
8

Area preserving mappings

In one degree of freedom one obtains 1–dimensional curves when fixing the
Hamiltonian H = h and these are1 the trajectories of the vector field XH . In
this way the complete solution of the equations of motion is brought back to an
integral like (2.2) to determine the time-parametrisation of the orbits. In this
sense every Hamiltonian system with one degree of freedom is an integrable
system.

In two degrees of freedom the energy shells {H = h} are 3–dimensional
and one would need two more constants of motion to single out 1–dimensional
trajectories. In the previous sections we have seen how already one conserved
quantity (independent of the Hamiltonian) allows to reduce to one degree of
freedom. In addition to the solution (q(t), p(t)) in one degree of freedom we
have to solve

ρ̇ =
∂H

∂µ
(q(t), p(t);µ) (8.1)

where ρ is conjugate to the conserved quantity. Since the right hand side
of (8.1) does not depend on ρ this amounts to one more integration; all two-
degrees-of-freedom systems that admit an extra conserved quantity are inte-
grable.

Thus, given a Hamiltonian dynamical system in two degrees of freedom
it is rewarding to look for an extra conserved2 quantity. The simplifying as-
sumptions usually made when modelling a mechanical system often introduce
additional symmetries. Consequently, some of the problems from classical me-
chanics, like the Kepler system or the spherical pendulum, turned out to be
integrable. Eventually it became clear that integrable systems are the ex-

1 Where the derivative (or gradient) of the Hamiltonian vanishes one obtains equi-
libria, and unstable equilibria form an energy level set together with their stable
and unstable manifold(s).

2 One also speaks of a second integral of motion.
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ception and non-integrable systems are the rule; Poincaré3 showed that the
so-called circular restricted three body problem is not integrable.

One approach to non-integrable systems is to approximate by an integrable
system, typically obtained by normalization. In fact, this can be thought of
as making the simplifying assumptions introducing extra symmetry part of
the mathematical theory. For a satisfactory description of the resulting in-
tegrable systems some kind of “robustness” is desirable – the perturbation
from the normal form back to the original should not completely invalidate
the description of the dynamics.

In one degree of freedom we could easily draw phase portraits of the 2–
dimensional dynamics. The direct translation to two degrees of freedom would
result in pictures of too high dimension. What is still possible is to fix the
value of the energy and depict the flow on the resulting invariant manifold,
at least locally. Similarly a 3–dimensional phase portrait is obtained when
the Hamiltonian system depends only on two variables q, p ∈ R but is not
autonomous, the Hamiltonian H = H(t, q, p) depending explicitly on time.
Then the resulting equations of motion are

ṫ = 1 (8.2a)

q̇ =
∂H

∂p
(8.2b)

ṗ = −∂H
∂q

(8.2c)

and define a flow φ(t, t0, q0, p0) on R3 ; for autonomous systems one has ϕ(t−
t0, q0, p0) = φ(t, t0, q0, p0) but in the non-autonomous case the initial time t0
becomes important and cannot simply be put to t0 = 0 by passing from t to
t− t0. One also speaks of a Hamiltonian system with 1 1

2 degrees of freedom,
but in its complexity the dynamics is closer to 2 degrees of freedom than to
1 degree of freedom. In fact, defining

K(x, y) = y1 +H(x1, x2, y2)

one otains the equations of motion

ẋ1 =
∂K

∂y1
= 1 (8.3a)

ẏ1 = − ∂H

∂x1
(x1, x2, y2) (8.3b)

ẋ2 =
∂H

∂y2
(x1, x2, y2) (8.3c)

ẏ2 = − ∂H

∂x2
(x1, x2, y2) (8.3d)

3 Acta Mathematica 13, p. 5–271 (1890) and Les Méthodes Nouvelles de la

Mécanique Céleste (1892)–(1899).
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that differ from (8.2) only by the extra equation (8.3b). Moreover, once the
three “initial” equations (8.3a), (8.3c) and (8.3d) are solved the solution is
completed by y1(t) = K(x(0), y(0)) −H((x1(t), x2(t), y2(t)). Still, the Hamil-
tonian system (8.3) is a bit more special than a general Hamiltonian system
in two degrees of freedom as there are no equilibria.

An approach to (8.2) that has proven to be very efficient is to sample the
orbit (q(t), p(t)) = φ(t, 0, q, p) at a sequence tk = k ∈ Z of time values.

