

Fig. 2.1. The Hamiltonian pitchfork bifurcation.

The typical way in which a parabolic equilibrium bifurcates is the centresaddle bifurcation. Here the Hamiltonian reads

$$
\begin{equation*}
H(x, y)=\frac{a}{2} y^{2}+\frac{b}{6} x^{3}+c \lambda x \tag{2.2}
\end{equation*}
$$

where $a, b, c \in \mathbb{R}$ are nonzero constants. For instance, when $a=b=c=1$ this leads to the phase portraits given in Fig. 2.2.

Note that this is a completely different unfolding of the parabolic equilibrium at the origin. A closer look at the phase portraits and in particular at the Hamiltonian function of the Hamiltonian pitchfork bifurcation reveals the symmetry $x \mapsto-x$. This suggests to add the non-symmetric term μx.

Exercise 2.8. Determine the bifurcation diagram of the family

$$
H_{\lambda, \mu}(x, y)=\frac{1}{2} y^{2}+\frac{1}{24} x^{4}+\frac{\lambda}{2} x^{2}+\mu x
$$

Fig. 2.2. The centre-saddle bifurcation.
of Hamiltonian systems.
Singularity theory allows to prove that upon adding further "small" terms to $H_{\lambda, \mu}$ no additional phase portraits are generated. Up to equivalence (i.e. qualitatively) $H_{\lambda, \mu}$ contains all possible unfoldings of the anharmonic oscillator (2.1), one also speaks of a versal unfolding. Similarly, the centre-saddle bifurcation is a stable 1 -parameter family.

Exercise 2.9. Analyse the family

$$
H_{\lambda}(x, y)=\frac{1}{2} y^{2}+\frac{1}{6} x^{3}+\frac{\lambda}{2} x^{2}
$$

of Hamiltonian systems.

Fig. 2.3. The mathematical pendulum.

For any potential energy $V: S^{1} \longrightarrow \mathbb{R}$ the Hamiltonian $H=T+V$ with kinetic energy $T=\frac{1}{2} y^{2}$ defines equations of motion

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-V^{\prime}(x)
\end{aligned}
$$

on $S^{1} \times \mathbb{R}$; the corresponding flow may be computed directly on the phase space or first on \mathbb{R}^{2} and then projected $\bmod 2 \pi$ in the first component.

Exercise 2.11. Consider the Hamiltonian function $H(x, y)=\frac{1}{2} y^{2}-\cos x$ of the pendulum. For $|z|<1$ we consider the level set $H^{-1}(z)$. What is the amplitude of oscillation in this level? If $T(z)$ denotes the period of oscillation in this level, then give an explicit integral expression for this. Determine $\lim _{z \rightarrow-1} T(z)$ and $\lim _{z \rightarrow+1} T(z)$.

Exercise 2.12. Analyse the dynamics of the rotating pendulum $\ddot{x}=M-\sin x$ in dependence of M.

Exercise 2.13. Let $H(x, y)=\frac{1}{2} y^{2}-V(x)$ be the Hamiltonian of a $1-$ dimensional particle with mass $m=1$ moving in the potential V. Describe the time parametrisations of the trajectories $H=h$ in terms of the indefinite integral

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{\sqrt{2(h-V(x))}} \tag{2.3}
\end{equation*}
$$

$$
T_{(u, v, w)} S_{r}^{2}=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)+\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)^{\perp}
$$

and consists of all possible vectors $X_{H}(u, v, w)$ where H runs through all of $C^{\infty}\left(\mathbb{R}^{3}\right)$.

Example 3.5. Consider on S^{2} (or, in fact, on \mathbb{R}^{3}) the Hamiltonian function

$$
\begin{equation*}
H(u, v, w)=\frac{a u^{2}}{2}+\frac{b v^{2}}{2}+\frac{c w^{2}}{2} \tag{3.4}
\end{equation*}
$$

where $0<a \leq b \leq c$ are three real parameters. (This models part of the dynamics of a free rigid body with a fixed point, subject only to its own inertia.) The equations of motion

$$
\begin{aligned}
\dot{u} & =\{u, H\} \\
\dot{v} & =\{b-c) v w \\
\dot{w} & =\{w, H\}=(c-a) u w \\
& =(a-b) u v
\end{aligned}
$$

are non-linear but can still be explicitly solved, using elliptic functions. Since the orbits coincide with the intersections $S^{2} \cap\{H=h\}$ of the phase space with the energy level sets one can alternatively obtain the phase portrait intersecting the sphere $S^{2} \subseteq \mathbb{R}^{3}$ with the ellipsoid $\{H=h\}$, see Fig. 3.1.

Fig. 3.1. Flow defined by the Hamiltonian (3.4).

Exercise 3.12. Analyse the dynamics defined by (3.4) on S^{2} in the limiting cases $a \rightarrow b$ and $b \rightarrow c$.

