, Lϑ) f (æ, ϑ, - Læ, - Lϑ) (10)

R: (æ, ϑ, Læ, Lϑ) f (- æ, ϑ, - Læ, Lϑ) (11)

P: (æ, ϑ, Læ, Lϑ) f (æ + π, 2π - ϑ, Læ, - Lϑ) (12)

Π: (æ, ϑ, Læ, Lϑ) f (æ, 2π - ϑ, Læ, - Lϑ) (13)

Figure 2. Invariant tori of the spherical pendulum in (ϑ,Lϑ)-projection,
or as Poincare´ sectionsæ ) const. The tori are shown at equidistant
intervals∆l2 of læ2, starting withlæ ) 0 for the outermost torus. (a)h
) 1.5, typical for low energies whereEh = S3; ∆l2 ) 0.5. (b)h ) 4,
typical for high energies whereEh = RP3; ∆l2 ) 1.

cosϑ0 ) 1/3(h- 1)- 1/3x(h- 1)2 + 3

læ0
2 ) 2 sin2 ϑ0(h- 1- cosϑ0) (14)

cosϑ0≈ -1+ h/2, læ0
2≈ h2 if hf 0

cosϑ0≈ - 1
2(h- 1)

, læ0
2≈ 2(h- 1) if hf ∞ (15)
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and invariant toriuh,læ is more interesting than that of the
spherical pendulum without frame. At energiesh < 2, the
accessible part of Q is an annulus; henceEh = S2 × S1. At h
> 2 where all of Q can be reached,Eh = T2 × S1 ) T3. The
same conclusion may be drawn from the energy equation (5)
in the form

it describes a surface in (ϑ,Lϑ,Læ)-space which is topologically
a sphere S2 or a torus T2, depending on whetherh is smaller or
larger than 2. Taking the direct product with theæ-circle S1,
we confirm the above assertion about the topology of the energy
surface.
The projection ofEh onto the (ϑ,Lϑ)-cylinder is a disk D2

for h < 2, and an annulus D1 × S1 for h > 2. Its boundary (læ
) 0)

bifurcates from one to two circles ath ) 2 where it equals(2
sin (ϑ/2). At energyh) 2 there exists aæ-circle of equilibrium
points.
The invariant toriuh,læ are direct products of theæ-circle S1

and the circles given by eq 16 with fixed (h, læ). Their
bifurcations are obtained from the relative equilibria, i.e., the
stationary points of theϑ-motion. They come in three kinds
of isolated periodic orbits:
(i) asæ-rotation in the hanging positionϑ ) π, cosϑ ) -1:

(ii) as æ-rotation in the upright positionϑ ) 0, cosϑ ) 1:

(iii) as æ-rotation at a fixed angleϑm whereLϑ2 as a function
of cosϑ has a relative maximum,

Combining these results, we obtain the bifurcation diagram
of Figure 3. Three different energy ranges must be distin-
guished, depending on the manner in whichEh is foliated by
invariant tori. At low energies 0< h < θ/2, there is only one
family of tori uh,læ, the angular momentumlæ ranging from-ls1
to+ls1. Figure 4a shows their projection onto the (ϑ,Lϑ)-plane,
or equivalently, Poincare´ sectionsæ ) æ0, æ̆ > 0 (or<0 which
gives different tori but identical pictures). The motion is a
combination ofæ-rotation andϑ-oscillation about the stable
equilibrium position ϑ ) π. The angular momentumLæ
assumes values fromlæ ) 0, corresponding to pureϑ-oscillation
(outermost circle in Figure 4a), tolæ ) (ls1, corresponding to
pureæ-rotation in the hanging positionϑ ) π. This type of
motion does not exist in the isolated spherical pendulum where
the centrifugal potential prevents a transition through the poles
with finite angular momentumlæ.
At h ) θ/2, there is a pitchfork bifurcation of the rotating

periodic orbit in hanging position which becomes unstable and
gives birth to two new stable periodic orbits withϑ ) const*
0. Consequently, in the energy rangeθ/2 < h < 2, there are
two kinds of toriuh,læ; see Figure 4b. For 0< læ2 < ls12, the
tori are a continuation of the low-energy type; the corresponding
motion isϑ-oscillation through the south pole, plusæ-rotation.
At læ2 ) ls12 there is a separatrix, and for largerlæ2, two tori
exist for eachlæ, one withϑ < π, the other withϑ > π. These
tori are mirror images of each other under the spin transforma-
tion P. Apart from theπ-shift in the frame positionæ, they
describe the same physical situation. The motion of the mass
point m is qualitatively identical to that of the pure spherical
pendulum, namely,ϑ-oscillation avoiding the poles, combined
with æ-rotation.
The high-energy rangeh > 2 exhibits yet another type of

torus at low values oflæ; see Figure 4c. The new pairs of tori
appear in connection with the topological bifurcation of the
energy surface. Forlæ2 < ls22, there is rotationalϑ-motion
passing through the north poleϑ ) 0. At givenlæ, the members
of a pair are related by the symmetryRT. In the ideal sphericallæ

2 ) ls1
2 :) 2θh, hg 0 (18)

Figure 3. Bifurcation diagram in the (h,læ)-plane of constants of
motion: (a)θ ) 1, (b) θ ) 0.05.