Theorem 8.1. The stroboscopic or time–1–mapping

F : R2 −→ R2

(q, p) 7→ φ(1, 0, q, p)

is area preserving.

Proof. Starting from a (small) disk D ⊂ R2 consider the volume V ⊂ R3

formed by all trajectories starting in D, with time varying in the interval
[0, 1]. Thus, the boundary ∂V of V is given by D, F (D) and the “cylinder”
formed by the trajectories starting in ∂D. Applying Gauß’ Theorem to the
vector field Y on R3 defined by (8.3) yields

0 =

∫

V

divY dtdqdp =

∫

∂V

〈Y | dσ〉 =

∫

F (D)

dqdp −
∫

D

dqdp

since Y is divergence-free and tangent to the cylinder ∂V \D ∪ F (D). Thus,
F (D) has the same area as D. ut

Alternatively one can adjust the proof of Liouville’s Theorem 4.7 to the
present non-autonomous situation. The time–1–mapping has a stroboscopic
nature only if the dependence of H on t is 1–periodic (in case of T–
periodicity one works with the time–T–mapping or rescales time accord-
ingly). Then φ(t+ 1, t0 + 1, q, p) = φ(t, t0, q, p) and the kth iterate is given by
F k(q, p) = φ(k, 0, q, p). Since H is periodic in t we can divide out the Z–action
(k, (t, q, p)) 7→ (t+ k, q, p) on R3 and pass to the quotient space T×R2. Most
properties of the flow turn out to be governed by the discrete dynamical sys-
tem defined by F . In this way properties of discrete dynamical systems on R2

lead to information on periodically varying Hamiltonian system in 1 1
2 degrees

of freedom. Conversely, all properties of area preserving discrete dynamical
systems can be derived from non-autonomous Hamiltonian systems.

Theorem 8.2. Given an invertible smooth area preserving mapping F : R2 −→
R2 there is a time-dependent Hamiltonian H ∈ C∞(T × R2) for which F is
the time–1–mapping.

Proof. Consider on [0, 1] × R2 the constant vector field (8.2) with H = 0.
We use the resulting flow φ(t, 0, q, p) = (t, q, p) to define a flow on T × R2

by glueing {0}× R2 and {1}× R2 together along the diffeomorphism F . The
relation
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(t, q, p) ∼ (s, x, y) :⇔





t = s, q = x, p = y
or t = 0, s = 1, (x, y) = F (q, p)
or t = 1, s = 0, (q, p) = F (x, y)

is an equivalence relation with quotient space

[0, 1]× R2

/∼ = T × R2

and quotient flow

φ(t, t0, q, p) =
(
t, F btc−bt0c(q, p)

)

made smooth. Here btc = max{k ∈ Z | k ≤ t}. ut

The phase portraits of discrete dynamical systems give a fair impression of
periodically forced Hamiltonian systems. According to [13] these all look more
or less the same, see e.g. Fig. ? for the dynamics defined by

(
q
p

)
7→

(
f(q) − p

q − f(f(q) − p)

)
(8.4)

with f(q) = ηq−(1−η)q2, η = −5/4 (other values of η yield similar phase por-
traits). Counterexamples are time–1–mappings of autonomous Hamiltonian
systems (thus, with only one degree of freedom), which look more orderly,
and ergodic area-preserving mappings, which look more chaotic.

Exercise 8.1. Choose an area-preserving mapping, e.g. the Hénon mapping
(
q
p

)
7→

(
1 − ηq2 + p

−q

)

or (8.4) for some function f and get a first impression of the dynamics by
numerically drawing a phase portrait.

Exercise 8.2. Classify all discrete dynamical systems Z×R2 −→ R2 that are
defined by iterating a linear area preserving mapping F : R2 −→ R2.

Similar to the situation around equilibria in the continuous case, the lineariza-
tion of F at a fixed point governs the dynamics near that fixed point for dis-
crete dynamical systems. Before studying this more closely let us consider in
how far area preserving mappings reflect the dynamics of general Hamiltonian
systems in two degrees of freedom.

