Geometric Mechanics

This hand-in exercise is due on 23 March.
A). Consider a Hamiltonian system defined on \mathbb{R}^{6} with an equilibrium point at the origin for which the Taylor expansion reads as $H(x, y)=H_{0}^{0}(x, y)+H_{1}^{0}(x, y)+\ldots$ with

$$
H_{0}^{0}(x, y)=\frac{y_{1}^{2}+x_{1}^{2}}{2}+y_{2}^{2}+x_{2}^{2}+y_{3}^{2}+x_{3}^{2}
$$

Note that the equilibrium is elliptic with frequencies in 1:2:2 resonance.

1. Compute the flow of the vector field defined by H_{0}^{0}.
2. Give the spectrum of the linear mapping $X_{H_{0}^{0}}: \mathcal{G}_{k+2} \longrightarrow \mathcal{G}_{k+2}$ for general $k \in \mathbb{N}$.
3. Specify this for $k=1$ and determine complex polynomial bases for the subspaces in the splitting $\mathcal{G}_{3}=\operatorname{ker} X_{H_{0}^{0}} \oplus \operatorname{im} X_{H_{0}^{0}}$.
4. Determine from this real polynomial bases for these subspaces.
5. Show that the third order normal form of H can be brought into the form

$$
H(q, p)=H_{0}^{0}(q, p)+A\left(\frac{p_{1}^{2}-q_{1}^{2}}{2} q_{2}-p_{1} q_{1} p_{2}\right)+B\left(\frac{p_{1}^{2}-q_{1}^{2}}{2} q_{3}-p_{1} q_{1} p_{3}\right)+\ldots
$$

by means of a Poisson transformation $(x, y) \mapsto(q, p)$. Hint: use rotations in the $\left(q_{2}, p_{2}\right)$-plane and in the $\left(q_{3}, p_{3}\right)$-plane to get rid of the terms

$$
\frac{p_{1}^{2}-q_{1}^{2}}{2} p_{2}+p_{1} q_{1} q_{2} \quad \text { and } \quad \frac{p_{1}^{2}-q_{1}^{2}}{2} p_{3}+p_{1} q_{1} q_{3}
$$

6. Use a rotation in the 4 -dimensional $\left(q_{2}, p_{2}, q_{3}, p_{3}\right)$-space to achieve $B=0$. Conclude that the truncated third order normal form $H_{0}^{0}(q, p)+H_{0}^{1}(q, p)$ around an elliptic equilibrium with frequencies in 1:2:2 resonance is integrable, having three independent integrals of motion.
B). Consider a Hamiltonian system defined on \mathbb{R}^{6} with an equilibrium point at the origin for which the Taylor expansion reads as $H(x, y)=H_{0}^{0}(x, y)+H_{1}^{0}(x, y)+\ldots$ with

$$
H_{0}^{0}(x, y)=-\frac{y_{1}^{2}+x_{1}^{2}}{2}+y_{2}^{2}+x_{2}^{2}+y_{3}^{2}+x_{3}^{2}
$$

Note that the equilibrium is elliptic, but not an extremum of the Hamiltonian function. One speaks of an equilibrium in $-1: 2: 2$ resonance. Show that the truncated third order normal form is integrable.

