Exercise Sheet 2

Hamilton-Jacobi Equation.

Note: this problem sheet will not be graded

1. Consider the motion of a particle under a gravitational force described by the Hamilton function

$$
H=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+m g y
$$

on the phase space $\left(p_{x}, p_{y}, x, y\right) \in \mathbb{R}^{4}$. Find a complete solution of the Hamilton-Jacobi equation for this problem.
2. Consider the motion of a particle on a 2 -dimensional sphere $x^{2}+y^{2}+z^{2}=1$ with unit radius under the influence of a gravitational force acting in the negative z direction. Write down the Hamilton function in spherical coordinates, and show that the corresponding Hamilton-Jacobi equation is completely separable.
3. Consider the motion of a particle in the three dimensional space \mathbb{R}^{3} under the influence of two space fixed attracting centers. In a suitable scaling and Cartesian coordinates the corresponding Hamiltonian reads

$$
H=\frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2}-\frac{\mu}{r_{1}}-\frac{1-\mu}{r_{2}}
$$

Here $r_{1}^{2}=(x+1)^{2}+y^{2}+z^{2}$ and $r_{2}^{2}=(x-1)^{2}+y^{2}+z^{2}$ are the squared distances of the particle to the two centers located on the x axis at $x= \pm 1$, and $\mu \in(0,1)$ is a fixed parameter. Let $\xi=\left(r_{1}+r_{2}\right) / 2$ and $\eta=\left(r_{1}-r_{2}\right) / 2$, and ϕ denote the angle of the particle about the x axis. These are so-called elliptic coordinates in terms of which the Hamilton function H assumes the form

$$
H=\frac{1}{2} p_{\xi}^{2} \frac{\xi^{2}-1}{\xi^{2}-\eta^{2}}+\frac{1}{2} p_{\eta}^{2} \frac{1-\eta^{2}}{\xi^{2}-\eta^{2}}+\frac{1}{2} \frac{p_{\phi}^{2}}{\xi^{2}-\eta^{2}}\left(\frac{1}{\xi^{2}-1}+\frac{1}{1-\eta^{2}}\right)-\frac{\xi}{\xi^{2}-\eta^{2}}-\frac{(1-2 \mu) \eta}{\xi^{2}-\eta^{2}} .
$$

Show that the resulting Hamilton-Jacobi equation completely separates with respect to the ellipitic coordinates.