8.1 Poincaré-sections

The flow ϕ on a 3–dimensional energy shell {H = h} in two degrees of free-
dom can be visualized by means of a Poincaré-section, a surface Σh that is
transverse to the flow. Compute for every z ∈ Σh the (first) return time
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T (z) := min

{
T > 0

∣∣∣∣ ϕT (z) ∈ Σh

}

and define the Poincaré-mapping

F : Σh −→ Σh

z 7→ ϕT (z)(z)

(excluding from Σh those points that do not return, if necessary). The re-
sulting phase portraits are again 2–dimensional. Note that not every aspect
of the recurrent dynamics is captured in this way, for instance, a transverse
section Σh cannot contain equilibria.

In general a Poincaré-section is a hypersurface transverse to the flow of a
dynamical system, and the above definition of the Poincaré-mapping carries
over verbatim. To emphasize that the energy has been fixed (whence Σh is
of co-dimension 1 only within the 3–dimensional energy shell) we call Σh an
iso-energetic Poincaré-section and F an iso-energetic Poincaré-mapping.

Again we want F to be area preserving. Emulating the proof of Darboux’s
Theorem 4.5 we can near Σh complete t and H by q and p to a canonical
co-ordinate system. Hence (q, p) provides local co-ordinates on Σh. If Σh =
{H = h, t = 0} and T (z) = 1 for all z ∈ Σh then also Σh = {H = h, t = 1}
and the proof of Theorem 8.1 still applies whence F is area preserving.

In fact, the area element dqdp is preserved independently of the extra
condition on Σh. Note that this area element is well-defined (independent of
the particular co-ordinate system) since the transformation from (q, p) to (x, y)

has Jacobi determinant det
∂(x, y)

∂(q, p)
≡ 1 if (t,H, x, y) form again a canonical

co-ordinate system. In this way the iso-energetic Poincaré-mapping is area
preserving. In general F does not preserve the area element inherited on Σh

from the embedding in {H = h} ; for co-ordinates

(q, p) 7→ (t(q, p), h, q, p) ∈ Σh

the latter is given by

√

1 + (
∂t

∂q
)2 + (

∂t

∂p
)2 dqdp .

Working with dqdp gives more flexibililty in the choice of Σh as only transver-
sity to the flow has to be secured. In applications one often defines Σ by fixing
some co-ordinate and then Σh := Σ ∩ {H = h}.

Exercise 8.3. Define a Poincaré-section Σ for the spherical pendulum at
x1 = 0 and use (x3, y3) ∈ ] − 1, 1[×R as co-ordinates on Σh. Check that
this fixes

x2 =
√

1 − x2
3 , y2 = −x3y3

x2
and y1 =

√
2h− 2γx3 − y2

2 − y2
3
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after a (which?) choice of signs. Show that
dx3dy3
1 − x2

3

is the invariant area element

and that for h > −γ the iso-energetic Poincaré-mapping on Σh defined by the
flow of the spherical pendulum coincides with the time–1–mapping of a one-
degree-of-freedom Hamiltonian H = H(x3, y3).

We call an area preserving mapping F : R2 −→ R2 integrable if there is a
Hamiltonian function H ∈ C∞(R2) with flow ϕ such that F coincides with
the time–1–mapping ϕ1 : R2 −→ R2.

8.2 Fixed points

Fixed points of an area preserving mapping correspond to periodic orbits of
the Hamiltonian system — of period 1 in the case of a stroboscopic mapping,
in case of a Poincaré-mapping the period coincides with the orbit-dependent
return time. Periodic points of an area preserving mapping also correspond to
periodic orbits of the Hamiltonian system, but the period is larger and given
by the sum of the return times (1 + . . .+ 1 for a stroboscopic mapping). For
the local dynamics of a fixed point we may restrict to an open subset of R2

and move the fixed point to the origin. Then F (0) = 0, the constant term
of F vanishes, and the linear part DF (0) governs the dynamics near the fixed
point. Area preservation implies detDF (0) = 1 and the trace of DF (0) allows
to distinguish between the following cases.

traceDF (0) > 2. The eigenvalues are λ > 1 and 0 <
1

λ
< 1. The orbits of

the linearization proceed along hyperbolas and the fixed point is called
(directly) hyperbolic.

traceDF (0) = 2. The linear part is equal to the identity or has Jordan nor-
mal form

(
1
0
1
1

)
.

