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of rotation (5.2) conjugate to τ4). Show that the Hamiltonian function (5.1)
turns into

Hµ(q, p) =
p2

2
− γ

q
+

µ2

2q2
(5.9)

on ]0,∞[×R. △

The phase portraits of the one-degree-of-freedom problem on Pµ with Hamil-
tonian function Hµ(τ1, τ2, τ3) = H(τ1, τ2, τ3, µ) defined by (5.8) are given by
the intersections of the energy level sets {Hµ = h} ⊆ R

3 with the phase space
Pµ ⊆ R

3. The latter is a surface of revolution (around the axis τ1 = τ2) and
the former is a ‘cylinder’, a direct product Bh × R on the basis

Bh =

{

(τ1, τ2) ∈ R
2

∣

∣

∣

∣

τ2 = h− U(2τ1)

}

in R
2. Thus, we can obtain the orbits from the relative position of the two

curves Pµ ∩ {τ3 = 0} and {Hµ(τ1, τ2, 0) = h} = Bh within R
2. For µ = 0

the former is the positive τ1–axis {τ1 > 0, τ2 = 0} and for µ 6= 0 it is the
hyperbola

τ2 =
µ2

4τ1
. (5.10)

Fixing µ and varying the energy value h results in “moving the basis Bh up or
down” and yields the phase portraits. We keep considering general potentials
U = U(2π1), but for explicit computations (and the resulting formulas below)
we specialize to the Newtonian potential U derived from (5.1b) where we
obtain Fig. 5.1. This then easily yields the phase portraits in Fig. 5.2.
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Fig. 5.1. Intersection within the (τ1, τ2)–plane of the reduced phase space Pµ with
the level sets of the energy. a) for µ 6= 0. b) for µ = 0.
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Fig. 5.2. Projection to the (τ1, τ3)–plane of the phase portraits obtained from
Fig. 5.1. a) for µ 6= 0. b) for µ = 0.

The reduced flows are organized by the (relative) equilibria, where the two
surfaces touch each other. This can only happen in the (τ1, τ2)–plane as the
surface of revolution Pµ has nowhere else tangent planes that contain the τ3–
axis. Equilibria are therefore given by the points where the two planar curves
Pµ ∩ {τ3 = 0} and Bh touch. For µ = 0 the strictly monotonous functions

τ2 = h +
γ√
2τ1

(5.11)

obtained from (5.1b) can intersect the τ1–axis only transversely, whence there
are no equilibria in this case. For µ 6= 0 the hyperbola (5.10) touches Bh if
and only if the difference function

Vµ(τ1) = U(2τ1) +
µ2

4τ1
− h (5.12)

has a double zero. The equation Vµ(τ1) = 0 can always be fulfilled by adjusting
the value h of the energy accordingly. The remaining equation

V ′

µ(τ1) = 2U ′(2τ1) − µ2

4τ2
1

!
= 0

is for each µ an equation in τ1 with for (5.1b) the solution

τ1 =
µ4

2γ2
(5.13a)

whence

h =
−γ2
2µ2

and τ2 =
γ2

2µ2
. (5.13b)



5.1 Central force fields 39

In particular, the equation

(

2πµ3

γ2

)2

=
4π2

γ

(

µ2

γ

)3

relates period and radius as predicted by Kepler’s third law.

Exercise 5.11. Derive the 1

d
–form of the gravitational potential, d the dis-

tance, from Kepler’s third law. △

x1

x2

Fig. 5.3. The torus (5.14) within (x1, x2, τ3)–space R
3 seen along the τ3–axis. A

(conditionally) periodic orbit that stays within a tilted plane projects to an ellipse
on the (x1, x2)–plane.

