Geometric Mechanics

The last two exercises are homework, to be discussed on 9 March.
1). Let $A \in M_{n \times n}(\mathbb{R})$ be a matrix for which all eigenvalues are different from each other. Show that the vector space \mathbb{R}^{n} admits the splitting

$$
\operatorname{im} A \oplus \operatorname{ker} A=\mathbb{R}^{n}
$$

as a direct sum of two A-invariant subspaces.
2). Compute the normal forms of order 3 and 4 of

$$
H(x, y)=\frac{y^{2}}{2}-\cos x
$$

with respect to the linear part H_{0}^{0} of H.
$3)$. Find the general solution $u=u(t, x)$ of the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\omega^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

on \mathbb{R}^{2}. Hint: consider compositions of scalar functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ with linear combinations in x and t.
4). A vibrating string is modelled as the solution of the wave equation (1) on $\mathbb{R} \times[0, \pi]$ with boundary conditions $u(t, 0) \equiv 0 \equiv u(t, \pi)$. Determine the general solution.
Hint: make a separation ansatz $u(t, x)=f(t) \cdot \psi(x)$.