−2 < traceDF (0) < 2. The eigenvalues are e±iα and the orbits proceed in
rigid rotations of angle α along ellipses. The fixed point is called elliptic.

traceDF (0) = −2. The linear part DF (0) = −id or has Jordan normal form(
−1
0

1
−1

)
.

traceDF (0) < −2. The eigenvalues are λ < −1 and 0 >
1

λ
> −1. The orbits

of the linearization jump between two hyperbolas and the fixed point is
called (inversely) hyperbolic.

Hyperbolic fixed points are dynamically unstable, but structurally stable.

Theorem 8.3. Let F : R2 −→ R2 be a diffeomorphism with hyperbolic fixed
point at the origin. Then there is a homeomorphism ψ that locally conju-
gates F to the linearization, satisfying ψ ◦ F = DF (0) ◦ ψ on a small neigh-
bourhood of the origin.

The proof furthermore shows that the local dynamics near a directly hyper-
bolic fixed point is conjugate to that of the linear system defined by
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A =

(
2 0
0 1

2

)

and near an inversely hyperbolic fixed point to that of −A. Since small pertur-
bations of hyperbolic fixed points remain hyperbolic (with slightly perturbed
eigenvalues), this shows (local) structural stability — the unperturbed and
perturbed system have conjugate dynamics near the respective fixed points.
While Theorem 8.3 remains true for hyperbolic fixed points in higher dimen-
sions, the present 2–dimensional case allows to obtain a higher regularity for
the conjugation ψ.

Theorem 8.4. Let F : R2 −→ R2 be a C2–diffeomorphism with hyperbolic
fixed point at the origin. Then there is a C1–diffeomorphism ψ that locally
conjugates F to DF (0).

SinceDψ(0) conjugates the linear parts of the conjugated mappings, the eigen-
values are moduli that cannot be changed by means of differentiable conju-
gations. Note that both Theorems 8.3 and 8.4 do not require F to be area
preserving.

In the elliptic case α is the rotation number on the invariant ellipses. This
makes the eigenvalues not only smooth invariants as in the hyperbolic case but
even topological invariants, preventing different linear parts to be conjugate
to each other. The best possible simplification for the linear part is to choose
(linear) co-ordinates in which

DF (0) =

(
cosα − sinα
sinα cosα

)
.

Normal form theory aims to push the rotational symmetry generated by the
linear part through the Taylor series. Starting point is the expansion

F (x, y) = F1 + F2 + . . .

with linear term F1 = DF (0)
(
x
y

)
and

Fk =

(
F 1

k

F 2
k

)
∈ Gk × Gk .

The search is for ψ = id + . . . making ψ ◦ F ◦ ψ−1 as simple as possible. To
ensure that the resulting diffeomorphism is again area preserving we choose
ψ = ϕW = ϕW

1 to be the time–1–mapping of a suitable Hamiltonian vector
field XW . This implies that the inverse ψ−1 = ϕW

−1 is obtained by going
backwards in time. Choosing W ∈ G3 we get

ψ ◦ F ◦ ψ−1

(
x
y

)
= DF (0)

(
x
y

)
+ F2 + . . .

+ (XW ◦DF (0))

(
x
y

)
− (DF (0) ◦XW )

(
x
y

)
+ . . .
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and simplifying the quadratic term of F amounts to solving the homological
equation

(DF (0) ◦XW − XW ◦DF (0))

(
x
y

)
+ B2 = F2

in the unknowns W and B2 ∈ G2 × G2. The linear operator

M2
DF (0) : G2 × G2 −→ G2 × G2

Vk(x, y) 7→ (DF (0) ◦ Vk − Vk ◦DF (0)) (x, y)

defines a splitting

imM2
DF (0) ⊕ (kerM2

DF (0))
T = G2 × G2

and we are interested in the projections of F2 to both factors. Inductively, once
F2, . . . , Fk−1 have been normalized we similarly look for Vk, Bk ∈ Gk×Gk solv-
ing the homological equation for Fk . To compute the eigenvalues of Mk

DF (0)

we pass to complex co-ordinates z = x+ iy and get

Mk
DF (0)(z

j z̄l) = eiαzj z̄l − (eiαz)j(e−iαz̄)l = eiα(1 − ei(j−l−1)α)zj z̄l

whence Mk
DF (0) is semi-simple and the splittings

imMk
DF (0) ⊕ kerMk

DF (0) = Gk × Gk

hold true without the transpose. The kernel kerM k
DF (0) consists of those

monomials zj z̄l for which j+l = k and (j−l−1)α ∈ 2πZ. For uneven k = 2l+1
this always yields (zz̄)lz ∈ kerMk

DF (0). In the resonant case that eiα is an mth

root of unity there are additionally z̄m−1 ∈ kerMm−1
DF (0), z

m+1 ∈ kerMm+1
DF (0),

z̄2m−1 ∈ kerM2m−1
DF (0) and further combinations.