Figure 4. Projection of invariant toriuh,læ onto the (ϑ,Lϑ)-plane, for three different energiesh. The moment of inertia of the frame isθ ) 1. (a)
h ) 0.4,∆l2 ) 0.15; (b)h ) 1.5,∆l2 ) 0.5; (c)h ) 4, ∆l2 ) 2.

Lϑ
2 )

2(1+ θ - cos2 ϑ)(h- 1- cosϑ) - læ
2

1+ θ - cos2 ϑ
(16)

Lϑ ) x2(h- 2 cos2(ϑ/2)) (17)

læ
2 ) ls2

2 :) 2θ(h- 2), hg 2 (19)

cosϑm ) 1/3(h- 1)- 1/3x(h- 1)2 + 3(1+ θ) (20)

læ
2 ) lm

2 :) 2(1+ θ - cos2 ϑm)(h- 1- cosϑm), hg θ/2
(21)
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pendulum, there is only one torus of this kind, forlæ ) 0,
because otherwise the centrifugal barrier prevents access to the
poles.
A schematic view of the ordering of tori in phase space may

be given in terms of Fomenko graphs16,17 as shown in Figure
5. Each graph represents an energy surfaceH ) h, and
depending on the value ofh, there are three types. Points of
the diagram are in (1:1) correspondence with toriuh,læ. The
vertical axis is the angular momentumlæ, with ranges [-ls1,
ls1] at energiesh < θ/2, and [-lm, lm] at larger energies. The
bifurcations atlæ2 ) ls12 (for h > θ/2) andlæ2 ) ls22 (for h >
2) appear as vertices. Time reversal symmetryT is expressed
as mirror symmetry with respect to the horizontal axislæ ) 0.
The outer legs are related by spin symmetryP, the two branches
of the inner loop by reflection symmetryRT.
Fomenko graphs for the frameless spherical pendulum are

shown in Figure 5b. Theirlæ > 0 and læ < 0 halves each
correspond to one legsone spin statesof the outer parts of
Figure 5a. Atlæ ) 0, the dot in the high-energy graph of Figure
5b is a leftover from the loop in Figure 5a, symbolizing the
transition fromϑ-oscillation to rotation.
Let us now ask how the two systems (3) and (5) are related

in the limit θ f 0 of vanishing moment of inertia of the Cardan
frame. Comparison of Figure 3, a and b, gives an indication.
As θ f 0, the low-energy parth < θ/2 becomes vanishingly
small, and the separatriceslæ2 ) ls1,22 are squeezed against the
axis læ ) 0. In the limitθ ) 0 the bifurcation diagram reduces
to the lines (14) plus the singular linelæ ) 0. Figure 6 shows
how the system of tori behaves at smallθ. Motion that
penetrates the centrifugal barriers at the polesϑ ) 0 and/orπ
covers a negligible part of phase space. The tori withlæ2 >
ls12 become more and more similar to those of the ideal spherical
pendulum, except that they appear in two spin states.
In order to quantify these statements, and to develop a picture

for the effective reduction of configuration space by a factor of

2, we need to determine the actions (Iæ, Iϑ) of the tori uh,læ.
This is the subject of the next section.
Let us take a brief look on what happens when the supporting

frame is tilted by an angleδ with respect to the vertical axis.
The potential (9) now depending on both anglesϑ andæ, the
angular momentumLæ is no longer conserved; hence one
expects the system to be nonintegrable. This is corroborated
by the Poincare´ sections shown in Figure 7. Compared to Figure
6b (δ ) 0), we observe the following changes.
(i) The separatrices dissolve into chaotic bands, the chaos

getting more pronounced asδ increases.
(ii) The Π-symmetry with respect toϑ-reflection at constant

æ is lost; however, the system is still invariant under the
transformationP, cf. ref 12.
(iii) The two orbits (of opposite spin) with maximumlæ2 at

δ ) 0 lose their stability to two other orbits (again of opposite
spin) which in the fully tilted positionδ ) π/2 are planar
pendulum rotations of the angleæ, at fixedϑ ) π/2 or 3π/2.
Nothing of this rich dynamical behavior is seen if the frame is
absent from the start,θ ) 0. It would only appear inappropriate
to choose the polar axis of spherical coordinates tilted against
the direction of gravity. Yet even the smallest nonzeroθ makes
different anglesδ physically inequivalent. There is no space
here to explore the interesting dependence of the dynamics on
combinations of the parametersδ, θ, h. Suffice it to say that
very little of the following can be applied to the chaotic regions
of phase space and that insight into the corresponding quantum
mechanics is as of now completely lacking.

