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Fig. 2.1. The Hamiltonian pitchfork bifurcation.

The typical way in which a parabolic equilibrium bifurcates is the centre-
saddle bifurcation. Here the Hamiltonian reads

H(x, y) =
a

2
y2 +

b

6
x3 + cλx (2.2)

where a, b, c ∈ R are nonzero constants. For instance, when a = b = c = 1 this
leads to the phase portraits given in Fig. 2.2.

Note that this is a completely different unfolding of the parabolic equilib-
rium at the origin. A closer look at the phase portraits and in particular at
the Hamiltonian function of the Hamiltonian pitchfork bifurcation reveals the
symmetry x 7→ −x. This suggests to add the non-symmetric term µx.

Exercise 2.8. Determine the bifurcation diagram of the family

Hλ,µ(x, y) =
1

2
y2 +

1

24
x4 +

λ

2
x2 + µx
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Fig. 2.2. The centre-saddle bifurcation.

of Hamiltonian systems. 4

Singularity theory allows to prove that upon adding further “small” terms
to Hλ,µ no additional phase portraits are generated. Up to equivalence (i.e.
qualitatively) Hλ,µ contains all possible unfoldings of the anharmonic oscil-
lator (2.1), one also speaks of a versal unfolding. Similarly, the centre-saddle
bifurcation is a stable 1–parameter family.

Exercise 2.9. Analyse the family

Hλ(x, y) =
1

2
y2 +

1

6
x3 +

λ

2
x2

of Hamiltonian systems. 4
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Fig. 2.3. The mathematical pendulum.

For any potential energy V : S1 −→ R the Hamiltonian H = T + V with
kinetic energy T = 1

2y
2 defines equations of motion

ẋ = y

ẏ = −V ′(x)

on S1 × R ; the corresponding flow may be computed directly on the phase
space or first on R2 and then projected mod 2π in the first component.

Exercise 2.11. Consider the Hamiltonian function H(x, y) = 1
2y

2 − cosx of
the pendulum. For |z| < 1 we consider the level set H−1(z). What is the
amplitude of oscillation in this level? If T (z) denotes the period of oscilla-
tion in this level, then give an explicit integral expression for this. Determine
lim

z→−1
T (z) and lim

z→+1
T (z). 4

Exercise 2.12. Analyse the dynamics of the rotating pendulum ẍ = M−sinx
in dependence of M . 4

Exercise 2.13. Let H(x, y) = 1
2y

2 − V (x) be the Hamiltonian of a 1–
dimensional particle with mass m = 1 moving in the potential V . Describe
the time parametrisations of the trajectories H = h in terms of the indefinite
integral ∫

dx√
2(h− V (x))

. (2.3)

4
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and consists of all possible vectors XH (u, v, w) where H runs through all
of C∞(R3).

Example 3.5. Consider on S2 (or, in fact, on R3) the Hamiltonian function

H(u, v, w) =
au2

2
+

bv2

2
+

cw2

2
(3.4)

where 0 < a ≤ b ≤ c are three real parameters. (This models part of the
dynamics of a free rigid body with a fixed point, subject only to its own
inertia.) The equations of motion

u̇ = {u,H} = (b− c)vw

v̇ = {v,H} = (c− a)uw

ẇ = {w,H} = (a− b)uv

are non-linear but can still be explicitly solved, using elliptic functions. Since
the orbits coincide with the intersections S2 ∩ {H = h} of the phase space
with the energy level sets one can alternatively obtain the phase portrait
intersecting the sphere S2 ⊆ R3 with the ellipsoid {H = h}, see Fig. 3.1. ut

Fig. 3.1. Flow defined by the Hamiltonian (3.4).

Exercise 3.12. Analyse the dynamics defined by (3.4) on S2 in the limiting
cases a→ b and b→ c. 4


