
Geometric Mechanics

This hand-in exercise is due on 23 March.

A). Consider a Hamiltonian system defined on R
6 with an equilibrium point at the origin

for which the Taylor expansion reads as H(x, y) = H0
0 (x, y) + H0

1 (x, y) + . . . with
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Note that the equilibrium is elliptic with frequencies in 1:2:2 resonance.

1. Compute the flow of the vector field defined by H0
0 .

2. Give the spectrum of the linear mapping X
H

0
0

: Gk+2 −→ Gk+2 for general k ∈ N.

3. Specify this for k = 1 and determine complex polynomial bases for the subspaces
in the splitting G3 = ker X

H
0
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.

4. Determine from this real polynomial bases for these subspaces.

5. Show that the third order normal form of H can be brought into the form
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+ . . .

by means of a Poisson transformation (x, y) 7→ (q, p). Hint: use rotations in the
(q2, p2)–plane and in the (q3, p3)–plane to get rid of the terms
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6. Use a rotation in the 4–dimensional (q2, p2, q3, p3)–space to achieve B = 0. Con-
clude that the truncated third order normal form H0

0 (q, p) + H1
0 (q, p) around

an elliptic equilibrium with frequencies in 1:2:2 resonance is integrable, having
three independent integrals of motion.

B). Consider a Hamiltonian system defined on R
6 with an equilibrium point at the origin

for which the Taylor expansion reads as H(x, y) = H0
0 (x, y) + H0

1 (x, y) + . . . with

H0
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Note that the equilibrium is elliptic, but not an extremum of the Hamiltonian func-
tion. One speaks of an equilibrium in −1:2:2 resonance. Show that the truncated
third order normal form is integrable.
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