4. Action Integrals

As the Hamiltonians (3) and (5) describe integrable systems,
canonical transformations (æ, ϑ, Læ, Lϑ) f (φ1, φ2, I1, I2) to
action-angle variables may be found such that the new Hamil-
toniansH ) H (I1, I2) depend only on the actionsIk, and the
dynamics becomes trivial:Ik ) const,φ̇k ) ωk ) ∂H /∂Ik )
const. Because of the trivial separability intoæ- andϑ-motion,
the action integralsI1 ) Iæ and I2 ) Iϑ are easily identified as
contour integrals along the two fundamental paths of the
invariant toriuh,læ,

To evaluate the last integral, we must insert eq 16, withθ ) 0
for the ideal spherical pendulum.
The frequencyω2 ) ωϑ ) 2π/Tϑ is obtained from

and the frequency ofæ-motion is best calculated from the
winding ratio

Let us go through these calculations step by step. Inserting
eq 16 and usingz ) cosϑ, we get

where the limits of integrationz1 andz2 and the numbersn of

Figure 5. Fomenko graphs of the different types of energy surfaces
for θ < 4: (a) spherical pendulum with frame; energy ranges are 0<
h < θ/2 (left), θ/2 < h < 2 (middle), andh > 2 (right); (b) pure
spherical pendulum at energiesh < 2 (left) andh > 2 (right). The
vertical axis islæ. Each torusuh,læ is represented by a point on the
corresponding graph. Bifurcations of tori appear as vertices.

Figure 6. (ϑ,Lϑ)-projection of invariant toriuh,læ for θ ) 0.05: (a)h
) 1.5,∆l2 ) 0.5; the toruslæ2 ) 0.075 and the separatrixlæ2 ) ls12 )
0.15 are also shown; (b)h ) 4,∆l2 ) 2; the two separatriceslæ2 ) ls12

) 0.4 andlæ2 ) ls22 ) 0.2 are also shown.

Iæ ) 1
2πIγæ Læ dæ ) læ (22)

Iϑ ) 1
2πIγϑ Lϑ dϑ (23)

Tϑ ) Iγϑ
∂Lϑ
∂h
|læ dϑ (24)

W :)
ωæ

ωϑ

)
∂H/∂Iæ
∂H/∂Iϑ

) -
∂Iϑ
∂Iæ
|h (25)

Iϑ ) n
2π∫z1z2x2f(z)

g(z)
dz (26)
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pieces in a closed path will be determined later. The functions
f(z) andg(z) are the polynomials

The periodTϑ is the integral

and the winding ratio

In the general caseθ * 0 the integrands have seven branch
points which makes the integrals hyperelliptic. There is no hope
for analytic integration, and we must turn to numerical evalu-
ation. In the limit θ ) 0, however, the four branch points
provided byg(z) disappear, as [g(z)]1/2 f 1 - z2, and the
integrals are elliptic. The simplest of these integrals isTϑ:

wherea> b> c are the zeroes off(z) andK(k) is the complete
elliptic integral of the first kind, with modulusk ) [(b - c)/(a
- c)]1/2.

The winding ratio (29) of the pure spherical pendulum is
obtained after decomposing 1/(1- z2) into its partial fractions:

whereΠ(R, k) is the complete elliptic integral of the third kind,
the parameters beingR( ) (b - c)/((1 - c).
Finally, the action integral (26) is evaluated with the partial

fraction decomposition

the result is

whereE(k) is the complete elliptic integral of the second kind.
The limits of low and high energies can be treated by

elementary integration. We leave it as an exercise to show that

For the frequenciesωæ, ωϑ, and their ratioW, this implies

Figure 7. Poincare´ sectionsæ ) 0, æ̆ > 0, for h ) 4 and small angular momentum of the frame,θ ) 0.05, with tilt angle (a)δ ) 0.1, (b)δ )
0.3, (c)δ ) 0.6, (d)δ ) π/2.

f(z) ) (1+ θ - z2)(h- 1- z) - 1/2læ
2 (27)

g(z) ) (1+ θ - z2)(1- z2)

Tϑ ) n∫z1z2xg(z)

2f(z)
dz

1- z2
(28)

W) n
2π

læ∫z1z2x 1
2f(z)g(z)

dz (29)

Tϑ ) 2∫cb dz
2(a- z)(b- z)(z- b)

) 2x2
xa- c

K(k) (30)

W)
læ

πx2(a- c)
( 1
1- c

Π(R-, k) + 1
1+ c

Π(R+, k)) (31)

f(z)

1- z2
) -z+ h- 1- 1/4læ

2( 1
1- z

+ 1
1+ z) (32)

Iϑ ) 4

πx2(a- c)
((a- c)E(k) + (h- 1- a)K(k)) - læW

(33)