For periodic orbits on Pµ the two intersection points of the hyperbola (5.10)
and the graph of (5.11) yield an inner and an outer radius in configuration

space R
2\{0} between which (the projection of) the reconstructed trajectory

is captured. Passing on phase space to co-ordinates (x1, x2, τ3, τ4), with inverse
given by

y1 =
x1τ3 − x2τ4

x2
1
+ x2

2

y2 =
x2τ3 + x1τ4

x2
1
+ x2

2

allows us to fix the fourth co-ordinate τ4 and identify the torus
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{

(x1, x2, τ3, τ4) ∈ R
4

∣

∣

∣

∣

τ4 = µ , H = h

}

(5.14)

in Fig. 5.3. The motion on this invariant manifold is conditionally periodic,
superposing the periodic motion on Pµ with the periodic motion in ρ along the

attached circles. In the3 limit h→ −γ2

2µ2
the torus shrinks down to the periodic

orbit in the x–plane {τ3 = 0}. As h passes to positive values, the outer radius
goes to infinity (and beyond) whence the torus turns into a cylinder. The flow
on (5.14) commutes with the S1–action (5.2) which turns trajectories into
trajectories, only rotating x and leaving the co-ordinates τ3 and τ4 fixed.

Exercise 5.12. Describe the behaviour of an orbit in a (planar) central force
field that has total energy equal to the effective potential energy at a local
maximum. △

Exercise 5.13. What do the results on planar central force fields imply for
the free particle? △

5.2 The eccentricity vector

The energy-momentum mapping

EM : R
4 −→ R

2

(x, y) 7→ (τ4(x, y), H(x, y))
(5.15)

allows to collect the information on the global dynamics that we obtained so
far, see Fig. 5.4 for the potential (5.1b) of the Kepler system. Shown are the
bifurcation values of EM, the remaining open parts consist4 of regular values.

For values (µ, h) ∈ R
2 satisfying h <

−γ2

2µ2
the inverse image EM−1(µ, h) is

empty. It is only by convention that these are called regular values; with this
definition the statement of Sard’s Lemma is simply that the regular values of
a smooth mapping form an open and dense set of full measure — the com-
plement (the critical values) has Lebesgue measure zero. The regular values
in

{

(µ, h) ∈ R
2

∣

∣

∣

∣

µ 6= 0 ,
−γ2

2µ2
< h < 0

}

have invariant tori as inverse images, on which the periodic orbit Pµ∩H−1
µ (h)

is superposed with the periodic motion in the ρ–variable that has been sup-
pressed when reducing the symmetry (5.2).

3 For (5.1); in general: as h approaches a minimum.
4 Not of the regular values: the values on the µ– and h–axes are also regular, but
the inverse image EM−1(µ, h) changes as the value (µ, h) crosses an axis, as it
does when crossing the set {(µ, h) ∈ R

2 | 2µ2h+ γ = 0} of singular values.
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µ

h

Fig. 5.4. Bifurcation values of the energy-momentummapping of the Kepler system.
The points on the hyperbolas are also critical values of EM, while the axes consist
of regular values.

For a general central force field this conditionally periodic motion alter-
nates between quasi-periodic — the trajectory lies dense on the torus — and
periodic — the trajectory returns exactly to its initial state after having super-
posed the two periodic motions for a finite number of periods. Furthermore, it
will in general depend on the initial condition, and thus on the values µ of τ4
and h of H , which of these two alternatives applies. A torus EM−1(µ, h) that
consists of periodic orbits is also called resonant, since the frequencies ω1, ω2

satisfy a resonance relation

k1ω1 + k2ω2 = 0 (5.16)

with an integer vector k ∈ Z
2\{0} that one may choose to have relative prime

components. The periodic motion then consists of k2 periods on the reduced
phase space superposed with k1 full rotations about the origin x = 0.

According to Kepler’s first law, all invariant 2–tori have to be resonant,
with k1 = k2 = 1 in (5.16). While following an ellipse in configuration

space R
2\{0}, the trajectory moves along the “lower” part of the torus when

approching the origin and along the “upper” part when elongating (indeed,
τ̇1 = τ3), see Fig. 5.3. Such a uniform resonance, valid for all invariant tori si-
multaneously, hints to the existence of an additional conserved quantity (and
hence to an extra symmetry).

Theorem 5.2. (Noether). Let (ψs)s∈R be the flow of a Hamiltonian vector field

defined by F ∈ C∞(P) for which every ψs : P −→ P is a symmetry of the
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Fig. 7.1. Eigenvalue configurations of structurally stable equilibria in Hamiltonian
systems with two degrees of freedom.