Exercise 8.4. Compute for

F (x, y) =
1

2

(
1 −

√
3√

3 1

)(
x+ y2

y

)

the normal form of the quadratic term.

The difference in dimension

dim

{
XW

∣∣∣∣ W ∈ Gk+1

}
= k + 2 < 2k + 2 = dim (Gk × Gk)

corresponds to the k linear conditions on Fk for F to preserve area. In the
simplest case k = 2 the quadratic terms

F2 =

(
ax2 + bxy + cy2

dx2 + exy + fy2

)
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have to satisfy
det (DF1 +DF2) ≡ 1

whence

(2a+ e) cosα + (2d− b) sinα = 0

(b+ 2f) cosα + (e− 2c) sinα = 0 .

Note that a non-zero detDF2 has to be accounted for at the next level, where
the coefficients of x2, y2 and xy are collected (making the 3 linear equations
inhomogeneous). For the normal form series one has the following result of
Takens.

Theorem 8.5. Let Fµ : R2 −→ R2 be a parameter-dependent area preserving
C∞–diffeomorphism that has the origin as an elliptic fixed point for all pa-
rameter values. Then there is a family Hµ ∈ C∞(R2) of Hamiltonians and a
family ψµ of area preserving diffeomorphisms such that

(
ψµ ◦ Fµ ◦ ψ−1

µ

)
(x, y) =

(
ϕ

Hµ

t=1 ◦DF0(0)
)

(x, y) + R(x, y, µ)

with a remainder term R for which all derivatives vanish.

Thus, up to a flat remainder term (which is smaller than any polynomial close
to the elliptic origin) the area preserving mappings Fµ are integrable.

8.3 The period-doubling bifurcation

The two exceptional cases traceDF (0) = ±2 of double eigenvalues that are
both on the real line and on the unit circle lead to bifurcations. The implicit
mapping theorem does not apply to fixed points with eigenvalue +1 whence
a small perturbation may remove such a fixed point. The logarithm

(
0
0
1
0

)
of(

1
0
1
1

)
suggests to approximate F by the time–1–mapping of the Hamiltonian

on top of p.10.

Exercise 8.5. Use the literature to show that a generic family of area pre-
serving mappings encountering a parabolic fixed point with eigenvalue +1
undergoes a centre-saddle bifurcation.

The matrix
(
−1
0

1
−1

)
does not have a real logarithm, but its square has the

logarithm
(
0
0
−2
0

)
. In adapted co-ordinates the Hamiltonian H of a time–1–

mapping approximating F 2 should be invariant under the Z2–action generated
by (x, y) 7→ (−x,−y). This holds true for the families

Hλ(x, y) = −y2 ± x4 + λx2 (8.5)

which display Hamiltonian pitchfork bifurcations.
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Exercise 8.6. Use the invariants u = x2, v = y2 and w = xy to reduce the
Z2–symmetry of the two families of Hamiltonian systems defined by (8.5) and
draw in both cases phase portraits for a significant choice of values of the
parameter λ.

Fixed points of F 2
λ correspond for Fλ both to fixed points and to periodic

orbits of period 2. In the above adapted co-ordinates the origin consists of
fixed points while equilibria (x, y) 6= 0 of XHλ

together with their symmetric
counterpart (−x,−y) correspond to a 2–periodic orbit of Fλ. Thus, under
variation of a parameter λ a parabolic fixed point, with eigenvalues passing
through −1, turns from elliptic to hyperbolic and simultaneously an orbit
of period 2 bifurcates off from the parabolic fixed point. Depending on the
sign ±1 of the x4–term the new orbit is elliptic and exists for parameter
values λ for which the fixed point has become hyperbolic, or the new orbit is
hyperbolic and coexists with the elliptic fixed points. One speaks of a period-
doubling bifurcation, of supercritical and of subcritical type, respectively.