H ≈ |Iæ| + 2Iϑ for hf 0

H ≈ 1/2(|Iæ| + Iϑ)
2 for hf ∞ (34)

ωæ ) sgn(læ) ωϑ ) 2 W) (1/2 (35)
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in the limit of low energies, and

at high energies.
The limit læ f 0 is familiar from the simple pendulum. We

must distinguish the energy rangesh < 2 andh > 2. At low
energies,a) 1, b) h- 1, c) -1, and hencek) [h/2]1/2 and

Note that aϑ-period is defined here to extend from minimum
to maximum and back; in an oscillating pendulum the period
is usually taken to be twice as large. At high energies,a and
b are exchanged, hencek ) [2/h]1/2, and

The læ f 0 limit of the winding ratio (31) is delicate because
the integral in eq 29 diverges as the lower limitz1 ) c≈ læ2/4h
tends to zero. Careful analysis shows that|W| f 1/2 for h <
2, and|W| f 1 for h > 2.
Another limit that may be worked out in detail is that of pure

æ-rotation wherelæ2 assumes its maximum valuelæ02 given in
eq 14. The zeroes off(z) are then

and modulusk as well as parametersR( are zero. WithK(0)
) E(0)) Π(0,0)) π/2, we findIϑ ) 0, and for the frequencies

Figures 8-10 are graphical representations of the above
results. The frequenciesωϑ andωæ are shown as contour plots
in the (h,læ)-plane in Figure 8. They both vanish at the singular
point (h, læ) ) (2, 0) where the asymptotic behavior along the
energy axis isωϑ ) 2π/(5 ln 2 - ln|h - 2|). The oscillatory
ϑ-motion has positive frequencies everywhere whereas the
rotational æ-motion has positive or negative frequencies,
depending on the sign oflæ.
Figure 9 shows the energy surfacesH (Iæ,Iϑ) ) h as contour

lines in the (Iæ,Iϑ)-plane of action variables. The asymptotic
linear behaviorIϑ≈ (h- |Iæ|)/2 at low energies, andIϑ≈ (2h)1/2

- |Iæ| at high energies as given in eq 34, is well borne out. The
singular point (Iæ, Iϑ, h) ) (0, 4/π, 2) is much less conspicuous
here than in the frequency pictures. But taking the derivative
along lines of constant energyh gives it a prominent appearance.
This is done in Figure 10 where the winding ratioW is plotted
as a function oflæ, for a number of different energies. (Only
the positivelæ part is shown, asW(h,-læ) ) -W(h,læ).) The
figure is a kind of link between the two other pictures because
W is at the same time the ratioωæ/ωϑ and the negative slope of
the energy surfaces; see eq 25. The situation is considerably
more complicated if the spherical pendulum is suspended in a
frame with moment of inertiaθ. However, combining the
insight provided by Figure 4 with numerical integration of eqs
26, 28, and 29, it is straightforward to obtain a comprehensive
picture of the dynamics. Let us start with a discussion of the

action variables, and consider Figure 11 which is the analogue
of Figure 9. Remember that the angleϑ can now vary from 0
to 2π.
At low energies,h, θ, the Hamiltonian (5) may be expanded

to second order in the phase space variables. The motion is

ωæ ) x2h sgn(læ) ωϑ ) x2h W) (1 (36)

Tϑ ) 2K(k), Iϑ ) (4/π)(E(k) - (1- k2)K(k))

(læ ) 0; h< 2) (37)

Tϑ ) 2k K(k), Iϑ ) (4/πk)E(k) (læ ) 0; h> 2) (38)

a) 1/3(h- 1)+ 2/3x(h- 1)2 + 3,

b) c) 1/3(h- 1)- 1/3x(h- 1)2 + 3 (39)

ωϑ ) x2(a- c) ) x2((h- 1)2 + 3)1/4,

ωæ )x2(h- 1- c)

1- c2
(40)

Figure 8. Contour lines of constant frequenciesωϑ (a) andωæ (b) in
the plane (h, læ) of constants of motion, for the frameless spherical
pendulum,θ ) 0.

Figure 9. Energy surfaces of the spherical pendulum without frame,
in action variable representationH (Iæ,Iϑ) ) h. The values ofh are
multiples of 0.5. Corresponding to the oscillatory nature of the
ϑ-motion, Iϑ is always positive, whereas there are two signs forIæ
depending on the sense of the rotation.

Figure 10. Winding ratiosWas functions ofIæ, for the same constant
values of energyh as in Figure 9. Only the positive branch of the
graph is shown. The values ofW range from1/2 to 1.
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then a combination ofæ-rotations withϑ-oscillations about the
equilibrium positionϑ ) π. In action variables, we find

This explains the parabolic shape of the energy surfaces at low
h.
Betweenh ) θ/2 andh ) 2, there are two types of motion.