Fig. 7.2. Eigenvalue configurations undergoing a Krein collision.

Hamiltonian has a quadratic part of the form (7.1), showing that all small
deformations of a 1:1 resonant equilibrium are elliptic.

Thus, a 1–parameter family Hλ of Hamiltonians with an equilibrium
zλ ∈ R

4 passing from focus-focus type to centre-centre type has to admit
a parameter value λ0 for which the equilibrium is in 1:−1 resonance.

Exercise 7.5. Use the implicit mapping theorem to change to new co-
ordinates in which zλ = 0 for all parameter values λ ∈ R. △

For a better understanding of the situation it is helpful to apply the co-
ordinate transformation
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Fig. 7.3. Intersection within the (τ2, τ1)–plane of the reduced phase space Pµ with
the level sets of the energy. a-c) for µ 6= 0. d-f) for µ = 0. Note that in all figures
the horizontal axis is the τ2–axis and the vertical axis is the τ1–axis.

The discriminant locus of a general polynomial of degree 3 is a cylinder on the
basis of the bifurcation diagram derived in exercise 2.8, two smooth surfaces
meet at one cusp line. We are interested in the way this set gets folded under
the mapping

(λ, µ, h) 7→
(

2λ,
µ2

2
, 2h

)

that assigns to our parameters the coefficients of (7.13).

Lemma 7.2. The discriminant locus of (7.13) coincides with the discriminant

locus of the polynomial

τ42 − λτ22 +
√
2µτ2 +

h

2
+

λ2

4
. (7.14)

To prove this lemma just compute the two discriminant loci. The more inter-
esting question is how to get the idea to compare these two sets. This is much
easier to answer after solving exercise 7.17. The bifurcation diagram of (7.12)
is the swallow tail surface which lies at the basis of the discriminant locus of
the general polynomial of degree 4 (the leading 4th order term can be scaled
to 1 and a translation removes the 3rd order term). With this picture in mind,
we now determine the set of critical values of EM.
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Exercise 7.20. Use the translation τ2 7→ τ2− 2

3
λ to turn (7.13) into standard

form τ32 + κ1τ2 + κ2 and study the mapping κ = κ(λ, µ, h) from R
3 to R

2. △

The mapping

(λ, µ, h) 7→
(

λ

12
,

√
2µ

24
,
2h+ λ2

96

)

that assigns to our parameters the coefficients of the partial derivative of (7.12)
with respect to x, thus relating 1

24
x4 − 1

2
ν1x

2 + ν2x+ ν3 to (7.14), is a diffeo-
morphism whence the discriminant locus of (7.13) is indeed the swallow tail
surface. To obtain the set of critical values of the energy-momentum mapping
we still have to take the inequalities τ1 ≥ 0 and τ2 ≥ 0 into account. The latter
is no restriction since the polynomial (7.14) is invariant under the simultane-
ous transformation τ2 7→ −τ2, µ 7→ −µ and the discriminant locus of (7.14)
is symmetric with respect to the reflection in µ. The former inequality yields
h− 1

2
τ22 −λτ2 ≥ 0 which results in h ≥ 0 for λ ≥ 0 and in h ≥ − 1

2
λ2 for λ ≤ 0.

Thus, we have to “remove the tail” from the swallow tail, see Fig. 7.4.a.
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Fig. 7.4. Sketch of the set of singular values of the energy–momentum map-
ping (τ4, H̄

λ) for a) the supercritical case and b) the subcritical case.

Note that the λ–axis consists of critical values of EM since τ4 and H̄λ

vanish for all λ at the origin. For λ > 0 the critical values form a crease at
this line, corresponding to two families of periodic orbits that shrink down to
the (stable) equilibrium. For λ < 0 the λ–axis {µ = 0, h = 0} detaches from
the swallow tail surface and forms a 1–dimensional thread. The inverse im-
age of these points under the energy-momentum mapping is a pinched torus
formed by the unstable equilibrium and its (coinciding) stable and unstable
manifold. The thread does belong to the real part of the discriminant locus
when interpreting (7.14) as a complex polynomial, but is not part of the (real)


