Geometric Mechanics 2009

H. Waalkens

Exercise Sheet 1

Action variables and periods of 1-degree-of-freedom systems.

Return by Monday, $20^{\text {th }}$ April

1. Consider the harmonic oscillator with Hamilton function

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}
$$

on the phase space $(p, q) \in \mathbb{R}^{2}$.
(a) For $E>0$, plot the level sets

$$
\begin{equation*}
M_{E}=\left\{(p, q) \in \mathbb{R}^{2}: H(p, q)=E\right\} \tag{1}
\end{equation*}
$$

and compute the area, $A(E)$, of the region in the (p, q) plane enclosed by the level set M_{E}.
(b) Show that

$$
T(E):=\frac{\mathrm{d} A(E)}{\mathrm{d} E}
$$

is the time (the period) which it takes the harmonic oscillator at energy E to trace the full level set M_{E} exactly one time.
2. Consider the Morse oscillator described by the Hamilton function

$$
H=\frac{p^{2}}{2 m}+D_{e}\left(\mathrm{e}^{-2 a q}-2 \mathrm{e}^{-a q}\right),
$$

where D_{e} and a are positive constants, and $(p, q) \in \mathbb{R}^{2}$.
(a) A Morse oscillator is often used to describe a chemical bond. What is the meaning of D_{e} in this case?
(b) Show that there are two critical energies, $E_{1}<E_{2}$, such that the level sets M_{E} defined as in (1) are empty if $E<E_{1}$, topological circles if $E_{1}<E<E_{2}$, and topological lines for $E>E_{2}$. Plot the level sets for the energies E_{1}, E_{2}, an energy between E_{1} and E_{2}, and an energy greater than E_{2}.
(c) For $E_{1}<E<E_{2}$, compute the area, $A(E)$, of the region enclosed by the level set M_{E} in the (p, q) plane. For such energies, compute the period

$$
T(E)=\frac{\mathrm{d} A(E)}{\mathrm{d} E}
$$

3. Consider the pendulum with Hamilton function

$$
H=\frac{p^{2}}{2 m}-m g l \cos q \quad(g, l>0)
$$

with $(p, q) \in \mathbb{R} \times S^{1}:=\mathbb{R} \times(\mathbb{R} /(2 \pi \mathbb{Z}))$.
(a) Show that there are two critical energies, $E_{1}<E_{2}$, such that the level set

$$
M_{E}=\{(p, q) \in \mathbb{R} \times(\mathbb{R} /(2 \pi \mathbb{Z})): H(p, q)=E\}
$$

is empty if $E<E_{1}$, consists of one topological circle if $E_{1}<E<E_{2}$, and two topological circles if $E>E_{2}$. Plot the level sets M_{E} for the energies E_{1}, E_{2}, an energy between E_{1} and E_{2}, and an energy greater than E_{2}.
(b) For $E_{1}<E<E_{2}$ compute the area, $A_{\text {osc }}(E)$, enclosed by the level set M_{E}. For $E>E_{2}$, compute the area, $A_{\text {rot }}(E)$ enclosed by either of the lines in the level set M_{E} and the axis $p=0$. Note that the integrals involved in the computation of $A_{\text {osc }}(E)$ and $A_{\text {rot }}(E)$ are elliptic integrals which you can look up in an integral table (see, e.g., the book Handbook of Mathematical Functions by Abramowitz and Stegun which is available online under the URL www.math.hkbu.edu.hk/support/aands/toc.htm). Use a program like Maple or Mathematica to plot $A_{\mathrm{osc} / \mathrm{rot}}(E)$ versus E.
(c) Determine the periods $T_{\mathrm{osc} / \mathrm{rot}}(E)=\mathrm{d} A_{\mathrm{osc} / \mathrm{rot}}(E) / \mathrm{d} E$. Again use a program like Maple or Mathematica to plot $T_{\text {osc/rot }}(E)$ versus E. Use the asymptotics of elliptic integrals to show that for $E \rightarrow E_{1}, A_{\text {osc }}(E)$ behaves like the corresponding function of an harmonic oscillator. Similarly study $A_{\text {rot }}(E)$ for $E \rightarrow \infty$.