The low-læ branch,læ2 < ls12 ) 2θh, is a continuation of the
low-energy motion. AsIæ2 ) læ2 grows beyond the separatrix
value ls12, the invariant tori split into two sets with spherical
pendulum type of motion, each with a definite spin state. The
ϑ-oscillations are now aboutϑm as given in eq 20 and do not
reach the polesϑ ) π or 0. The actionIϑ for an individual
torus jumps by a factor1/2, with the sum ruleIϑ,s1

- :) Iϑ
(([ls12-]1/2)) 2Iϑ,s1

+ :) 2Iϑ(([ls12+]1/2), see Figure 11a; in the
3-D representation of Figure 11b we have added the actions of
the two spin states so as to make the surface continuous across
the separatrix.
Beyond the bifurcation of the energy surface ath ) 2, and

at low angular momenta,læ2 < ls22 ) 2(h - 2)θ, rotational
ϑ-motion appears. The two senses of the rotation correspond
to the two signs ofIϑ in Figure 11a, and the sum rule at the
separatrix isIϑ,s2

+ :) Iϑ(([ls22+]1/2) ) 2|Iϑ,s2- | :) 2|Iϑ(([ls22-
]1/2)|. Adding the absolute values of these two branches of the
energy surface, we obtain the continuous picture of Figure 11b.

For læ ) 0, the motion is that of an ordinary pendulum, and
Iϑ will be denoted byIϑ,0. Compared to the situation without
frame, however, theϑ-rangeϑ > π also contributes to a full
period. This adds a factor 2 to the low-energy results in eq 37,
Iϑ,0 ) (8/π)(E(k) - (1- k2)K(k)), while those of eq 38 must be
taken with the two signs,Iϑ,0 ) ((4/πk)E(k).
Figure 12 is the result of numerical computations for the

frequenciesωϑ andωæ using eqs 28 and 29, together with 27
for θ ) 1. The pictures should be compared to Figure 8; they
are dominated by the nonspherical pendulum types of motion.
Let us now discuss the limit of vanishing moment of inertia

θ. Figure 13 forθ ) 0.05, if compared to Figure 11b, shows
how the low-læ types of motion and the two separatrices get
squeezed toward theIæ ) 0 axis. The only tori to survive in
the limit θ f 0, at læ * 0, are those with ideal spherical
pendulum motion, and definite spin state. Transitions between
the two spin states do not occur.
A suggestive picture for the transition from configuration

space QF ) T2 to two spheres Q) S2, of opposite spin state,
may be obtained in the following way. Drawing the (æ, ϑ)-
torus as a doughnut inR3, (æ, ϑ) f (x, y, z) ) ((A + R(ϑ) cos
æ) cosϑ, (A + R(ϑ) cosæ) sin ϑ, R(ϑ) sin æ), we choose a
ϑ-dependent radiusR(ϑ) such that the cross sectionπR2 of the
torus at givenϑ is proportional to the total action of that part
of phase space which connects to the givenϑ by Liouville tori.
All tori with 0 e læ2 e ls22 reach the north poleϑ ) 0; hence

Figure 11. Energy surfaces of the spherical pendulum with frame,θ ) 1: (a) 2-D representation in the (Iæ,Iϑ)-plane for three values of the energy;
h ) 0.4 (one dashed line),h ) 1.6 (three pieces of dotted line),h ) 3.0 (six pieces of full line). The action of rotational motion appears with two
signs. Only one of the two spin states at the high-Iæ2 ends is shown. (b) 3-D representation in (Iæ,Iϑ,h)-space. The actionsIϑ are combined in such
a way that the surface is continuous; notice the weak logarithmic slope singularities at the separatrices. The surface carries contour lines of
constanth and winding numberW. Along Iæ ) 0, the winding number is 0; it increases in steps of 0.15.

Figure 12. Contour lines in equal steps of constant frequenciesωϑ (left) andωæ (right) in the plane (h, læ) of constants of motion, forθ ) 1. The
separatrices are well borne out.

H ) Iϑ + 1
2θ

Iæ
2 (41)
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R2(0) ) 2(|Iϑ,0| - |Iϑ,s2- |). For angles 0< ϑ < π let us define
Iϑ(ϑ) as the actionIϑ of the torusuh,læ which hasLϑ ) 0 at the
given ϑ: from eq 16 this implieslæ2 ): læ2(ϑ) ) 2(1 + θ -
cos2 ϑ)(h - 1 - cosϑ). The separatrixlæ2 ) ls12 spans angles
ϑ in the range cosϑ e cosϑs1 ) (h - [(h - 2)2 + 4θ]1/2)/2;
hence at angles 0e ϑ e ϑs1 we see all tori withlæ2 < læ2(ϑ),
andR2(ϑ) ) 2|Iϑ,0| - Iϑ(ϑ). For larger angles,ϑs1 < ϑ < π,
only one spin state is seen, andR2(ϑ) ) 2|Iϑ,0| - Iϑ,s1

+ - Iϑ(ϑ).
This goes through a maximum atϑ ) ϑm (see eq 20) and ends
in the valueR2(π) ) 2(|Iϑ,0| - |Iϑ,s1+ |). In the rangeϑ > π we
haveR(ϑ) ) R(2π - ϑ).
Figure 14 shows the tori so constructed forθ ) 0.05 andθ

) 0.0001. The “dynamic weight” of the poles obviously shrinks
as the frame becomes lighter and lighter, and in the limitθ f
0 the configuration space effectively splits into two topological
spheres held together at the two poles.

5. Quantum Spectra

The Schro¨dinger equation for the spherical pendulum, includ-
ing the frame, is obtained from eq 5 withLϑ f -ip∂/∂ϑ and
Læ f -ip∂/∂æ, wherep is measured in units ofmr xgr. The
standard separation ansatz for the wave function,Ψ(æ, ϑ) )
ψ(ϑ)eimæ, m ) 0,(1,(2,..., leads to the one-dimensional
eigenvalue problem

with effective potential

and boundary conditionsψ(ϑ) ) ψ(ϑ + 2π) and ψ′(ϑ)
continuous. V(ϑ) on the circle 0e ϑ e 2π has reflection
symmetryΠ̂, hence the eigenfunctions can be chosen to have
even or odd parityΠ ) (1,

As there is no analytic solution to eq 42, one possibility to
obtain spectra and eigenfunctions is to use a shooting method

for brute force numerical computation. Alternatively, semiclas-
sical procedures have been available for some time which are
almost as good. We have performed both types of calculation
to obtain the spectra shown here and on the scale of resolution
of these pictures found no differences.
The presence of separatrices typically leads to discontinuities

in the standard semiclassical quantization schemes. This is
avoided in a method worked out by Miller18,19 to obtain a
uniform quantization condition. It combines the WKB method
with an elegant procedure to connect pieces of the solution at
deflection pointsϑ (real or complex), where the energy equals
the value of the effective potential. As this method is
particularly well suited for our kind of problem we briefly recall
its main ingredients. LetVm be the minimum value of the
potential,Vm ) V(ϑm) ) V(2π - ϑm), andV1 ) V(π), V2 )
V(0) its two maxima,V2 ) V1 + 2. For energiesE in the range
(Vm,V1), there are four classical turning points, i.e., real solutions
ϑi to the equationV(ϑ) ) E. Let their arrangement be 0< ϑ1
< ϑm < ϑ2 < π andϑ3 ) 2π - ϑ2, ϑ4 ) 2π - ϑ1. Three
integrals must be computed, the classical action integralIϑ, and
two tunnel integralsT1, T2:

The quantization condition is then

and must be evaluated numerically. ForT1 . p andT2 . p,

Figure 13. Energy surfaces of the spherical pendulum with frame,θ
) 0.05, in 3-D representation as in Figure 11b. The contour lines of
constant winding ratio are shown in steps of 0.15.

Figure 14. (æ,ϑ)-configuration space of the spherical pendulum with
frame, for two values of the moment of inertiaθ: (a) θ ) 0.05, (b)θ
) 0.0001. The cross sectionπR2(ϑ) of the configuration space torus
at givenϑ is a measure of the phase space weight of the Liouville tori
that reach this value ofϑ.

Iϑ ) 2
π∫ϑ1ϑ2 Lϑ dϑ, T1 )∫

ϑ2

ϑ3x-Lϑ
2 dϑ,

T2 )∫
ϑ4

ϑ1x-Lϑ
2 dϑ (45)

cos
πIϑ
p

) e-(T1+T2)/p - 1

x(1+ e-2T1/p) (1+ e-2T2/p)
(46)

(- p2

2
∂
2

∂ϑ
2

+ V(ϑ))ψ(ϑ) ) Eψ(ϑ) (42)

V(ϑ) ) 1+ cosϑ + p2

2
m2

θ + sin2 ϑ
(43)

Π̂ψ( ) Πψ(: ψ+(ϑ) ) ψ+(-ϑ), ψ-(ϑ) ) -ψ-(-ϑ)
(44)
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the right-hand side (rhs) goes to-1, and we obtain the Bohr-
Sommerfeld conditionIϑ ) (2n+ 1)p, with twofold degeneracy
for each state.
WhenE is in the rangeV1 < E < V2, the anglesϑ2 andϑ3

are complex, and the integral forT1 must be taken along the
imaginary direction. This gives a negative value forT1, and if
both |Ti| are large compared top, the rhs goes to 0. The
quantum condition is thenIϑ ) (n + 1/2)p, and there is no
degeneracy. ForE > V2, the integralT2 is also negative, and
well above the second separatrix the rhs approaches 1. This
implies Iϑ ) 2np, with twofold degeneracy.
Figure 15 shows a typical example where the rhs of eq 46

was first computed as a function of energyE and then
transformed to a function ofIϑ with the help of eq 26. The
width of the transition regions around the two separatrices
depends on where the tunnel integrals are on the order ofp.
The spectra forθ ) 0.05 andθ ) 1 (with p ) 0.1) are shown

in Figures 16 and 17, respectively. Even states are represented
as crosses and odd states as circles. Negative values ofIæ ) læ
) mp are omitted asV(ϑ) depends onm2. The three “phases”
of the bifurcation diagrams Figure 3 are readily identified.
Except near the separatrices which appear somewhat blurred,
they are clearly distinguished by the degeneration scheme of
even and odd states.
In the low-læ phaselæ2 < ls22 ) 2θ(h - 2), h > 2, even and

odd states are (nearly) degenerate. This is easy to understand
in the limit læ ) 0, h . 2 where the two degenerate states are

simply the even and odd real combinations of e(ikϑ, with integer
k and 2Ek ) p2k2:

In the intermediate regionls22 < læ2 < ls12, the degeneracy is
lifted; even and odd states alternate in energy. In the high-læ
phase of spherical pendulum type motion,læ2 > ls12 ) 2θh,
even and odd states are again nearlysand in the limitθ f 0
completelysdegenerate. The reason for this degeneracy is the
infinitely high centrifugal potentialm2p2/2 sin2 ϑ.
The regularities of the spectra become much more transparent

if we transform them to the action variable representation, using
the classical expression (26) to convert energy intoIϑ. The result
is shown in Figure 18, for the caseθ ) 1. The picture is
remarkably simple. Its basic pattern is a discretization with
mesh sizes∆Iæ ) ∆Iϑ ) p, as was assumed in Bohr’s old
quantum theory. This is best seen in the intermediate phase
where there is no spontaneous symmetry breaking, and hence
no degeneracy. The degeneracies in the low- and high-læ phases
imply a coalescence of eigenstates into pairs of equal actions,
giving a mesh size∆Iϑ ) 2p for the pairs. For a subset of
states with given symmetry, this may be interpreted by saying
that the effective shrinking of the available phase space volume
by a factor1/2 is compensated by a factor 2 in the mesh size of
actions.
There are only two features in the fine structure that the

quantum theory of 1917 could not account for: one is the
absolute position of the mesh, and the other is the transition

Figure 15. Graphical evaluation of eq 46 form ) 20 andp ) 0.1.

Figure 16. Spectrum of eigenstates of the Schro¨dinger equation (42)
for θ ) 1 andp ) 0.1. The values oflæ ) Iæ are multiples ofp; only
positive Iæ are shown as the spectrum is symmetric underIæ f -Iæ.
The energy eigenvalues were determined by numerical solution and
by uniform semiclassical quantization. Crosses are for even, circles
for odd eigenfunctionsψ(ϑ).

Figure 17. Same as Figure 16 except forθ ) 0.05. The upper part
approximates the spectrum of the frameless spherical pendulum.

Figure 18. Spectrum of eq 42 forθ ) 1 andp ) 0.1, in action variable
representation. The energy axis of Figure 16 has been transformed
into the Iϑ-axis by means of eq 26.

ψk
+(ϑ) ∝ coskϑ, ψk

-(ϑ) ∝ sinkϑ (47)
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region near the classical separatrices. Both features do not affect
the rule that there arenm states in a phase space volume of
sizenmp2; they only refer to the distribution of states within
elementary cells.
The first feature can be dealt with in terms of Maslov indices,

and is governed by a simple rule: action eigenvalues arenp
for rotational motion along a 2π-circle, and (n + 1/2)p for
oscillatory motion.20-22 This explains the details of Figure 18
except near the separatrices:
1. Theæ-motion being always rotational,Iæ is everywhere

mp.
2. In the intermediate phase,ls22 < læ2 < ls12, ϑ oscillates

without degeneracy, henceIϑ ) (n + 1/2)p.
3. In the high-læ phase,læ2 > ls12, ϑ oscillates in either of

the reduced phase spacesϑ < π or ϑ > π. This impliesIϑ )
(n + 1/2)2p for each of the two symmetry classes.
4. In the low-læ phase,læ2 < ls22, ϑ rotates in either of the

reduced phase spacesLϑ > 0 orLϑ < 0. This impliesIϑ ) 2np
for each of the two symmetry classes.
As to the behavior in the neighborhood of separatrices, the
uniform quantization takes well care of it. To the extent that
the potential can be approximated byV(ϑ) ≈ V0 - 1/2R(ϑ -
ϑ0)2 near a maximum atϑ0, the tunnel integral is on the order
of πp or smaller for energies|E - V0| < pxR. This gives an
indication of the width of the transition region. For the potential
(43) we findR ) m2p2/θ2 - 1 atϑ ) π, andR ) m2p2/θ2 +
1 atϑ ) 0. Transforming from energy to actionIϑ this may be
expressed as a “coherence length” for Maslov indices.
Let us now discuss the dependence of the spectrum onθ, for

given angular momentumIæ ) mp. Figure 19 shows energy
eigenvalues withm ) 10, for even states with 12, 14, ..., 38
nodes, and odd states with 14, 16, ..., 40 nodes (the number of
nodes of a periodic function on a circle must be even). In the
limit θ f 0, i.e., of two connected copies of frameless spherical
pendulums, even states withnϑ nodes are strictly degenerate
with odd states ofnϑ + 2 nodes. With increasingθ, the energy
eigenvalues decrease, and a noticeable energy splitting between
statesψ+(nϑ) and ψ-(nϑ + 2) takes place when the first
separatrix is approached. Between the two separatrices, the
levels keep almost equal distances in the orderψ+(nϑ), ψ-(nϑ
+ 2), ψ+(nϑ + 2), ..., and forθ so high that the motion is
dominated by the rotating pendulum type, statesψ+(nϑ) and
ψ-(nϑ), with the same number of nodes, become degenerate.
How do these observations relate to the concept of spin that

we introduced as a classical variable in eq 6? A quantum
counterpart might be defined as the operatorŝ,

Notice thatŝhas expectation value 0 in any eigenstate of given
parity,

because of the minus sign introduced byŝ in the rangeϑ > π.
Nevertheless, in the limitθ f 0, the degenerate eigenstates of
different parity may be recombined to give eigenstates of definite
spin,

with

Under the influence of a frame with small nonzeroθ, these spin
eigenstates are no longer exact energy eigenstates. Instead, they
are metastable states with lifetimesτ determined by the tunneling
rate. The energy splitting betweenψ+(nϑ) andψ-(nϑ + 2) is
of the orderp/τ, in accordance with the uncertainty relation.
The situation is different if even and odd degenerate states

in the low-læ phase are combined. In line with the physical
nature of the corresponding classical toriuh,læ, there is no way
to construct eigenstates ofŝ from theseψ+(nϑ) andψ-(nϑ); the
spin expectation value of such combinations remains zero
because of the symmetry and orthogonality of the eigenstates.

6. Conclusion and Outlook

We have presented a coherent picture of the classical and
quantum mechanics of a spherical pendulum suspended in a
frame with vertical axis of rotation. The system is classically
integrable, and we gave a full account of its phase space
structure. The hyperelliptic nature of the problem, reflected in
the presence of two separatrices, prevents analytic integration.
But numerical computation allowed us to produce graphs
providing comprehensive insight. We determined the bifurca-
tion scheme of the energy-momentum mapping, the foliation
of energy surfaces by invariant Liouville tori, and the repre-
sentation of energy surfaces in terms of two action variables,
H ) H (Iæ, Iϑ), from which we derived frequencies and winding
ratios.
This representation is a convenient starting point not only

for understanding but also for computing the quantum mechan-
ical spectra. We used well established semiclassical methods
to obtain results virtually identical to those of a straightforward
solution of Schro¨dinger’s equation. With a small set of
additional rules, they are derived from a discretization of actions
with mesh sizep.
Our main interest concerned the relationship of the spherical

pendulum with frame to the pure, frameless spherical pendulum.
The limit of vanishing moment of inertiaθ of the frame cannot
simply produce the textbook spherical pendulum, because the
configuration space T2 of the system with frame does not turn
into a sphere S2. However, we presented a scenario in which
T2 develops into two copies of S2, and we suggest to view this
as a possible classical concept of spin.
An analogous picture can be presented for the relationship

of a rigid body suspended in a Cardan frame, with configuration
space T3, to the isolated rigid body whose configuration space
is SO(3). As the moments of inertia of the frame tend to zero,

Figure 19. Variation of energy eigenvalues withθ, for Iæ ) 10p.

ŝψ(ϑ) ) {+ψ(ϑ) if 0 < ϑ < π

-ψ(ϑ) if π < ϑ < 2π
(48)

〈ψ(|ŝ|ψ(〉 ) Iψh ((ϑ) ŝψ((ϑ) d cosϑ ) 0 (49)

ψv ) 1/2(ψ
+(nϑ) + ψ-(nϑ + 2)),

ψV ) 1/2(ψ
+(nϑ) - ψ-(nϑ + 2)) (50)

ŝψv ) ψv, ŝψV ) -ψV (51)
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T3 effectively develops into two copies of SO(3). This proposal
is related to but different from the usual concept according to
which spin is associated with the twofold covering of SO(3)
by SU(2).
In a short deviation from the mainstream of the paper, we

demonstrated that the spherical pendulum with frame can easily
be made nonintegrable by giving the frame a tilt with respect
to the vertical. The phase space structure is then considerably
more complicated, and it will be interesting to study the quantum
mechanics of this system. For smallθ and tilt angles,
perturbation theory may help to understand the nonchaotic
regions, but on the whole, it will be necessary to perform
extensive numerical calculations. The main challenge, we feel,
is to invent pictures that would connect the results to those of
the integrable limit.
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